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Simple Summary: The hypothalamus plays crucial roles in sheep reproduction. However,
the expression profiles of sheep hypothalamic circular RNA (circRNA), which has been proved to
exert important functions in many physiological processes, remain largely unknown. In this study,
we used RNA sequencing to explore the expression of circRNAs in the hypothalamus of sheep with
the FecB ++ genotype. The results suggested that several key hypothalamic circRNAs may participate
in sheep reproduction by influencing gonadotropin-releasing hormone (GnRH) activities or affecting
key gene expression indirectly or directly. This study provides a further reference for understanding
the differences of sheep fecundity.

Abstract: Circular RNA (circRNA), as an emerging class of noncoding RNA, has been found to
play key roles in many biological processes. However, its expression profile in the hypothalamus,
a powerful organ initiating the reproductive process, has not yet been explored. Therefore, we used
RNA sequencing to explore the expression of circRNAs in the hypothalamus of sheep with the
FecB ++ genotype. We totally identified 41,863 circRNAs from sheep hypothalamus, in which 333
(162 were upregulated, while 171 were downregulated) were differentially expressed in polytocous
sheep in the follicular phase versus monotocous sheep in the follicular phase (PF vs. MF), moreover,
340 circRNAs (163 were upregulated, while 177 were downregulated) were differentially expressed in
polytocous sheep in the luteal phase versus monotocous sheep in the luteal sheep (PL vs. ML). We also
identified several key circRNAs including oar_circ_0018794, oar_circ_0008291, oar_circ_0015119,
oar_circ_0012801, oar_circ_0010234, and oar_circ_0013788 through functional enrichment analysis
and oar_circ_0012110 through a competing endogenous RNA network, most of which may participate
in reproduction by influencing gonadotropin-releasing hormone (GnRH) activities or affecting key
gene expression, indirectly or directly. Our study explored the overall expression profile of circRNAs
in sheep hypothalamus, which potentially provides an alternative insight into the mechanism of
sheep prolificacy without the effects of FecB mutation.
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1. Introduction

Sheep is an important agricultural species, the reproductive traits of which are strictly controlled by
reproduction-related hormones, such as gonadotropin-releasing hormone (GnRH), follicle-stimulating
hormone (FSH), and luteinizing hormone (LH) [1]. In this species, reproductive activities are initiated
by GnRH pulsatile secretion, which reaches the pituitary, causing the release of FSH and LH. Then,
those two key hormones act on the ovary, leading to the development of follicles and ovulation.
GnRH, as an activator of female reproduction, is particularly important in this context, and both
the amplitude and the frequency of GnRH pulsatile release have major effects on the female estrous
cycle [2]. For example, higher pulse frequencies are associated with the selective secretion of LH
in the consistent presence of FSH [3]. In addition, different GnRH pulsatility can activate different
downstream genes. For example, increased LHβ was found to respond to rapid GnRH pulsatility,
while the production of FSHβ was promoted in response to lower GnRH pulsatility [4]. Therefore,
the hypothalamus, as a GnRH-generating organ, plays indispensable roles in female reproduction.

FecB was the first mutation identified in the bone morphogenetic protein receptor IB (BMPRIB)
gene (A746G) and shown to be significantly associated with sheep reproduction. FecB has been found
in many sheep breeds [5–7], including Small Tail Han sheep. One copy of the FecB mutation can
significantly increase little size by 1, and two copies can increase by 1.5 [8]. Therefore, sheep can
be categorized into those having the FecB BB genotype (two copies of FecB mutation), the FecB B+

genotype (one copy of FecB mutation), or the FecB ++ genotype (without FecB mutation). Sheep with
FecB ++ normally have one offspring, but cases of such sheep having two or even three offspring have
also been observed [7]. The mechanism underlying this remains to be explored.

All hormones such as GnRH, FSH, and LH are proteins and are mainly regulated at the
transcriptional and post-transcriptional levels during their synthesis and release [9]. Therefore,
diverse noncoding RNAs should also be considered to play key roles in modulating the reproductive
process. With regard to the pituitary, researches have revealed that noncoding RNAs such as
microRNAs [10,11], long noncoding RNAs [12], and the emerging class of circular RNAs (circRNAs) [9]
are involved in reproductive modulation. CircRNAs are produced in eukaryotes by precursor mRNA
through the back-splicing of exons. Their known functions include acting as sponges of cytoplasmic
microRNAs to modulate gene expression, sequestering proteins, and sometimes being translated into
polypeptides [13]. Regarding the hypothalamus, some researches have investigated the mechanism by
which GnRH controls reproduction. Our previous work demonstrated that the long non-coding RNA
MSTRG.26777, MSTRG.105228, and MSTRG.95128 may play important roles in the hypothalamus of
sheep with FecB ++ by affecting GnRH activities indirectly or directly [14]. In addition, miRNA-200/429
and miRNA-155, as major components of switch, were found to regulate the production of GnRH by
targeting Zeb1 and Cebpb, two repressors of GnRH activating [15]. However, little is known about
the expression profile of circRNAs in the hypothalamus and their involvement in the activities of
reproductive hormones.

Thus, this study tries to explore the expression profile of circRNAs in the hypothalamus of sheep
with the FecB ++ genotype in an effort to identify key circRNAs involved in the reproductive process,
as well as reveal their potential functional mechanisms. This work is expected to provide alternative
insights into the mechanism of sheep prolificacy in the hypothalamus.

2. Materials and Methods

2.1. Animal Processing

All of the animals involved in this study were approved by the Science Research Department
(in charge of animal welfare issues) of the Institute of Animal Sciences, Chinese Academy of Agricultural
Sciences (IAS-CAAS) (Beijing, China), and ethical approval was given by the Animal Ethics Committee
of the IAS-CAAS (No. IASCAAS-AE-03).



Animals 2019, 9, 557 3 of 17

First of all, the TaqMan probe method [16] was used to genotype the herds (n = 890) of Small
Tail Han sheep (STH sheep), and the identified the STH sheep with the FecB ++ genotype were then
divided into a monotocous group (n = 6, litter size ≥ 2) and a polytocous group (n = 6, litter size = 1)
based on litter size records (the details of litter size have provided in our previous report [14]). All of
the sheep involved in this study were bred at the sheep farm of Tianjin Institute of Animal Sciences
under the same conditions and with free access to water and feed.

All of the selected STH sheep were treated with CIDR (controlled internal drug releasing;
Zoetis Australia Pty., Ltd., NSW, Australia; progesterone 300 mg) for 12 days. Six sheep including
three monotocous and three polytocous ones were slaughtered within 45–48 h of CIDR removal
(follicular phase); the remaining six sheep were slaughtered in the same way on day 9 after CIDR
removal (luteal phase). Therefore, all of the STH sheep were categorized as polytocous sheep in the
follicular phase (PF), polytocous sheep in the luteal phase (PL), monotocous sheep in the follicular
phase (MF), or monotocous sheep in the luteal phase (ML).

2.2. Tissue Acquisition, RNA Extraction and Sequencing

The tissue of the whole hypothalamus was obtained immediately after sheep slaughter and stored in
liquid nitrogen (−80 ◦C) for RNA extraction. Total RNA was isolated from the 12 hypothalamic samples
using the TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) in accordance with the manufacturer’s
instructions. To obtain high-quality RNA, 1% agarose electrophoresis and an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) were used to examine the integrity and concentration of
the extracted RNA. The purity of isolated RNA was also ensured using an Agilent RNA 6000 Nano Kit
(Agilent Technologies).

All the sequencing data were obtained from Annoroad Gene Technology Co., Ltd. (Beijing, China).
Samples of 3 µg of total RNA from each hypothalamus were pooled to construct the RNA library.
First, ribosomal RNA was removed using the Ribo-Zero™ Gold Kit (Epicentre, Madison, WI, USA).
Then, a fragmentation buffer was added to break the RNA into fragments, which were used as
templates to synthesize the first strand of complementary DNA. The second strand of cDNA was
also synthesized in the presence of dNTPs, ribonuclease H, and DNA polymerase I. The obtained
double-stranded cDNA was processed with end-repair, the addition of base A and sequencing adaptors,
and Uracil-N-Glycosylase (UNG) enzyme digestion. Subsequently, the polymerase chain reaction
was performed to construct an RNA library. Finally, the desired RNA fragments were selected for
sequencing (Illumina HiSeq 2500).

2.3. Data Quality Control and Circular RNA Identification

The clean reads were obtained from the raw reads after removing the reads with adaptor
contamination (i.e., reads with more than five contaminated bases), low-quality reads (i.e., reads in
which more than 15% of the total bases had a mass value Q ≤ 19), and reads with a rate of N (i.e., the rate
of bases not recognized in a read) greater than 5%.

First, the reference genome and annotation files were downloaded from ENSEMBL (http://www.
ensembl.org/index.html). Then, the BWA-MEM algorithm, which can align reads to the genome rapidly
and efficiently and also supports the mapping segmental alignment of sequences to genomes, was
applied to map clean reads to the Ovis aries reference genome (Oar v.3.1). Subsequently, a “CircRNA
Identifier (CIRI)” strategy [17] was conducted to identify circRNAs, which included the following
main steps: The use of the BWA-MEM algorithm to split sequence and then alignment, which was
followed by scanning of the aligned sequence alignment/map (SAM) file to find the paired chiastic
clipping paired-end mapping and GT-AG splicing signal. Finally, the sequence containing a junction
site was re-mapped to ensure the reliability of the identified circRNAs.

http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
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2.4. Analysis of Differentially Expressed circRNAs and Functional Enrichment Analysis

To better describe the expression level of circRNAs, SRPBM (spliced reads per billion mapping) [18]
was used to represent the expression of circRNAs. DESeq was then conducted to detect the differentially
expressed circRNAs (DE circRNAs) [19]. For the purpose of screening key circRNAs, the thresholds of
fold change > 1.5 and p < 0.05 were set to identify DE circRNAs.

We performed Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses using
host genes of circRNA due to a lack of circRNA annotation. A particular GO term or KEGG pathway
with p < 0.05, which was determined by the hypergeometric test method, was considered to reflect
significant enrichment.

2.5. Integral DE circRNA–miRNA Network Analysis and ceRNA Construction

Many studies have reported that circRNAs could function as sponges of miRNAs to modulate
gene expression [20,21]. To explore the potential interactome of circRNAs and miRNAs, the miRanda
database (http://www.mirbase.org/index.shtml) was searched to identify sites on DE circRNAs to
which miRNAs bind to build a circRNA-miRNA interactome using Cytoscape software [22]. We also
constructed a competing endogenous RNA (ceRNA) network involving oar_circ_0012110 by searching
for target genes of oar-miR-665-3p in the TargetScan database (http://www.targetscan.org/vert_72/).

2.6. Data Validation

To examine the accuracy of RNA sequencing, the divergent primers of six circRNAs
(oar_circ_0012110, oar_circ_0022458, oar_circ_0029952, oar_circ_0033078, oar_circ_0025689,
oar_circ_0030289) were synthesized by Beijing Tianyi Huiyuan Biotechnology Co., Ltd. (Beijing, China)
(Table S1). Then, reverse transcription was performed using PrimeScript™ RT reagent kit (TaKaRa,
dalian, China), followed by the use of SYBR Green qPCR mix (TaKaRa, dalian, China) to conduct
real-time quantitative polymerase chain reaction (RT-qPCR) through the Roche Light Cycler®480II
system (Roche Applied Science, Mannheim, Germany). Finally, the data obtained from RT-qPCR were
calculated with the normalization of β-actin (the details of the calculation method have been reported
previously [14]).

3. Results

3.1. Circular RNA Expression Profiling

We obtained a total of 1,460,254,556 raw reads after sequencing; the mapped reads numbered
1,459,435,298, so the mapping rate in each sample reached nearly 100% (Table S2). We identified
41,863 circRNAs in total from 12 hypothalamic samples (Table S3), most of which are distributed on
chromosome 1, followed by chromosomes 2 and 3 (Figure 1). Diverse types of circRNAs were also
identified, the majority of which were classical circRNAs. In addition, the four sheep groups, namely PF
(Figure 2A), PL (Figure 2B), MF (Figure 2C), and ML (Figure 2D), exhibited similar circRNA types and
percentages. To obtain a better understanding of the characteristics of the circRNAs, we also examined
the exon number and length in PF, PL, MF, and ML. As Figure 4 shows, most circRNAs in PF (Figure 3A),
PL (Figure 3C), MF (Figure 3E), and ML (Figure 3G) had three or four exons; furthermore, the exon
length of the circRNAs containing only one exon in PF (Figure 3B), PL (Figure 3D), MF (Figure 3F),
and ML (Figure 3H) was greater than that of circRNAs having more than one exon.

http://www.mirbase.org/index.shtml
http://www.targetscan.org/vert_72/
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Figure 3. An overview of the exon number and length of identified circular RNAs (circRNAs). The exon
number (A) and length (B) distributions of circRNAs in polytocous sheep in the follicular phase (PF).
The exon number (C) and length (D) distributions of circRNAs in polytocous sheep in the luteal
phase (PL). The exon number (E) and length (F) distributions of circRNAs in monotocous sheep in the
follicular phase (MF). The exon number (G) and length (H) distributions of circRNAs in monotocous
sheep in the luteal phase (ML).

3.2. Identification of Differentially Expressed Circular RNAs (DE circRNAs) and Functional
Enrichment Analysis

To screen the key circRNAs, we set the thresholds of fold change > 1.5 and p < 0.05 to identify DE
circRNAs. In total, we identified 333 DE circRNAs in polytocous sheep in the follicular phase versus
monotocous sheep in the follicular phase (PF vs. MF), where 162 were upregulated, while 171 were
downregulated (Figure 4A, Table S4). We also identified 340 DE circRNAs in polytocous sheep in the
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luteal phase versus monotocous sheep in the luteal phase (PL vs. ML), where 163 were upregulated,
while 177 were downregulated (Figure 4B, Table S4). The heat maps of DE circRNAs in PF, MF, PL,
and ML indicated the differences in expression pattern between PF and MF (Figure 4C) and between
PL and ML (Figure 4D). We also conducted RT-qPCR to confirm the reliability of our sequencing data.
The results demonstrated that the six selected circRNAs displayed expression trends similar to those in
the sequencing results, indicating the accuracy of our sequencing data (Figure 5).
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Figure 4. An overview of differentially expressed circular RNAs (DE circRNAs). (A) A volcanic plot in
polytocous sheep in the follicular phase versus monotocous sheep in the follicular phase (PF vs. MF),
in which several key circRNAs are also labeled. (B) A volcanic plot in polytocous sheep in the luteal
phase versus monotocous sheep in luteal sheep (PL vs. ML), in which several key circRNAs are also
labeled. (C) The expression pattern of DE circRNAs and hierarchical clustering analysis in PF vs. MF.
(D) The expression pattern of DE circRNAs and hierarchical clustering analysis in PL vs. ML.
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(PF) and polytocous sheep in the luteal phase (PL) (A–C); Validation results of three circular RNAs in
monotocous sheep in the follicular phase (MF) and monotocous sheep in the luteal phase (ML) (D–F) by
real-time quantitative polymerase chain reaction (RT-qPCR).

To better understand the functions of DE circRNAs, we conducted GO term and KEGG
pathway analyses. The GO enrichment analysis showed that the top enriched GO terms
in PF vs. MF were vesicle-mediated transport in the main category of biological process,
phosphatidylinositol-3,5-bisphosphate 5-phosphatase activity in molecular function, and cytosol
in the cellular component (Figure 6A, Table S5). Meanwhile, the top enriched GO terms in PL
vs. ML were cellular component organization in the main category of biological process, anion
binding in molecular function, and neuron part in the cellular component (Figure 6B, Table S5).
KEGG enrichment analysis indicated that the most enriched pathway in PF vs. MF was morphine
addiction; the transforming growth factor-β signaling pathway associated with reproduction was also
enriched (Figure 7A, Table S6). Regarding PL vs. ML, the most enriched pathway was endocytosis.
Some pathways associated with reproduction including oxytocin signaling pathway were also enriched
(Figure 7B, Table S6).
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Figure 6. Gene ontology functional enrichment analysis. (A) The top ten enriched GO terms in
biological process, molecular function, and cellular component, respectively, in polytocous sheep in the
follicular phase versus monotocous sheep in the follicular phase (PF vs. MF). (B) The top ten GO terms
enriched in biological process, molecular function, and cellular component, respectively, in polytocous
sheep in the luteal phase versus monotocous sheep in the luteal phase (PL vs. ML). Notes: FDR: False
discovery rate.
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Figure 7. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. (A) The top 20
pathways enriched in polytocous sheep in the follicular phase versus monotocous sheep in the follicular
phase (PF vs. MF). (B) The top 20 pathways enriched in polytocous sheep in the luteal phase versus
monotocous sheep in the luteal phase (PL vs. ML). Notes: FDR: False discovery rate.

3.3. Integral circRNA-miRNA Pairs and Competing Endogenous RNAs Analysis

We constructed circRNA-miRNA interactive networks to explore the potential functions of the
DE circRNAs. We selected the top ten down- and up-DE circRNAs to construct a circRNA-miRNA
interactome for both PF vs. MF and PL vs. ML (Figure 8, Table S7). In total, 20 circRNA-miRNA
pairs were constructed in each of PF vs. MF and PL vs. ML. Two important circRNA-miRNA pairs,
oar_circ_0012110 targeted by oar-miR-665-3p and oar_circ_0033078 targeted by oar-miR-410-5p, were
identified, among which oar_circ_0012110 and oar_circ_0033078 showed the largest fold change in PF
vs. MF and PL vs. ML, respectively.

We also constructed ceRNA networks involving oar_circ_0012110. We searched the target gene
of oar-miR-665-3p from the TargetScan database and selected the top ten target genes according to
the binding score to construct a ceRNA network (Figure 9, Table S8). However, we failed to predict
the target genes of oar_circ_0033078 from the TargetScan database due to the poor conservation of
oar_circ_0033078 in animal species.
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Figure 8. Prediction of microRNA-circular RNA interactive networks. (A) The top 20 differentially
expressed circular RNAs (DE circRNAs) including the top 10 up- and 10 down-DE circRNAs in
polytocous sheep in the follicular phase versus monotocous sheep in the follicular phase (PF vs. MF),
in which a key circRNA-miRNA pair was highlighted in red. (B) The top 20 differentially expressed
circular RNAs (DE circRNAs) including the top 10 up- and 10 down- DE circRNAs in polytocous
sheep in the luteal phase versus monotocous sheep in the luteal phase (PL vs. ML), in which a key
circRNA-miRNA pair was highlighted in red.
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4. Discussion

The hypothalamus, as a key brain region initiating reproductive activities, can generate a GnRH
signal to modulate the secretion of downstream hormones such as FSH and LH. The production
of GnRH is co-regulated by many factors, including kisspeptin, estrogen, and progesterone [23],
and some metabolic activities of leptin, insulin, and ghrelin [24,25]. Accumulating research has
focused on the mechanism of GnRH generation, but the corresponding genetic mechanism is yet to be
understood [26,27]. Recent advances on circRNAs in sheep pituitary have provided new insights into
the complexity of reproduction [9]. Considering the lack of detailed circRNAs expression profiles in
sheep hypothalamus, determining the expression profiles of circRNAs and their potential functions in
the hypothalamus may also deepen the understanding of sheep reproduction. Within the mammalian
brain, the hypothalamus is a region that is highly enriched with circRNAs and in which most of
the circRNAs are highly conserved [28]. In this key endocrine organ, we found 41,863 circRNAs,
but some of them such as oar_circ_0033078 were poorly conserved. This indicates that circRNAs in the
hypothalamus may execute diverse functions in different functional regions, such as the arcuate nucleus
and the preoptic area. In addition, previous work also demonstrated the existence of 12,468 circRNAs
in sheep pituitary, which were one-third of all circRNAs found in the hypothalamus (our result),
and only 886 circRNAs were identified in sheep muscle [29]. The abundance of circRNAs detected
in the hypothalamus indicates their important roles in hypothalamic functions, such as modulating
GnRH pulsatile release. The findings also suggest that some circRNAs may be specific to particular
tissues or physiological stages.

4.1. Functional Enrichment Analysis of Key circRNAs

CircRNAs have been revealed to act at the promoter region of host genes to enhance their
transcription by interacting with U1 small nuclear ribonucleoproteins (snRNPs) and RNA polymerase
II [30]. Therefore, determining the potential functions of host genes associated with circRNAs may help
in understanding circRNA functions. The TGF-β signaling pathway in ovary was found to modulate
reproduction [31,32], but little is known about its effects on hypothalamic functions. Our results suggest
that the TGF-β signaling pathway was also enriched in the hypothalamus, suggesting its potential roles
in hypothalamic functions. SMAD family member 2 (SMAD2), a key member of the SMAD family,
was shown to be a host gene of oar_circ_0018794 and particularly associated with the TGF-β signaling
pathway. Moreover, SMAD2 was found to be highly enriched in rat hypothalamus [33] and to play
key roles in maintaining neuronal differentiation in both human [34] and mouse [35]. In addition,
SMAD2 can act as a mediator of TGF-β1 signaling, affecting GnRH gene expression directly in rats [36],
indicating its importance in hypothalamic function. Another pathway, the Mitogen-activated protein
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kinase (MAPK) signaling pathway, was reported to modulate female reproduction, especially in the
hypothalamus [37]. Fibroblast growth factor 2 (FGF2), which is a source gene of oar_circ_0008291 and
enriched in the MAPK signaling pathway, is a critical neurotrophic factor and mitogen for hypothalamic
cells in vitro, and its expression decreases at the beginning of puberty in female rats [38], moreover,
the production of FGF2 significantly increased nearly twofold after fasting in rats [39]. Interestingly,
a similar acute decrease in leptin was also observed after fasting [25]. Considering the modulatory
effects of leptin on GnRH release [40], we speculate that FGF2 may cooperate with leptin to mediate
GnRH activities, although the detailed mechanisms involved require further validation.

Regarding PL vs. ML, the most enriched pathway was endocytosis, which mainly mediates the
responses to receptor activity [41]. ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 2
(ARAP2), which was enriched in pathway of endocytosis and was a host gene of oar_circ_0034134,
was found to reduce glucose uptake and affect sphingolipid metabolism after ARAP2 knockdown [42].
In addition, high glucose concentration in neuronal cells was shown to influence GnRH activities, impair
cell viability, and further result in the apoptosis of GnRH-secreting neuronal cells [43]. It should also
be noted that the sphingolipid whose metabolism was affected by ARAP2 knockdown also mediated
the cytoplasmic signaling of estrogens [44], which may be involved in the negative feedback control of
estrogen on GnRH secretion in the luteal phase. Thus, ARAP2 may be involved in GnRH regulation by
modulating the glucose concentration and negative feedback control of estrogen on GnRH secretion.
Other host genes include eukaryotic translation initiation factor 5 (EIF5) and ATR serine/threonine kinase
(ATR), both of which generate the circRNAs oar_circ_0010234 and oar_circ_0013788. EIF5 was reported
to promote GTP hydrolysis and translation initiation complex assembly in eukaryotic translation
initiation [45,46], and it also improved the accuracy of start codon recognition [47]. ATR could be a
sensor to respond to DNA damage [48] and be recruited to the sites of such damage [49]. Additionally,
the disruption of ATR results in early embryonic lethality in mice [50]. Therefore, the expression of
two genes, EIF5 and ATR, may be enhanced by circRNAs to promote the expression of some other
genes related to hormone activities such as GnRH release.

4.2. ceRNA Analysis Involving oar_circ_0012110

The competitive endogenous RNA network, as an emerging strategy, has been widely used to
understand complex processes such as cancer and reproduction [51,52]. In our constructed ceRNA
network, oar_circ_0012110 was shown to be a sponge for oar-miR-665-3p, which also targets ten
genes. Cooperating with RhoA, diaphanous-related formin 1 (DIAPH1) was also reported to mediate
the biosynthesis of cortisol by modulating mitochondrial trafficking [53]. In addition, cortisol was
also demonstrated to have a key role in reducing the pulse frequency of GnRH on sheep in the
follicular phase in the presence of ovarian steroids [54], suggesting the key roles of oar_circ_0012110 in
regulating the expression of DIAPH1. Further experiments may confirm its functions in mediating
GnRH pulsatile secretion.

5. Conclusions

In this study, we established the first circRNA expression profile in sheep hypothalamus.
We also identified several key circRNAs, such as oar_circ_0018794, oar_circ_0008291, oar_circ_0015119,
oar_circ_0012801, circRNAs-oar_circ_0010234, and oar_circ_0013788, through functional enrichment
analysis and oar_circ_0012110 through a ceRNA network. Most of these circRNAs may function by
influencing GnRH activities or altering key gene expression indirectly or directly. This study presents
an integral circRNA analysis in sheep hypothalamus and provides a reference for understanding
sheep prolificacy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/9/8/557/s1,
Table S1: Real-time quantitative polymerase chain reaction primers and sizes of the amplification products of
the selected circular RNAs and housekeeping genes, Table S2: Overview of the quality control of mRNA reads
generated from hypothalamic tissues, Table S3: All circular RNAs identified in hypothalamic tissues, Table S4:
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All circular RNAs identified in the polytocous sheep in polytocous sheep in the follicular phase versus monotocous
sheep in the follicular phase (PF vs. MF), and in polytocous sheep in the luteal phase versus monotocous sheep
in the luteal phase (PL vs. ML), where yellow represents differentially expressed circular RNAs, Table S5: GO
enrichment annotation for host genes of differentially expressed circular RNAs in terms of the categories of
molecular function (MF), biological process (BP), and cellular component (CC) in polytocous sheep in the follicular
phase versus monotocous sheep in the follicular phase (PF vs. MF), and polytocous sheep in the luteal phase
versus monotocous sheep in luteal phase (PL vs. ML), Table S6: KEGG enrichment annotation for host genes of
differentially expressed circular RNAs in polytocous sheep in the follicular phase versus monotocous sheep in the
follicular phase (PF vs. MF), and polytocous sheep in the luteal phase versus monotocous sheep in the luteal
phase (PL vs. ML), Table S7: A list of all circular RNA-microRNA pairs predicted by miRanda databases, Table S8:
Target genes of oar-miR-665-3p predicted by TargetScan database.
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