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Abstract

Background: The application of metabolomics in epidemiological studies would potentially allow researchers to identify
biomarkers associated with exposures and diseases. However, within-individual variability of metabolite levels caused by
temporal variation of metabolites, together with technical variability introduced by laboratory procedures, may reduce the
study power to detect such associations. We assessed the sources of variability of metabolites from urine samples and the
implications for designing epidemiologic studies.

Methods: We measured 539 metabolites in urine samples from the Navy Colon Adenoma Study using liquid
chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectroscopy (GC-MS). The study collected
2–3 samples per person from 17 male subjects (age 38–70) over 2–10 days. We estimated between-individual, within-
individual, and technical variability and calculated expected study power with a specific focus on large case-control and
nested case-control studies.

Results: Overall technical reliability was high (median intraclass correlation = 0.92), and for 72% of the metabolites, the
majority of total variance can be attributed to between-individual variability. Age, gender and body mass index explained
only a small proportion of the total metabolite variability. For a relative risk (comparing upper and lower quartiles of ‘‘usual’’
levels) of 1.5, we estimated that a study with 500, 1,000, and 5,000 individuals could detect 1.0%, 4.5% and 75% of the
metabolite associations.

Conclusions: The use of metabolomics in urine samples from epidemiological studies would require large sample sizes to
detect associations with moderate effect sizes.
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Introduction

A metabolome refers to the collection of low-molecular-weight

compounds that form the intricate biochemical network in an

organism [1]. Over the past decade, metabolomics, the profiling of

a metabolome within a given a biological specimen [2], has

become a growing means to identify biomarkers that can measure

environmental exposures [3], assess disease risk [4,5], and

diagnose diseases at an early stage [6,7]. While these initial

studies have demonstrated the potential of metabolomics, several

important issues need to be resolved before considering metabo-

lomics as a tool for population-based research.

In a large epidemiological study, the aim is to identify

metabolites that are associated with disease risk or exposure

status. Researchers are primarily interested in the ‘‘usual’’

metabolite level, which can be loosely translated as the average

level over a period of time. The presumption is that the average

metabolite levels are most likely to be indicative of disease risk or

exposure. However, the human metabolome is highly dynamic.

Some metabolites may fluctuate with internal rhythms, such as

circadian or lunar rhythms [8–10]. Others may vary in response to

external stimuli such as foods, drugs, and other environmental

exposures [11,12], and others might change with long-term secular

trends. A single measure, which may be all that is available in

some epidemiological studies, may not capture the usual level and

associations may be more difficult to detect [13,14]; therefore, it is

important to evaluate the contribution of within-person variability,

in addition to technical variability or measurement error, to the

total variation of metabolites in a study population. Such

information would allow researchers to determine whether an

epidemiological study will have the power to detect associations,

and if so, to help optimize the study design.

PLOS ONE | www.plosone.org 1 May 2014 | Volume 9 | Issue 5 | e95749

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0095749&domain=pdf


The two biospecimens commonly collected for studies are blood

and urine. Recently several studies have examined the reliability of

metabolites in serum and plasma [14–16]. The studies by Floegel

et al. [15], Kotsopoulos et al. [16] and by Townsend et al. [17]

reported, on average, moderate stability over time in serum and

plasma metabolites, as judged by an intraclass-correlation

coefficient (ICC, median value 0.4,0.5) covering several months

to a year. In a third study, we used a non-targeted approach using

serum samples and calculated 1-year p̂pB
T , a measure that estimates

the proportion of total variance attributable to between-individual

variance and is similar to ICCs reported in previous studies. Our

findings were largely similar with a median p̂pB
T of 0.43[14].

Unfortunately, similar studies on urinary metabolites have been

limited, and they have focused on a relatively limited number of

compounds or classes of compounds, such as phytoestrogens [16]

and phthalates [18], or on specific exposures such as estrogen

usage [19], nicotine [20] and polycyclic aromatic hydrocarbons

[21].

We extend our previous investigation of sources of variability in

serum metabolites by studying a large set of 539 metabolites

measured in urine. Our overall goal is to provide the information

needed to design the metabolomic component of large-scale

epidemiological studies. Our first objective is to estimate the

technical, within-individual, and between-individual variability of

urine metabolites. Our second objective is to translate these

estimates of variability into estimates of the study power that can

be expected for epidemiological studies, with a specific focus on

large case-control and nested case-control studies. Although

statistical considerations for case-control and nested case-control

studies are identical, nested case-control studies, where biospeci-

men are collected prior to diagnosis, have the practical benefit of

avoiding reverse causation or the detection of disease effects. We

consider power as a function of the number of samples collected,

sample size, and number of metabolites tested. Because metabo-

lomics measures are relatively expensive, our power calculation

also considered the alternative design of pooling multiple samples

collected at different time points from an individual and running a

single measurement on the pooled sample.

Methods

Study Population and Urinary Sample Collection
Our study of metabolite variability was performed on samples

collected as part of the Navy Colon Adenoma Study, a case-

control study of colorectal adenoma conducted at the National

Naval Medical center; details of this study have been previously

reported [22]. Cases were patients diagnosed with colorectal

adenomas by sigmoidoscopy or colonoscopy between March 1993

and September 1996. Controls were selected among patients free

of colorectal adenoma at sigmoidoscopy during the same time

period and were frequency matched to cases on age, race and

gender. The participants provided written informed consent and

the study was approved by the Institutional Review Boards of both

the National Cancer Institute and the National Naval Medical

Center.

Cases and controls were eligible for the study if they lived within

60 miles of Washington D.C., were 18–74 years of age and had no

history of Crohn’s disease, ulcerative colitis, or cancer except non-

melanoma skin cancer. From the 244 cases, we selected 131 cases

with no previous history of rectal bleeding or adenoma, complete

questionnaire data and serum and urine samples available. An

equal number of controls were selected to match the cases on age

(5-year age groups), sex, and smoking status (ever or never).

Participants provided information on demographics, life style,

family history of cancer, occupation history and medical history.

Interviewers collected non-fasting overnight urine samples at

home visits approximately 60–90 days after the screening exam.

All 262 cases and controls had one urine sample collected at this

first ‘‘baseline’’ visit, and subsequent urine samples were collected

from 17 male controls. Of these 17 individuals, 12 had samples

collected from a total of three home visits and 5 had samples

collected from two home visits. The median time between

consecutive home visits was 2 days, while the median time

between the two most distant visits was 10 days. Furthermore,

technical replicates were measured from one sample from each

individual, with 15 samples having 2 technical replicates and 2

having 3 replicates. Urine samples were aliquoted and stored

frozen.

Metabolite Measurement
Urinary metabolites were measured by Metabolon Inc. (North

Carolina, U.S.) and the platform and process have been previously

described [23]. A non-targeted extraction was used, followed by

protein precipitation to recover a diverse set of metabolites.

Samples were then analyzed using ultra high performance liquid-

phase chromatography with tandem mass spectrometry (LC-MS)

and gas chromatography coupled with mass spectrometry (GC-

MS). The mass spectra peaks were linked to a chemical reference

library generated to identify individual metabolites and determine

their relative quantities. Identified metabolites were grouped into 8

chemical classes (amino acids, carbohydrates, cofactors and

vitamins, energy metabolites, lipids, nucleotide metabolites,

peptides, and xenobiotics). To account for variability by run

day, metabolites were individually normalized by run day and

expressed in relative concentrations.

Values below the detection threshold were set to the minimum

observed value of the metabolite. Metabolites that were observed

in #90% of the samples were excluded from the analysis. We log-

transformed the metabolite levels, following common practice in

metabolomic studies. In sensitivity analyses, we evaluated potential

confounding by sample concentration by dividing metabolite levels

by sample osmolarity, a measure of solute concentration, prior to

log transformation.

Statistical Analysis
As previously described [14], we decomposed the total variance

of each metabolite, s2
T , into three different components: the

between subject variance, s2
B, which represents the variance of the

‘‘usual’’ level for subjects in a population; the within subject

variance, s2
W , which reflects the variability over time around the

‘‘usual’’ level within an individual; the technical variance, s2
E ,

which is the variance introduced by measurement error in the

laboratory procedures.

From these three variance components, we defined the

following additional quantities:

1. Biological variance: the combination of between- and within-

person variances, s2
Bzs2

W .

2. Technical ICC: the proportion of the total variance that is

attributed to biological variance, as opposed to random laboratory

variation. High technical ICC indicates high laboratory repro-

ducibility.

Sources of Variability in Urinary Metabolites
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ICC~
s2

Bzs2
W

s2
T

~1{
s2

E

s2
T

3. pB
BW , the proportion of the population’s biological variance that

is attributed to between-individual variance.

pB
BW ~

s2
B

s2
Bzs2

W

4. pB
T , the proportion of the total variance that is attributed to

between-individual variance. Higher pB
T will likely indicate higher

power to detect associations.

pB
T~

s2
B

s2
Bzs2

W zs2
E

To estimate s2
E , s2

B, s2
W and relevant quantities, we assumed that

the log-transformed metabolite level, Yij, for subject i on day j

could be described by the following linear mixed model [24]

Yij~b0zSizTijzeij ð1Þ

where Si is a subject-specific random effect with Si~N(0,s2
B), Tij is

a time-specific random effect T
I

i.~N( 0
I

,s2
WS), where S is the

correlation matrix that reflects either independence (Sij = 1 if i = j,

0 otherwise) or autocorrelation (Sij = r|i–j|), and eij is measure-

ment erroreij~N(0,s2
E). Here, ‘‘ ~NN(:,:)’’ indicates that a variable

follows a normal distribution and r represents the correlation

between levels one day apart.We further assumed that S, T, and e
are independent. Therefore, letting 1 denote a matrix with every

entry equal to one and letting I denote the identity matrix, we let

Y
I

i.~N(b0,s2
B1zs2

W Szs2
e I)

For each metabolite, we fit one model assuming the covariance

matrix, S, has an autocorrelation structure and one model

assuming that S has an independence structure. We compared the

two models and tested for the existence of correlation over time

(e.g. r?0) by the Lagrange multiplier test [17] performed by the

plm package in R [25]. Because of the small number of replicate

samples, our primary analyses will use the estimates of

H~fb,s2
B,s2

W ,s2
egfrom the smaller model assuming S is the

identity matrix.

Evaluating Age, Gender and BMI
Age, gender and body mass index (BMI) are among the

commonly adjusted characteristics in epidemiologic studies, and

these factors may be related to metabolite levels [26,27]. As

previously described [14], we examined the variance of each

metabolite attributable to these factors by expanding equation (1)

to include fixed effects for age (quartiles), gender (male and female)

and BMI (,25, 25–29.9, and $30 kg/m2).

Yij~b
0
0zaAizcGizwFizS

0
i zT

0
ijze

0
ij ð2Þ

Where faAi,cGi,wFig are the age, gender, and BMI effects for

individual i, and S
0
i ~NN(0,s

02
B ), T

I0

i.~N( 0
I

,s
02
W I), and e

0
ij~N(0,s

02
E ).

The total variance is now defined by

s2(tot)~s
02
B zs

02
W zs

02
E zs2(age)zs2(gender)zs2(BMI)

The adjusted pB
T , or p0T B, is defined as

s
02
B

s
02
T

.

We further denoted the proportion of the total variance

attributable to age, gender and BMI as p(age), p(gender) and

p(BMI).

p(age)~
s2(age)

s2(tot)

p(gender)~
s2(gender)

s2(tot)

p(BMI)~
s2(BMI)

s2(tot)

We also assessed whether the covariates were significantly

associated with metabolite levels and obtained p-values by

performing an analysis of variance on these mixed models.

Power
We estimated the expected power for a case-control study

focused on a single outcome using previously described methods

[14]. Specifically, we assume that a study will collect n individuals

with an 1:1 ratio of cases:controls. We consider other ratios, 2:1

and 3:1, in the supporting information. We further assume that the

study will use a t test to compare the metabolite levels between

cases and controls to detect associations between metabolites and

disease, using a Bonferroni-corrected significance threshold. We

defined the effect size as the relative risk (RR) of disease comparing

individuals in the top to the bottom quartiles of the ‘‘usual’’

metabolite level. At a given effect size, we calculated, across

metabolites, the mean probability of detecting a statistically

significant association, accounting for the 3 sources of variability.

This average probability, or the average power, indicates the

proportion of true metabolite-disease associations that we expect

to discover in a given study. We calculated power for studies that

have different number of participants and different a-levels. We

also considered the scenario where multiple samples were taken

from each individual at different times, but pooled together so that

only a single (and potentially expensive) laboratory measurement

would be needed for the mixed solution. In this scenario, the

power calculation is based on 1/x of the within-individual

variability (x = number of samples per person). Finally, we

estimated the expected power when a more liberal cutoff, based

on the False Discover Rate (FDR), replaced the Bonferroni-

Sources of Variability in Urinary Metabolites
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corrected threshold. A significance threshold based on FDR

depends on the number and effect sizes of the metabolites truly

associated with the outcome. For our example, we considered an

outcome similar to BMI, and calculated the p-value thresholds

that corresponded to FDRs of 0.05, 0.1, and 0.2 using the

distribution of p-values from testing associations with BMI.

Results

Laboratory/Technical Variability
We detected a total of 846 metabolites in urine, with 539 being

present in more than 90% of the samples. Of these 539

metabolites which were included in our analysis, 239 had a

confirmed identity. Overall, laboratory reproducibility was high

(figure 1A) with the technical ICCs for 99%, 97% and 87% of the

metabolites exceeding 0.2, 0.5 and 0.8, respectively (table 1). The

distribution of ICCs was similar across different categories of

metabolites (table S1 in File S1). In sensitivity analyses in which

we adjusted for osmolarity to control for urine sample concentra-

tion, ICCs were generally similar, with no net improvement. Our

primary analyses are therefore based on models without adjust-

ment for osmolarity.

Within and between-individual Variability
Two sources of variability–within and between-individual

variance–constitute the total biological variability. For most of

the metabolites, between-individual variability explains the

majority of the total variance: 72% of the metabolites had a p̂pB
T

exceeding 0.5 (table 1). However, only 12% of the metabolites

had a p̂pB
T higher than 0.8. A list of identified metabolites with the

highest p̂pB
T is presented in table 2. Among different metabolite

categories, amino acid, lipid and xenobiotics had the highest

proportion of metabolites with p̂pB
T exceeding 0.8 (20%, 18% and

13%, respectively, table S2 in File S1). The metabolites with the

lowest p̂pB
T formed a heterogeneous group and were involved in

various biochemical pathways (table S3 in File S1). A full list of

p̂pB
T as well as ICCs of all identified metabolites is presented in

table S4 in File S1.

We also evaluated pB
BW , the proportion of biological variability

attributed to between-individual variance. The majority of

metabolites had a relatively high pB
BW , with 97%, 81% and 31%

having a p
_B

BW exceeding 0.2, 0.5 and 0.8, respectively (table 1).

Of the 41 pairs of samples taken at different time points from

the same individual, we had 3, 14, 8, 5, 5, 2, 1, 1, and 2 pairs

separated by 1, 2, 3, 4, 5, 6, 7, 8 and 10 day intervals, respectively.

To evaluate whether pairs separated by shorter intervals were

more highly correlated, we estimated r from the linear mixed

models described by equation (1) with g assumed to have an

autocorrelation structure, and obtained a p-value evaluating

whether the autocorrelation structure was a significant improve-

ment over independence. The distribution of r (figure 2) and p-

Figure 1. The plots illustrate the distribution of technical ICCs (A) and p̂pB
T (B) of overnight urinary samples in the Navy Colon

Adenoma Study. The ICC is a measure of laboratory variability. The p̂pB
T is a measure of between-individual variance. The curves illustrate the ICC

and p̂pB
T for the specified metabolite quantile ranking. Median ICC: 0.92. Median p̂pB

T : 0.62.
doi:10.1371/journal.pone.0095749.g001

Table 1. Percentage of metabolites exceeding parameter thresholdsa in the Navy Colon Adenoma Study.

Parameter threshold

0.2 0.5 0.8

ICCb 99% 97% 87%

p̂pB
BW

c 97% 81% 31%

p̂pB
T

d 95% 72% 12%

aEach row list the percentage of metabolites with an estimated parameter (ICC, pB
BW and pB

T ) exceeding the threshold of 0.2, 0.5 and 0.8.
bICC represents the proportion of total variation attributable to biological variance.
cpB

BW represents the proportion of biological variability attributable to between-individual variance.
dpB

T represents the proportion of total variation attributable to between-individual variance.
doi:10.1371/journal.pone.0095749.t001
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values (figure S1 in File S1) suggested that the correlation

between measurements within an individual decreased slightly

with the time even over this 1 week. However, our study did not

have sufficient power to precisely estimate this correlation, and

using a Bonferroni corrected threshold of 0.05/539, could only

find 7 metabolites (orotidine, andro steroid monosulfate and five

unidentified metabolites) with a r statistically significantly larger

than 0.

Age, Gender and BMI
Age, gender and BMI explained only a small proportion of the

total variation (figure 3). Moreover, we found that these

covariates were only significantly associated with small percentages

of metabolites. Using the Bonferroni-adjusted a-level of 0.05/539,

we found 1.3%, 12.4%, and 0.7% of the metabolites were

significantly associated with age, gender and BMI, respectively.

Epidemiologic studies often adjust for potential confounders. In

this case, the study power is reflected in p0T B, or the adjusted pB
T ,

which represents the proportion of total variability attributed to

between-individual variance after adjusting for age, gender and

BMI. Overall we found only small differences between p̂pB
T and

p̂p0T B. The percentages of metabolites with p̂p0T B exceeding 0.2, 0.5,

and 0.8 were 94%, 70% and 9.7%, respectively. Among

metabolites with the highest ratio of between-individual to total

variance (p̂pB
T ), including age, gender and BMI in the regression

model had little impact on the estimation of pB
T (table 2).

Table 2. A list of identified metabolites with the highest values of between subject variability, p̂pB
T (e.g., the lowest within-subject

variability), among all metabolites in the Navy Colon Adenoma Study.

Metabolite p̂pB
T Category p̂pB

T , adjusteda P value gender P value age P value BMI

androsterone sulfate 0.90993 Lipid 0.89726 0.00060 ,.0001 0.3118

pregnen-diol disulfate 0.89928 Lipid 0.87069 ,.0001 ,.0001 0.1976

3-aminoisobutyrate 0.88697 Nucleotide 0.88400 0.56600 0.00840 0.5058

1,7-dimethylurate 0.88549 Xenobiotics 0.88348 0.02520 0.73660 0.1966

tryptophan betaine 0.87904 Amino acid 0.87510 0.00270 0.47490 0.4873

N-acetyl-beta-alanine 0.87158 Amino acid 0.86605 0.89760 0.26440 0.842

N-acetylasparagine 0.86819 Amino acid 0.86979 0.25490 0.73320 0.5917

pantothenate 0.86148 Cofactors and vitamins 0.85960 0.00840 0.15100 0.4977

glucose 0.85992 Carbohydrate 0.85168 0.18910 0.17480 0.7651

fucose 0.85541 Carbohydrate 0.85024 0.12220 0.00460 0.001

paraxanthine 0.85534 Xenobiotics 0.85197 0.05710 0.17840 0.1712

glutaroyl carnitine 0.85349 Amino acid 0.83457 ,.0001 ,.0001 0.0863

4-androsten-3beta,17beta-diol disulfate 2 0.85143 Lipid 0.79376 0.00030 ,.0001 0.0422

andro steroid monosulfate 1 0.85110 Lipid 0.80648 ,.0001 ,.0001 0.1097

5-acetylamino-6-amino-3-methyluracil 0.84867 Xenobiotics 0.84641 0.02400 0.39010 0.8002

N-acetyltyrosine 0.84795 Amino acid 0.84868 0.88960 0.02810 0.0108

glycylproline 0.84599 Peptide 0.83253 0.03260 ,.0001 0.3464

phenylalanine 0.84218 Amino acid 0.82608 0.00890 0.02410 0.0004

stachydrine 0.83748 Xenobiotics 0.84008 0.69140 0.86810 0.7278

citrate 0.83653 Energy 0.83598 0.28410 0.16060 0.0898

3-indoxyl sulfate 0.83496 Amino acid 0.83718 0.31590 0.62640 0.0338

serine 0.83040 Amino acid 0.81117 0.00030 0.00040 0.1435

creatinine 0.82840 Amino acid 0.79386 ,.0001 0.00010 0.1667

methylglutaroylcarnitine 0.82539 Amino acid 0.82424 0.06120 0.86790 0.0883

tyrosine 0.81789 Amino acid 0.79326 0.00100 0.43500 ,.0001

tryptophan 0.81691 Amino acid 0.79820 0.00340 0.02510 ,.0001

N-acetylglutamine 0.81477 Amino acid 0.81638 0.93390 0.36430 0.3209

indolelactate 0.81370 Amino acid 0.81769 0.78720 0.80910 0.6973

glycocholenate sulfate 0.81102 Lipid 0.80034 0.01020 0.14040 0.0009

lysine 0.80945 Amino acid 0.79957 0.46750 0.14440 0.0003

N4-acetylcytidine 0.80942 Nucleotide 0.79722 0.00110 0.10460 0.0156

3,4-dihydroxyphenylacetate 0.80810 Amino acid 0.80567 0.50410 0.00950 0.77

kynurenine 0.80704 Amino acid 0.79518 0.39490 0.01820 ,.0001

glutamine 0.80483 Amino acid 0.78034 0.02310 0.00020 0.6464

dimethylglycine 0.80274 Amino acid 0.78929 0.00910 0.36200 0.0001

aadjusted for age (quartiles), gender (male, female) and BMI (,25, 25–,30 and 30+kg/m2).
doi:10.1371/journal.pone.0095749.t002
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Power
With the observed technical, within-individual and between-

individual variances, we estimated study power to detect an RR of

1.5, 3.0 and 5.0 in a case-control design using a Bonferonni

adjusted a-level of 0.05/539. We found that a study with 500

individuals is expected to detect 1%, 54% and 89% of the

metabolites with a true RR of 1.5, 3.0 and 5.0, respectively. In a

study of 1,000 individuals, we expect the proportions of

metabolites detected at these RR increase to 4.5%, 88% and

96%. With a sample size of 5,000, we expect to detect 75% of the

metabolites even at a RR of 1.5 (table 3, figure 4A) and

approximately 100% of metabolites with a RR of 3.0 and 5.0. The

impact of pB
T on study power is highlighted in figure S2 in File

S1, where we show, for example, that the power to detect a

metabolite with a RR of 2.0 would decrease from 0.8 to 0.3 as pB
T

decreases from 1 to 0.5. Without correcting for measurement

error, the observed RR reported in an epidemiologic study would

be attenuated. Therefore we defined the naı̈ve RRs as the RR that

would be estimated based on the observed metabolite measure-

ments. We have estimated that, given the within-individual

variance observed in our study, when true RRs are 1.5, 3.0 and

5.0, the uncorrected, naı̈ve RRs are expected to be 1.4, 2.3 and

3.4, respectively.

In metabolomics studies with a targeted approach, researchers

can restrict the analysis to a predetermined list of metabolites

based on a priori knowledge. In this scenario, the number of

metabolites being evaluated may be substantially smaller, resulting

in a higher a-level, due to a smaller penalty from the Bonferroni

correction. We examined power curves with different a-levels

(figure 4B). When we raise the a-level from 0.05/539 to 0.001, a

case-control study with 1,000 individuals is expected to detect of

13.5%, 93% and 98% of the metabolites with a true RR of 1.5, 3.0

and 5.0, respectively. We considered more liberal p-value

thresholds of significance, 0.0096, 0.0226 and 0.0660, correspond-

ing to FDRs of 0.05, 0.1, and 0.2 (figure S3A in File S1). In the

most liberal scenario, with an FDR = 0.2, a case-control study with

1,000 individuals is expected to detect of 59%, 97%, and 98% of

the metabolites with a true RR of 1.5, 3.0 and 5.0.

We evaluated how collecting multiple samples would help to

improve study power. We assume that a study will collect up to 10

urinary samples from each individual and mix these samples to

perform one measurement of metabolite levels on the pooled

sample. This approach will reduce within-individual variance and

better capture an individual’s usual metabolite level. As shown in

figure 4C, collecting multiple samples would only slightly

improve study power. By collecting 3 samples per person on a

case-control study of 1,000 individuals, we expect to increase the

study power by 1.44x, 1.11x and 1.02x with a true RR of 1.5, 3.0

and 5.0, respectively, which would mean an average probability of

detecting 6.7%, 93% and 98% of the metabolites. We also

estimated that even when each one of the multiple samples is

individually measured, the improvement in statistical power would

be limited with increasing numbers of samples (data not shown),

which is what would be expected when technical error is low.

Finally, we examined the influence of case:control ratio, at a given

study sample size, on study power. We found that comparing to a

1:1 ratio, increasing the control-to-case ratio to 3:1 would only

improve study power slightly (figure S3B in File S1).

Discussion

We investigated the source of variability of 539 metabolites

measured by LC-MS and GS-MS in urine samples from the Navy

Colon Adenoma Study. We found that overall technical reliability

was high, and for most of the metabolites, the majority of total

variance can be attributed to between-individual variability.

However, despite relatively high pB
T , we estimated that large

sample sizes (hundreds to thousands of participants) would be

Figure 2. The plot illustrates the distribution of r̂r, an estimate
of a measure of autocorrelation over time, for all metabolites.
The curve illustrates that the majority of r are likely above 0 and that
measurements collected on consecutive days are likely more similar
than those collected one week apart. The x-axis indicates the quantile
ranking and y-axis indicates r̂r for a metabolite at that ranking. For
example, the median level, that of the metabolite ranked 284, is 0.49.
doi:10.1371/journal.pone.0095749.g002

Figure 3. The distribution of p̂p(age)(A), p̂p(gender)(B), and p̂p(BMI)(C). The x-axis represents the metabolite quantile ranking, and the y-axis
represents p̂p. The black areas under the curve illustrate the for the specified metabolite quantile ranking, which shows the variance explained by
these three covariates.
doi:10.1371/journal.pone.0095749.g003
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needed for case-control and nested case-control studies to detect

metabolite associations with moderate effect sizes (RR of 1.5–3.0).

In an epidemiological study, the degree to which one or a few

measures can accurately assess an individual’s ‘‘usual’’ level is a

key determinant of statistical power. With the same effect size for

usual level, it is easier to detect associations for metabolites that

have low variability over time and minimal measurement error.

Consistent with our findings, a previous study that examined the

metabolic profile of over 700 unique metabolite peaks from serum

and urine samples using GC-MS reported much smaller variance

among technical replicates, compared with variance among

different individuals [28]. Similarly high reproducibility has also

been observed in studies examining LC-MS methods for global

metabolic profiling in urine [29]. Although technical improve-

ments will lead to more accurate measures of metabolites, the high

reproducibility of current laboratory methods suggests that in

order to enhance the power to detect metabolite associations,

other approaches, such as increasing sample size or making

multiple measurements, must also be considered when metabo-

lomic studies are planned.

The levels and patterns of temporal variability differ by

metabolites. Some metabolites, such as cortisol and melatonin,

fluctuate by the hour in a given day [9,28]; while other

metabolites, such as female hormones and vitamin D, may

fluctuate by month or season. To examine associations with these

metabolites, studies should either try to collect specimens at similar

times for all subjects or record the time so that downstream

analyses can perform appropriate adjustments. Another source of

variability is time since exposure. For example, markers of diet,

smoking, alcohol consumption and use of medication may be

heavily influenced by the most recent exposure. In this case,

researchers may consider making repeated measures, as this

sampling practice can enhance the power of detection and benefit

epidemiological studies that involve exposure assessment using

biosamples [11]. When resources are limited and do not permit

making repeated measures on the entire study population, it may

still be beneficial to obtain multiple measurements on a subsample

to allow estimation of within-individual variation. On the other

hand, as suggested by our power calculation, when within-

individual variance is relatively low, the most effective way to

increase detection power may be expanding the study population.

In previous studies of serum metabolites, blood samples were

collected over a few months to several years [14–16]. In contrast,

in this study, the time intervals between sample collections were

relatively short, spanning from 1 to 10 days. This distinction may

partially explain why we observed a higher pB
T of urinary

metabolites when compared with the serum findings in our

previous study [14](mean: 0.60 for urine vs. 0.43 for serum). For

many metabolites, the correlation between samples would be

expected to be higher when time intervals between sample

collections are short. As a result, measures over a few days may not

Figure 4. The curves show the proportion of metabolites expected to be detected in a case control study as a function of effect size.
Effect size is defined by the relative risk (RR, on the x-axis) of disease comparing individuals in the top and bottom quartiles of the ‘‘usual’’ metabolite
level. The top axis shows the naı̈ve relative risk that would be observed in the study without adjusting for measurement error. Each figure varies one
parameter: sample size, a-level, or the number of samples/individual. (A) presents power curves according to different sample size (n of 500, 1,000
and 5,000) under a Bonferroni-adjusted a-levels (0.05/539); (B) presents power curves with different a-levels in a case-control study of 1,000
individuals; (C) presents power curves in a case-control study of 1,000 individuals, with different number of distinct urinary samples (1, 3, and 10, a-
level = 0.05/539).
doi:10.1371/journal.pone.0095749.g004

Table 3. Average study power to detect associations between metabolites and disease in a case-control study according to
different relative risks and sample sizes.

True relative riska

Sample size (1:1 case:control ratio) 1.5 3.0 5.0

500 1.0% 54% 89%

1,000 4.5% 88% 96%

5,000 75% 98% 98%

aThe naı̈ve estimates of true relative risks of 1.5, 3.0 and 5.0 would be 1.4, 2.3 and 3.4, respectively.
doi:10.1371/journal.pone.0095749.t003
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capture the true temporal variability around the ‘‘usual’’ level of

these metabolites.

Of the total variance in urinary metabolite levels, only a small

proportion overall was explained by age, BMI, and gender. For

gender, there were a substantial number of associations–over 10%

of metabolites were associated with gender; however, many of

them were metabolites of sex hormones that are usually examined

separately for males and females in epidemiological studies

regardless. Factors besides age, BMI, and gender likely explain

the remaining variance, and thus there is high potential for

discovery of new exposures of interest for disease in epidemiologic

studies.

There are several limitations of our study. First, we calculated

technical and within-individual variance based on only 37 and 46

samples, respectively. This may lead to imprecise estimation of s2
E

and s2
W , and other related quantities for specific metabolites.

However, we focus on the distributions of these quantities across

all metabolites, and these distributions should be relatively

accurate. Additionally, due to the small sample size of non-

technical replicates, our study was underpowered to detect

temporal autocorrelation among metabolites. Another limitation

is that the relatively short time interval separating sample

collections may lead to underestimation of within-individual

variability over the long term. Finally, our power calculation

considered only the detection of individual metabolite and disease

associations, but did not assess the power for identifying

metabolomic profiles associated with disease.

In summary, we evaluated the variability of urinary metabolites

from three sources and estimated the power of case-control studies

based on our findings. We showed that our previously developed

framework is useful in determining sample sizes when metabo-

lomic studies are planned.
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