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Abstract 
BACKGROUND:  The most common cancer among women is breast cancer and it has been blamed as the second leading 
cause of cancer death in women; so far many approaches have been used to analyze and detect benign and malignant 
forms of cancer and understanding the features involved in proteins expressed by various types of breast cancers is cru-
cial. 

METHODS:  Herein features of proteins expressed in malignant, benign and both cancers were compared using different 
screening techniques, clustering methods, decision tree models and generalized rule induction (GRI) algorithms to look 
for patterns of similarity in two benign and malignant breast cancer groups. 

RESULTS: The findings showed that the N-terminal amino acid was Met and 57 out of 838 proteins' features ranked as 
important (p > 0.05). The depth of the trees induced by tree induction models varied from 5 (in the Quest model) to 2 
(in the C5.0 model) branches. The best performance evaluation found when C&RT model applied and the worst evalua-
tion found when CHAID model applied. No significant difference in the percentage of correctness, performance evalua-
tion, and mean correctness in tree induction algorithms was found when feature selection applied on datasets, but the 
number of peer groups reduced significantly (p < 0.05) when feature selection model applied. 

CONCLUSIONS: The frequency of Ile-Ile was the most important protein attributes in all tree and rule induction models. 
The importance of sequence-based classification and the frequency of Ile-Ile in prediction of malignant and benign 
breast cancer have been discussed here. 
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he most common cancer among women 
is breast cancer, excluding non-
melanoma skin cancers and it is the sec-

ond leading cause of cancer death in women 
(exceeded only by lung cancer); although re-
cent studies confirmed death rates from breast 
cancer declined significantly during last dec-
ade.1 These declines may be due to earlier de-
tection or better treatment. If the breast cancer 
is diagnosed early enough, the cure rate is very 
high and more than 97% of women can survive 
at least for 5 years.2 Generally the cancer has 
been categorized as non-invasive or benign, 

where the cancer cells are confined to the ori-
gin place, do not threaten life and do not 
spread outside of the breast; and invasive or 
malignant, where the cancer cells have broken 
through the duct into the surrounding fatty 
and connective tissues; this type may lead to 
death if not detected and cured.3 
 Although various techniques have been 
used to distinguish between benign and ma-
lignant breast cancers in recent years, use of 
computer based technologies such as bioin-
formatics models have attracted huge atten-
tions.4-7 The Support Vector Machine (SVM) 
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classification algorithm shown to be a useful 
tool to diagnose breast cancer.8,9 Bioinformatics 
tools such as feature selection with extensive 
RNA-pathway analysis on mass spectrometric 
of metabolites used to identify the important 
features related to breast cancer pathogenesis.8 
In another attempt to introduce a predictive 
system for non-invasive breast cancer, a com-
bination of another bioinformatics tools (SVM-
based feature selection) and mass spectromet-
ric analysis was employed.10 Neural network 
propagation algorithm with SVMs and other 
baseline methods were used to identify several 
markers with clinical or biological relevance 
with the breast cancers.11 
 Prediction tasks are attempts to accurately 
forecast the outcome of a specific situation by 
using input data obtained from a concrete set 
of variables that potentially describe the situa-
tion.12,13 Nowadays, neural networks, as artifi-
cial intelligence, have found application in a 
wide range of problems 14 and in many cases 
resulted as superior to standard statistical 
models.15 The predictive reliability of an artifi-
cial neural networks model in medical diagno-
sis has been confirmed so far.16 Modeling sys-
tems have been used for better prediction of 
breast and lung carcinoma post-surgery sur-
vival using neural networks as suitable 
tool.17,18 
 When data analysis involve hundreds, or 
even thousands of variables, data mining tools 
are being used as one of the most probable 
candidates.19 It is anticipated that applying a 
neural network or a decision tree to a set of 
variables of this quantity may require more 
time than practice.20 There are many attributes 
determine the different characteristics of a pro-
tein molecule. As a result, the majority of time 
and effort of artificial modeling algorithms 
spent in the model-building process involves 
determining which variables should be in-
cluded in the model. Attribute weighting or 
feature selection helps the model to reduce the 
size of variable set, extracting a more manage-
able set of attributes for rule or tree induction 
or getting out meaningful models.21 The value 
of a discrete dependent variable with a finite 

set from the values of a set of independent 
variables is predicted by induction tree algo-
rithms.22 The tree is constructed by looking for 
regularities in data, determining the features to 
add at the next level of the tree using an en-
tropy calculation, and then choosing the fea-
ture that minimizes the entropy impurity.23 
There are many well-known decision tree algo-
rithms available. To better understand the fea-
tures that contribute to the type of proteins ex-
pressed in breast cancer (benign or malignant) 
and to find a suitable tool to classify the types 
of cancer according to proteins' attributes, 
various clustering, screening, and decision tree 
models were employed in this study. 

Methods 
From the UniProt Knowledgebase (Swiss-Prot 
and TrEMBL) database, sequences from 15 
proteins expressed during two distinctive 
forms of breast cancers (10 benign and 5 ma-
lignant) and one common group (with 6 pro-
teins in both benign and malignant groups) 
were retrieved. The proteins were categorized 
into B (benign), M (malignant) and C (control) 
groups. Eight hundred and seventy nine pro-
tein attributes or features such as length, 
weight, isoelectric point, aliphatic index, the 
count and the frequency of each amino acid 
and the count and the frequency of dipeptides 
from all of those proteins were calculated. All 
attributes were classified as continuous vari-
ables, except for the N-terminal amino acid, 
which was classified as categorical. A dataset 
of these protein features was imported into 
Clementine software (Clementine_NLV-
11.1.0.95; Integral Solution, Ltd.), and type of 
cancer variable (B, M and C) was set as the 
output variable and the other variables were 
set as input variables. 
 Different tree induction algorithms were 
applied to the datasets to find the most impor-
tant attributes and trace the most probable pat-
terns expressed during two forms of cancers. 
These algorithms allowed the development of 
classification systems that automatically in-
cluded in their rules only the attributes that 
really matter in making a decision. Attributes 
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that did not contribute to the accuracy of the 
tree were ignored. This process yielded very 
useful information about the data and could be 
used to reduce the data to relevant fields only 
before training another learning technique, 
such as a neural network. Various algorithms 
are available for performing classification and 
segmentation analysis, and herein different 
decision tree and cluster analysis models were 
used. To investigate the effects of the attribute 
weighting algorithm on other models behav-
ior, all models were run both with and without 
feature selection criteria. 
 Two screening models were used: 
 

a) Anomaly Detection Model: By examining 
large numbers of attributes, this model was 
used to identify outliers or unusual cases in the 
data. 
 
b) Attribute Weighting Algorithm: This model 
identifies the features that have a strong corre-
lation with the type of cancers and labels the 
attributes as important, marginal, and unim-
portant, with values more than 0.95, between 
0.95 and 0.90, and less than 0.90, respectively. 
Two clustering models applied: 
 
a) K-Means: This model clusters data into dis-
tinct groups when clustering groups are un-
known. Records are grouped so that those 
within a group or cluster tend to be similar to 
each other, whereas records in different groups 
are dissimilar. 
 
b) Two-Step Cluster: In two-step cluster, the 
first step scans the data and compresses them 
into a manageable set of subclusters and in the 
second step a hierarchical clustering method 
applies to merge subclusters into larger clus-
ters. 
Five different tree induction models applied: 
 
a) Classification and Regression Tree (C&RT): 
This algorithm uses recursive partitioning to 
split the training records into segments by 
minimizing the impurity at each step. 
 
b) CHAID: Decision trees generated by using 

chi-square statistics to identify optimal splits. 
 

c) Exhaustive CHAID: A modification of 
CHAID with examining all possible splits. 
 

d) QUEST: A binary classification method gen-
erates and reduces the processing time. 
 

e) C5.0: A tree or a rule set induces by splitting 
the sample based on the field that provides the 
maximum information gain at each level. 
 Generalized rule induction (GRI) model or 
association model discovers association rules 
in the data by extracting a set of rules from the 
data using an index that takes both the gener-
ality (support) and accuracy (confidence) of 
rules into account. 

Results 
The average length, weight, isoelectric point, 
and aliphatic indices of proteins studied here 
were 794.524 ± 749.528, 108.873 ± 112.782, 6.625 
± 1.238, and 84.914 ± 10.832 (mean ± SD), re-
spectively. The average counts of sulfur, car-
bon, nitrogen, oxygen, and hydrogen were 
33.810 ± 25.390, 4022.333 ± 3826.498, 1105.952 ± 
1076.559, 1207.905 ± 1177.811, and 6373.667 ± 
6128.062, respectively, and the average counts 
of hydrophobic, hydrophilic, and other resi-
dues were 359.857 ± 313.313, 201.952 ± 208.667, 
and 1160.000 ± 232.714, respectively. The fre-
quencies of hydrogen, carbon, oxygen, nitro-
gen, and sulfur in all enzymes were 0.490 ± 
0.009, 0.314 ± 0.054, 0.099 ± 0.006, 0.086 ± 0.004 
and 0.002 ± 0.001, respectively, and the fre-
quencies of hydrophobic, hydrophilic, other 
(amphoteric) residues, and negatively, posi-
tively, and other charged residues were 0.454 ± 
0.059, 0.243 ± 0.037, 0.302 ± 0.081, 112.429 ± 
116.015, 101.095 ± 99.609 and 581.000 ± 538.844, 
respectively. The mean count of amino acids 
ranged from a minimum of 11.095 ± 15.251 for 
Try to a maximum of 85.095 ± 92.529 for Leu 
and the same order found for amino acids fre-
quencies (from 0.012 ± 0.007 for Try to 0.103 ± 
0.023 for Leu). The N-terminal amino acid was 
Met among all proteins studied in this paper. 
The average non-reduced Cys extinction coef-
ficient at 280 nm was 92462.381 ± 104156.36, 
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non-reduced Cys absorption was 3380.877 ± 
15488.905, the reduced Cys extinction coeffi-
cient was 88248.143 ± 105517.497, and the re-
duced Cys absorption was 0.915 ± 0.385. 
 
Screening Models 
Two peer groups with an anomaly index cutoff 
of 1.352 were generated. No anomalous record 
found in the first peer group of 5 records, 
while 1 anomaly record found in the second 

peer group of 16 records. Two peer groups 
with an anomaly index cutoff of 1.53 and just 1 
anomalous record in the second peer group 
created when feature selection algorithm ap-
plied on dataset.  
 Fifty seven out of 838 attributes had p value 
higher than 0.95 in classification of cancer pro-
teins (Table 1), and 84 attributes with weight 
between 0.90 and 0.95 marked as marginal 
when feature selection model applied. 

 
Table 1. Results of feature selection on important (and one marginal) features contributing 
to the two types of breast cancers proteins. Higher values indicate that protein feature  

is more important. 
 

No Protein feature Value Rank No Protein feature Value Rank 

1 Count of Leu-Ile 0.998 Important 31 Count of Thr-Ile 0.972 Important 
2 Count of Met-Ser 0.997 Important 32 Freq of Asp-Asp 0.972 Important 
3 Freq of Asn-Ile 0.996 Important 33 Freq of Asn-Gln 0.972 Important 
4 Count of Ile-Ile 0.995 Important 34 Count of Thr-Tyr 0.972 Important 
5 Count of Ile-Cys 0.995 Important 35 Count of Leu-Cys 0.971 Important 
6 Freq of Met-Ser 0.995 Important 36 Freq of Cys-Tyr 0.971 Important 
7 Count of Ser-Phe 0.993 Important 37 Count of Asp-Tyr 0.971 Important 
8 Count of Phe-Leu 0.992 Important 38 Count of Ile 0.968 Important 
9 Freq of Gln-Val 0.991 Important 39 Count of Phe-Lys 0.967 Important 
10 Count of Gly-Phe 0.99 Important 40 Count of Cys-Val 0.966 Important 
11 Count of Gly-Val 0.989 Important 41 Count of Ser-Val 0.964 Important 
12 Freq of Gly-Phe 0.988 Important 42 Count of Phe-Phe 0.963 Important 
13 Count of Ala-Ile 0.987 Important 43 Freq of Glu-Trp 0.963 Important 
14 Count of Tyr-Cys 0.986 Important 44 Count of Phe-Ile 0.962 Important 
15 Count of Ile-Pro 0.986 Important 45 Freq of Phe-Met 0.962 Important 
16 Freq of Asp-Leu 0.985 Important 46 Count of Gln-Val 0.961 Important 
17 Count of Val-Ala 0.985 Important 47 Count of Asn-Arg 0.96 Important 
18 Freq of Ile 0.984 Important 48 Count of Tyr-Trp 0.96 Important 
19 Count of Phe (F) 0.981 Important 49 Count of Cys 0.959 Important 
20 Count of Tyr-Pro 0.981 Important 50 Freq of Ala-Arg 0.958 Important 
21 Freq of Asp-Ala (1) 0.98 Important 51 Count of Glu-Asn 0.956 Important 
22 Count of Ala-Gly 0.979 Important 52 Freq of Ala-Ala 0.953 Important 
23 Count of Val-Tyr 0.979 Important 53 Count of Ile-Asn 0.952 Important 
24 Count of Lys-Phe 0.978 Important 54 Count of Asp-Arg 0.952 Important 
25 Freq of His-Met 0.977 Important 55 Freq of Gln-Phe 0.951 Important 
26 Count of Ile-Phe 0.976 Important 56 Count of Gly-Ile 0.951 Important 
27 Freq of Ala-Leu 0.974 Important 57 Count of Asp-Lys 0.951 Important 
28 Freq of Lys-His 0.973 Important 58 Count of Trp-Tyr 0.948 Important 
29 Count of Phe-Asp 0.973 Important 59 Freq of Asn-Phe 0.947 Marginal 
30 Freq of Asp(D) 0.973 Important 60 Count of Tyrosine (Y) 0.947 Marginal 
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Clustering Models 
Six records (more than 28%) put into the first 
and the fourth clusters and 1, 5, and 3 records 
were put into the second, third, and fifth clus-
ters, respectively when K-Means algorithm 
applied on the dataset and five clusters with 8, 
1, 8, 3, and 1 records in each cluster, respec-
tively, generated when feature selection filter-
ing applied on dataset. 
 Two clusters with 1 and 20 records in each 
group, respectively, generated when Two-Step 
clustering applied on dataset without feature 
selection and again two clusters (with 5 and 16 
records in each cluster) created when feature 
selection algorithm applied. 
 
Decision Tree Models 
A tree with a depth of 2 and cross-validation of 
45.0 ± 9.0 induced in C5.0 model and the most 
important attribute employed to build the tree 
was the count of Ile-Ile. If the value of this fea-
ture was equal to or less than 2, the proteins 
fell into the malignant (M) category; otherwise 
they were put into the benign (B) category. In 
the M subgroup, the frequency of Arg-Cys was 
used to create the next tree branches, with 
value equal to 0 as M mode and more than 0 as 
common (C) mode. When 10-fold cross-
validation was applied to the same dataset, 
again a tree with a depth of 2 and cross-
validation of 56.7 ± 11.7 was created. The same 
protein features and values were used to create 
tree branches. When the same models were 
applied to datasets using feature selection fil-
tering, a tree with a depth of 3 and cross-
validation of 58.3 ± 10.3 and 58.3 ± 7.1 were 
generated for C5.0 and C5.0 with 10-fold cross-
validation, respectively. Again the count of

Ile-Ile (with value of 2) was used to create the 
first tree branches while count of Ile-Cys was 
the feature used for second subgroups classifi-
cation with values equal to or greater than 0 
(Figure 1). 
 A tree with a depth of 3 induced when 
C&RT model applied and the most important 
attribute to build the tree was the count of Ile-
Ile (value < 2.500 for M and > 2.500 for B 
groups). The frequency Asp-Ser was used to 
create the second level for M subgroups (with 
value of 0.004). The same results were obtained 
when feature selection was used. 
 A tree with a depth of 5 generated when 
Quest model applied and the frequency of His-
Met (with a value of 0) was the most important 
feature to create the first tree branches. In the 
M subgroup, count of Cys-Gln (0), the count of 
Ile-Met (value 0) and the count of Gln-His 
(value 0.691) were the most important features 
in creating the subsequent branches of M 
group decision tree. Nearly the same results 
were obtained when feature selection filtering 
was applied. 
 In CHAID model with and without feature 
selection, a tree with a depth of 3 induced and 
again the same protein feature (count of Ile– 
Ile) with the same values as C5.0 model used to 
create the tree. The same trees with the same 
features and values were generated when ex-
haustive CHAID models were applied on data-
sets with and without feature selection. The 
best percentage of correctness, performance 
evaluation, and mean correctness in the tree 
induction models belonged to C5.0 model, fol-
lowed by the CR&T, CHAID, and finally the 
Quest models (Table 2 and Figure 2). 

 

 

  

 

 
 

 

 

 

Figure 1. A decision tree generated by the CHAID modeling method without feature selection  
filtering showing protein features used to build the decision tree  
M = Malignant cancer; B = Benign; C = Common proteins 
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Table 2. The association rules found in the data by the generalized rule induction (GRI) method, 
showing 100 most important rules created by GRI algorithm in classifying benign (B), malignant 

(M) and common (C) proteins expressed in breast cancers. 

Antecedent Support (%) 
Count of Ile-Ile > 2.500 42.86 
Count of Ile > 27.000 and Freq of Ala-Ala < 0.004 42.86 
Count of Phe-Lys > 0.500 and Count of Ile > 28.500 38.1 
Count of Ala-Gly > 0.500 and Count of Ile-Cys > 0.500 38.1 
Count of Ile > 27.000 and Count of Tyr-Pro > 0.500 38.1 
Freq of Met-Ser < 0.000 and Freq of Gln-Val < 0.002 and Freq of Asp < 0.078 23.81 
Count of Asp-Arg > 1.500 33.33 
Count of Asp-Lys > 2.500 and Freq of Ala-Ala < 0.004 33.33 
Count of Cys-Val > 1.500 and Count of Ile > 30.000 33.33 
Count of Ala-Gly > 0.500 and Count of Asp-Arg > 1.500 33.33 
Count of Ala-Gly > 0.500 and Freq of Asp < 0.059 and Freq of Ala-Ala < 0.004 33.33 
Count of Ala-Gly > 0.500 and Count of Ile > 28.500 and Freq of Ala-Leu < 0.008 33.33 
Count of Ile > 27.000 and Count of Tyr-Cys < 1.500 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Val-Ala < 7.000 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Ser-Val < 5.500 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Gln-Val < 6.000 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Asn-Arg < 4.500 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Met-Ser < 2.500 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Lys-Phe < 4.500 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Ile-Pro < 2.500 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Ile-Ile < 5.500 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Gly-Ile < 5.500 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Gly-Phe < 3.500 and Freq of Asp-Leu < 0.006 33.33 
Count of Ile > 27.000 and Count of Phe-Lys < 4.000 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Phe-Phe > 0.500 and Freq of Ala-Leu < 0.008 33.33 
Count of Ile > 27.000 and Count of Glu-Asn < 3.500 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Asp-Arg < 4.500 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Asp-Lys < 6.500 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Ala-Ile < 7.000 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Ala-Gly < 3.500 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Freq of Asp < 0.056 and Freq of Ala-Ala < 0.004 33.33 
Count of Ile > 27.000 and Count of Phe < 64.500 and Freq of Ala-Ala < 0.004 33.33 
Freq of Asn-Ile < 0.000 and Freq of Ala-Ala < 0.008 and Count of Asp-Lys > 1.500 14.29 
Freq of Asn-Ile < 0.000 and Count of Asp-Lys > 1.500 and Freq of Ala-Ala < 0.008 14.29 
Freq of Asn-Ile < 0.000 and Freq of Ile > 0.040 and Freq of Ala-Leu < 0.008 14.29 
Freq of Asn-Ile < 0.000 and Count of Ile > 11.500 and Freq of Ala-Leu < 0.008 14.29 
Freq of Gly-Phe < 0.000 and Freq of Ala-Ala < 0.008 and Count of Ile > 11.500 14.29 
Freq of Gly-Phe < 0.000 and Count of Asp-Lys > 1.500 and Freq of Ala-Ala < 0.008 14.29 
Count of Ala-Ile < 1.500 and Freq of Ala-Ala < 0.008 and Count of Ile > 11.500 14.29 
Count of Ala-Ile < 1.500 and Count of Ile-Ile > 0.500 and Freq of Ala-Ala < 0.008 14.29 
Count of Ala-Ile < 1.500 and Count of Asp-Lys > 1.500 and Freq of Ala-Ala < 0.008 14.29 
Count of Ile < 25.500 and Freq of Ala-Ala < 0.008 and Count of Ile > 11.500 14.29 
Count of Ile < 25.500 and Count of Ile-Ile > 0.500 and Freq of Ala-Ala < 0.008 14.29 
Count of Ile < 25.500 and Count of Asp-Lys > 1.500 and Freq of Ala-Ala < 0.008 14.29 
Count of Asp-Lys > 2.500 and Count of Asp-Tyr > 1.500 28.57 
Count of Asp-Lys > 2.500 and Freq of Ile < 0.066 and Freq of Ala-Ala < 0.004 28.57 
Count of Ala-Ile > 2.500 and Freq of Asp-Leu < 0.006 28.57 
Count of Ala-Gly > 0.500 and Freq of Ile > 0.059 28.57 
Count of Ala-Gly > 0.500 and Freq of Asp < 0.059 and Freq of Asp > 0.044 28.57 
Count of Ala-Gly > 0.500 and Count of Cys > 14.000 and Freq of Ala-Leu < 0.006 28.57 
Freq of Ile > 0.059 and Count of Ala-Gly > 0.500 28.57 
Count of Ile > 27.000 and Count of Gly-Ile < 5.500 and Count of Tyr-Pro > 0.500 28.57 
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Antecedent Support (%) 
Count of Ile > 27.000 and Count of Gly-Phe < 3.500 and Count of Phe-Lys > 1.500 28.57 
Count of Ile > 27.000 and Count of Phe-Lys < 4.000 and Count of Cys-Val > 1.500 28.57 
Count of Ile > 27.000 and Count of Phe-Asp < 4.000 and Freq of Ala-Ala < 0.004 28.57 
Count of Ile > 27.000 and Count of Glu-Asn < 3.500 and Count of Cys-Val > 1.500 28.57 
Count of Ile > 27.000 and Count of Asp-Arg < 4.500 and Count of Glu-Asn > 1.500 28.57 
Count of Ile > 27.000 and Count of Asp-Lys < 6.500 and Count of Cys-Val > 1.500 28.57 
Count of Ile > 27.000 and Count of Cys-Val < 2.500 and Freq of Ala-Ala < 0.004 28.57 
Count of Ile > 27.000 and Count of Ala-Ile < 7.000 and Count of Cys-Val > 1.500 28.57 
Count of Ile > 27.000 and Freq of Asp < 0.056 and Count of Asn-Arg > 1.500 28.57 
Count of Ile > 27.000 and Count of Phe < 64.500 and Count of Cys-Val > 1.500 28.57 
Count of Ile > 27.000 and Count of Cys < 28.500 and Freq of Ala-Ala < 0.004 28.57 
Freq of Met-Ser < 0.000 and Freq of Lys-His < 0.002 and Count of Thr-Ile > 0.500 19.05 
Freq of Met-Ser < 0.000 and Freq of Phe-Met < 0.002 and Count of Thr-Ile > 0.500 19.05 
Freq of Met-Ser < 0.000 and Freq of Asp-Leu < 0.013 and Count of Asn-Arg < 0.500 19.05 
Freq of Met-Ser < 0.000 and Freq of Asp-Ala (1) < 0.014 and Count of Asn-Arg < 0.500 19.05 
Freq of Met-Ser < 0.000 and Freq of Asp-Asp < 0.004 and Count of Thr-Ile > 0.500 19.05 
Freq of Met-Ser < 0.000 and Count of Thr-Ile > 0.500 and Count of Asn-Arg < 0.500 19.05 
Freq of Met-Ser < 0.000 and Count of Asn-Arg < 0.500 and Count of Cys > 1.500 19.05 
Freq of Met-Ser < 0.000 and Count of Leu-Ile > 0.500 and Count of Asn-Arg < 0.500 19.05 
Freq of Met-Ser < 0.000 and Freq of Asp < 0.070 and Count of Asn-Arg < 0.500 19.05 
Freq of Cys-Tyr < 0.000 and Freq of Lys-His < 0.002 and Count of Thr-Ile > 0.500 19.05 
Freq of Cys-Tyr < 0.000 and Freq of Phe-Met < 0.002 and Count of Cys > 1.500 19.05 
Freq of Cys-Tyr < 0.000 and Freq of Asp-Leu < 0.013 and Count of Asn-Arg < 0.500 19.05 
Freq of Cys-Tyr < 0.000 and Freq of Asp-Ala (1) < 0.014 and Count of Asn-Arg < 0.500 19.05 
Freq of Cys-Tyr < 0.000 and Freq of Asp-Asp < 0.004 and Count of Thr-Ile > 0.500 19.05 
Freq of Cys-Tyr < 0.000 and Count of Thr-Ile > 0.500 and Count of Asn-Arg < 0.500 19.05 
Freq of Cys-Tyr < 0.000 and Count of Asn-Arg < 0.500 and Count of Cys > 1.500 19.05 
Freq of Cys-Tyr < 0.000 and Count of Leu-Ile > 0.500 and Count of Asp-Arg < 0.500 19.05 
Freq of Cys-Tyr < 0.000 and Freq of Asp < 0.070 and Count of Asn-Arg < 0.500 19.05 
Count of Met-Ser < 0.500 and Freq of Ala-Leu > 0.008 19.05 
Count of Met-Ser < 0.500 and Count of Asn-Arg < 0.500 and Freq of Ala-Leu > 0.008 19.05 
Count of Met-Ser < 0.500 and Freq of Asp < 0.070 and Freq of Ala-Leu > 0.008 19.05 
Count of Asp-Lys > 2.500 and Count of Asp-Arg < 4.500 and Freq of Ile > 0.048 23.81 
Count of Asp-Lys > 2.500 and Count of Ala-Ile < 7.000 and Count of Leu-Ile > 3.500 23.81 
Count of Asp-Lys > 2.500 and Count of Ala-Gly < 3.500 and Freq of Ala-Ala < 0.004 23.81 
Count of Asp-Lys > 2.500 and Freq of Ile < 0.066 and Count of Asp-Tyr > 1.500 23.81 
Count of Asp-Lys > 2.500 and Freq of Asp < 0.056 and Freq of Asp > 0.044 23.81 
Count of Asp-Lys > 2.500 and Count of Ile < 85.500 and Freq of Ile > 0.048 23.81 
Count of Asp-Lys > 2.500 and Count of Phe < 64.500 and Count of Leu-Ile > 3.500 23.81 
Count of Asp-Lys > 2.500 and Count of Cys > 14.000 and Freq of Ala-Leu < 0.006 23.81 
Count of Cys-Val > 1.500 and Count of Cys > 19.000 23.81 
Count of Ala-Ile > 2.500 and Count of Val-Tyr > 2.000 23.81 
Count of Ala-Ile > 2.500 and Count of Val-Ala < 9.500 and Freq of Asp-Leu < 0.006 23.81 
Count of Ala-Ile > 2.500 and Count of Thr-Tyr < 2.500 and Freq of Asp-Leu < 0.006 23.81 
Count of Ala-Ile > 2.500 and Count of Thr-Ile < 6.500 and Freq of Asp-Leu < 0.006 23.81 
Count of Ala-Ile > 2.500 and Count of Ser-Val < 8.000 and Freq of Asp-Leu < 0.006 23.81 
Count of Ala-Ile > 2.500 and Count of Ser-Phe < 5.500 and Freq of Asp-Leu < 0.006 23.81 
 
Association Model 
One hundred rules with 21 valid transactions 
and minimum and maximum support of 
47.62% and 83.23% and maximum confidence 
of 100 % generated when GRI model applied. 
When feature selection was used, minimum 

support, maximum support, maximum confi-
dence, and minimum confidence changed to 
14.29%, 42.86%, 100%, and 87.5%, respectively. 
 When the most accurate model (C&RT) was 
run on another dataset of 30 proteins from 
other cancers, the accuracy of the model in 
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Figure 2. Percentage of correctness and wrongness in various decision tree models, in datasets 
without feature selection (a) and with feature selection (b); showing C5.0 model had the best per-

formance, followed by CR&T, CHAID, and Quest models. 

 
predicting the right group was 95.24%, while 
its wrongness was just 7.76% showing very 
suitable performance of this model in predic-
tion. 

Discussion 
Nowadays, incredible amount of data pro-
duced each year because cancer research is a 
worldwide enterprise and the application of 
computational tools in cancer research has be-
come an important and rapidly developing 
field. Bioinformatics as an emerging tool has 
developed primary to address the analysis of 
huge data generated from genomics and pro-
teomics; however large datasets are also pro-
duced in cell biology, physiology, pathology, 
therapeutics, clinical trials and epidemiology. 

To utilize and improve the extraction of valu-
able results generated by researchers on pa-
tients' diagnosis and treatment, collaboration 
between various sections of sciences such as 
software engineering, data mining knowledge 
and clinical studies seems essential.24-26 
 Early diagnosis of breast cancer is much 
more significant than any treatment, therefore, 
more attention should be paid to the early di-
agnosis of breast cancer.27 Self-examination, 
clinical examination, physical examination and 
mammography are main diagnostic tools but 
these classical methods are useful when tu-
mours are large or palpable and mammogra-
phy, as an efficient tool, is mainly suitable in 
western countries. Use of serum markers such 
as CA15.3, CA27.29 and CEA, without enough 
sensitivity and specificity has not been
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 accepted in clinical diagnostics; especially in 
the early stages of breast cancers. Although 
Food and Drug Administration (FDA) of the 
United States recommended some markers 
only for monitoring therapy or recurrence of 
advanced breast cancer; it is been highly rec-
ommended to find new diagnostic tools; and 
some researchers have proposed proteomics 
and bioinformatics approaches as emerging 
tools for breast cancer detection.26,28 These tools 
in conjunction with bioinformatics applications 
could greatly facilitate the discovery of new 
and better biomarkers.25 
 Various modelling tools (Screening Models, 
Clustering Models, Decision Tree Models and 
Association Model) applied on more than 800 
protein attributes expressed in benign, malig-
nant and both types of breast cancers simulta-
neously to find different protein features in 
each class of breast cancers. The screening, 
clustering, and decision tree models applied on 
datasets with and without feature selection fil-
tering. 
 Although 85 attributes (with value greater 
than 0.95) were marked as "important", more 
than 95% of them were the frequencies or the 
counts of dipeptides. The number of peer 
groups with anomalies did not change when 
feature selection algorithm were applied, 
showing the neutral effects of attribute weight-
ing on removing outliers in this case; although 
in another study we showed feature selection 
significantly improves the performances of the 
modelling in classifying mesostable and ther-
mostable proteins.29 In K-Means modelling, the 
number of clusters did not show any differ-
ences when models run on dataset with and 
without feature selection, although the number 
of records in the clusters changed. 
 The depth of trees varied from 5 (in the 
Quest model) to 2 (in the C5.0 with and with-
out 10-fold cross validation models) branches 
when tree induction models applied. The best 
performance evaluation belonged to C&RT 
model and the worst to C5.0 and C5.0 models 
with 10-fold cross validation. The percentage 
of correctness, performance evaluation, and 
mean correctness of tree induction models ap-

plied here showed no significant differences (p 
> 0.95) with and without feature selection fil-
tering on datasets, but when feature selection 
datasets used the percentage of correctness of 
CAHID model decreased. 
 In all tree induction models, the count of Ile-
Ile chose as the most important attribute and 
also in all GRI association rules (100 rules) the 
count of this feature was used as an antecedent 
to support the rules. A consistent difference 
exists in the pattern of synonymous codon us-
age between benign and malignant protein 
cancers,30,31 and there is strong evidence that 
this difference is the result of selections linked 
to malignancy coming out from amino acid 
sequences.32,33 In addition, malignant proteins 
can be distinguished based on the amino acid 
composition of their proteomes, and several 
authors have tried to relate these differences to 
structural differences.34-38 
 The importance of sequence-based classifi-
cation in detection of various proteins ex-
pressed in breast cancer and the importance of 
Ile-Ile dipeptide in clustering of proteins, for 
the first time, reported in this paper. As Ile is a 
non-polar and hydrophobic amino acid, when 
it forms a dipeptide bond, it clearly can change 
the confirmation of proteins so that it has been 
used as the most important feature in all deci-
sion tree models applied in this paper.  
 The performance of different bioinformatics 
tools (such as screening, clustering, and deci-
sion tree algorithms) for discriminating be-
tween proteins expressed in malignant and 
benign types of breast cancer examined here. 
The results confirmed that amino acid compo-
sition can be used to discriminate between pro-
teins groups expressed in two forms of breast 
cancer. The results also confirmed that most of 
algorithms employed here can be used to dis-
criminate between proteins expressed in two 
main forms of breast cancers with an accuracy 
of 86-100%. No significant difference was 
found in performance of different models used 
in this paper. Interestingly, the CHAID and 
exhaustive CHAID methods showed lower 
performance in comparison with other deci-
sion tree models as we anticipated to be more 
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accurate, because they use the most sophisti-
cated neural network architecture and trim it 
down to desired level, so the number of hid-
den layers and the number of neurons in layers 
1 and 2 are usually higher than other decision 
tree models. When feature selection applied no 
significant differences (p > 0.05) noticed be-
tween analyses. The best performance and re-
sults were obtained with C&RT algorithms. 
Thus, it is suggested that this decision tree 
model can be used as an effective tool to dis-
criminate malignant and benign proteins of 
breast cancer. 

Conclusions 
In this study a new approach has been em-
ployed for the first time to look at the protein 
attributes' variations in malignant and benign 
breast cancers. The frequency of Ile-Ile was the 
most important protein attributes in all tree 
and rule induction models. 
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