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ABSTRACT

In the use of non-antibody proteins as affinity
reagents, diversity has generally been derived
from oligonucleotide-encoded random amino acids.
Although specific binders of high-affinity have been
selected from such libraries, random oligonuc-
leotides often encode stop codons and amino acid
combinations that affect protein folding. Recently it
has been shown that specific antibody binding loops
grafted into heterologous proteins can confer the
specific antibody binding activity to the created
chimeric protein. In this paper, we examine the use
of such antibody binding loops as diversity ele-
ments. We first show that we are able to graft a
lysozyme-binding antibody loop into green fluores-
cent protein (GFP), creating a fluorescent protein
with lysozyme-binding activity. Subsequently we
have developed a PCR method to harvest random
binding loops from antibodies and insert them at
predefined sites in any protein, using GFP as an
example. The majority of such GFP chimeras remain
fluorescent, indicating that binding loops do not
disrupt folding. This method can be adapted to the
creation of other nucleic acid libraries where divers-
ity is flanked by regions of relative sequence
conservation, and its availability sets the stage for
the use of antibody loop libraries as diversity
elements for selection experiments.

INTRODUCTION

It is believed that a new suite of technologies, generically
termed the ‘display’ technologies will overcome many of
the disadvantages associated with the generation of antibodies
by immunization. In particular, they avoid animals, provide
monoclonal reagents and since genes are cloned simultan-
eously with selection, can be easily manipulated to provide
novel downstream reagents with additional properties.

Although antibody fragments were originally most com-
monly used as scaffolds, many other proteins have also been
used successfully (1,2), with the most widely pursued being
single domains based on the immunoglobulin fold: e.g. single
VH (3) or VL (4) chains, camel VHH domains (5), CTLA4 (6)
or fibronectin (7) domains. In general these tend to be
relatively well expressed (1-10 mg/l) with affinities in the
nanomolar range, although expression in intracellular com-
partments can be difficult due to the presence of disulfide
bonds. Beyond immunoglobulin domains, nanomolar binders
have also been selected from libraries based on a three helix
bundle domain from protein A [Affibodies (8,9)], lipocalins
[termed anticalins (10,11)], cysteine rich domains (12) and
ankyrins [termed DARPINS (13,14)], with X-ray crystallo-
graphy (13,15) of anticalins and ankyrins showing that the
mutated residues undergo structural changes, when compared
to the parent molecule, to accomodate binding.

Transformation of a protein into a binding scaffold requires
the introduction of diversity at the site targeted to become the
binding site. This has generally been either replacement
diversity (3—6,8-11,13)—where amino acids present in the
scaffold of interest, within the chosen loops or surfaces, are
randomized—or insertional diversity, where a specific inser-
tional site is chosen and stretches of random amino acids are
inserted. The latter has been carried out both in antibody
binding loops (16—19) and other proteins (20-24), with
diversity derived from random peptides encoded by degener-
ate oligonucleotides or in rare cases by trinucleotide codons
(25). Recently, antibodies with high affinities have also
been selected from libraries where the introduced comple-
mentarity determining region (CDR) diversity is limited to
only four (tyrosine, alanine, aspartate and serine) (26) or
two (tyrosine and serine) (27) different amino acids at spe-
cific sites in multiple CDRs.

Nature provides a potential source of functional and well
folding binding elements in the form of the binding loops
which make up the antibody binding site. Antibodies contain
six such binding loops, termed CDRs, which are involved in
forming the antibody binding site. The first and second CDRs
in both light and heavy chains are encoded by the germline V
genes and subsequent mutation, while CDR3 is created as a
result of recombination between V and J genes in the case
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of the light chain, and V, D and J genes for the heavy chain
(28,29). Further diversity is created by the addition and loss
of nucleotides at the junctions between the recombined
gene segments (30,31) and somatic hypermutation (32).
Structurally, each class of CDRs is similar in size and struc-
ture, with each adopting one or a few distinct or ‘canonical’
conformations (33-35). HCDR3 is an exception, showing
wide variations in length, structure, shape and sequence
(36,37), as well as intrinsic conformational diversity
(38-40), reflecting the importance of HCDR3s in antibody
binding specificity (41,42). Given this data, and the fact
that HCDR3s also contain very few stop codons, they appear
to represent a very effective form of diversity. This conclu-
sion is bolstered by the structural conservation found at the
ends of HCDR3s, revealed by the finding that the four
N-terminal and six C-terminal residues from different
HCDR3 regions demonstrate <2.75 A r.m.s.d for >99.7% of
all pair-wise comparisons examined (37). As a result,
HCDR3s would be expected to be less disruptive to protein
structure than random peptides of the same length. Further-
more, if a scaffold is able to accept a single HCDR3 at a spe-
cific site, it is likely that many different HCDR3s can also be
accommodated at that same site.

Although libraries of HCDR3s have never been assessed for
their effects on protein structure, a number of examples of the
use of specific antibody CDRs as diversity elements able to
transplant binding activity to a heterologous protein have
been described. An HCDR3 from an integrin binding antibody
has been inserted into an exposed loop in tissue-type plasmino-
gen activator, conferring integrin binding activity to
the plasminogen activator, without eliminating its normal
enzymatic function (43). Similarly, a CDR3 from a camelid
VHH recognizing lysozyme has been transplanted to neocar-
zinostatin, a bacterial chromoprotein with a beta sheet structure,
allowing the chimeric molecule to recognize lysozyme (44). As
camelid VHH CDR3s are very similar to traditional antibody
HCDR3s, these two examples indicate the potential for using
libraries of HCDR3s as diversity/binding elements, if means
for harvesting that diversity can be developed. More recently,
an HCDRI1 loop from a CD4 binding antibody was inserted
into three exposed loops of the protein inhibitor of neuronal
nitric oxide synthase and each construct was shown to exhibit
CD4 binding (45). This work was based on earlier work show-
ing that peptides derived from five of the six CDRs of the anti-
CD4 antibody, and not other regions of the variable region were
able to bind CD4 as soluble, circularized peptides (46).

While these experiments show that in these specific
examples, HCDR3s can be inserted into heterologous pro-
teins without disruption of protein function, it does not dem-
onstrate that this can be carried out generally.

In this paper we explore the possibility of using HCDR3s as
a source of insertional diversity. Using the green fluorescent
protein (GFP), which is not fluorescent unless correctly folded
(47), as a reporter protein, we first show that the VHH CDR3
described above is also functional when inserted into two sites
in GFP. Subsequently we describe a novel PCR method to
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harvest HCDR3 diversity, based on the fact that the N- and
C-terminal HCDR3 amino acids (CXX...XXWGQG) are
extremely well conserved at the DNA, protein and structural
levels. We examine the effects of inserting antibody binding
loops amplified using this method into GFP, and show that
for most sites, and most HCDR3s, there is relatively little dis-
ruption to GFP function, validating HCDR3s as a potential
source of diversity. These experiments set the stage for further
exploration of the use of HCDR3s as diversity elements in a
variety of different scaffold proteins.

MATERIALS AND METHODS
pET-CK3 expression vector construction

Four Bpml sites, one Sphl and BssHII site were eliminated
from pET-C6His (48), a pET-28 derivative. The Sphl site
was eliminated by digesting pETC6-His with Sphl. The linear
DNA fragment was treated with T4 DNA polymerase and
re-ligated with T4 DNA ligase. The ligation was digested
with Sphl and transformed into DHSoFT cells. The Bpml
sites and the BssHII site were mutated using the Stratagene
mutagenesis kit (Stratagene, La Jolla, CA) according to the
manufacturer’s recommendation. Briefly, 100 ng of pETC-
His6-ASphl template DNA was amplified in a 25 pl reaction
using 1 UM of the primers indicated in Table 1. A total of 1 pul
of dANTP mix, 0.75 pl of QuikSolution and 1 pl of
QuikChange® Multi enzyme blend with the following tem-
perature cycle: 95°C for 1 min followed by 30 cycles of
95°C for 1 min, 55°C for 1 min, 65°C for 10 min. The
PCR product was digest with Dpnl, Bpml and BssHII for
1 h and the mixture was transformed into XL-10 Gold®
ultracompetent cells. The resulting pET-CK3 vector was
checked by restriction mapping and sequencing.

SacB insertion into the GFP loops

SacB is a negative selectable marker, which can be used to
kill bacteria bearing by growth on sucrose (49). The SacB
gene was inserted into superfolder GFP (50) at each of the
different identified loop sites (Table 2) in such a way that it
was flanked by two type Bpml restriction sites. These allowed
the removal of the sacB gene and the creation of an appropri-
ate cloning site for CDR3 sequences, which were also flanked
with compatible Bpml sites. After BpmlI cleavage, the N and
C portions of a generic CDR3 were exposed, allowing the
reassembly of a full CDR3 after ligation of amplified
CDRS3 inserts (see Figure 1). Since the sacB gene disrupts
the GFP coding sequence, clones are not fluorescent unless
permissive CDR3s have been inserted. These vectors were
created by amplifying the full pET-CK3-sfGFP plasmid
using pairs of primers flanking each insertion site. This cre-
ated the following structure (illustrated for the insertion at
loop 2), with the portion in green corresponding to GFP,
the portion in red representing the primer encoded sequences
which complement the cloned HCDR3, and the underlined
bases the cleavage site for the indicated Bpml sites:

G D G

5. .TTC AAA GAT TCT GGC GAG GAA TAC TAA CTC CAG AGT AGA CCC TAA TGA TGA GCT GGA GCC TAA AGA CCC GGG GGC GAC GGG. .
3/, .AAG TTT CTA AGA CCG CTC CTT ATG ATT GAG GTC TCA TCT GGG AGG ACT ACT CGA CCT CGG ATT TCT GGG CCC CCG CTG CcCC. .

BpmI

BpmI
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Table 1. The sequences of the primers used to create the different recipient GFP vectors

Loop 1 (23/24) and loop la (22/24)

TAATGATGAGCTGGAGCCTAAAGACCCGGGGGCGGGCACAAATTTTCTGTCAGAGGAG
GGGTCTACTCTGGAGTTAGTATTCCTCGCCAGAATTAACATCACCATCTAATTCAACAAG
GGGTCTACTCTGGAGTTAGTATTCCTCGCCAGAAACATCACCATCTAATTCAACAAG

Loop 2 (102/103) and loop 2a (101/102)

TAATGATGAGCTGGAGCCTAAAGACCCGGGGGCGACGGGACCTACAAGACGCGTGCTG
GGGTCTACTCTGGAGTTAGTATTCCTCGCCAGAATCTTTGAAAGATATAGTGCGTTC
TAATGATGAGCTGGAGCCTAAAGACCCGGGGGCGATGACGGGACCTACAAGACGCGTGCTG
GGGTCTACTCTGGAGTTAGTATTCCTCGCCAGATTTGAAAGATATAGTGCGTTC

Loop 3 (173/174) and loop 3a (172/173)

TAATGATGAGCTGGAGCCTAAAGACCCGGGGGCGGTTCCGTTCAACTAGCAGACCAT
GGGTCTACTCTGGAGTTAGTATTCCTCGCCAGAATCTTCAACGTTGTGGCGAATTTTG
TAATGATGAGCTGGAGCCTAAAGACCCGGGGGCGATGGTTCCGTTCAACTAGCAGACCAT
GGGTCTACTCTGGAGTTAGTATTCCTCGCCAGATTCAACGTTGTGGCGAATTTTG

Loop 4 (213/214)

TAATGATGAGCTGGAGCCTAAAGACCCGGGGGCAAGCGTGACCACATGGTCCTTCTT
GGGTCTACTCTGGAGTTAGTATTCCTCGCCAGATTCGTTGGGATCTTTCGAAAGGACAG

Loop 5 (51/52)

TAATGATGAGCTGGAGCCTAAAGACCCGGGGGCAAACTACCTGTTCCATGGCCAACACTTG
GGGTCTACTCTGGAGTTAGTATTCCTCGCCAGATCCAGTAGTGCAAATAAATTTAAGGGTGAG

SacB primers

GGGGGGTCTGGCGAGGAATACTAACTCCAGTTTTTAACCCATCACATATACCTGCCGTTCAC
GGGGGAACCGCCCCCGGGTCTTTAGGCTCCAGCCGCTTCTCAACCCGGTACGCACCAG

Restriction enzyme mutation primers
GCTCGTTGAGTTTCTCAAGAAGCGTTAATGTCTGGC
CGATCATCGTCGCGCTCAAGCGAAAGCGGTCC
GACATGGCACTCCAATCGCCTTCCCGTTCCGC
GCGTGCAGGGCCAGACTAGAGGTGGCAACGCC
GACTCGGTAATGGCACGCATTGCGCCCAGC

pDANS5-GFP-loop1-3'
pDANS-GFP-loop1.4-5'
pDANS5-GFP-loopla.4-5'

pDANS5-GFP-loop2-3’
pDANS5-GFP-loop2.4-5'
pDANS5-GFP-loop2a-3’
pDANS5-GFP-loop2a.4-5'

pDANS5-GFP-loop3-3’
pDANS5-GFP-loop3.4-5'
pDANS5-GFP-loop3a-3’
pDAN5-GFP-loop3a.4-5'

pDANS5-GFP-loop4-3'
pDANS5-GFP-loop4.4-5'

pDANS5-GFP-loop5-3'
pDANS5-GFP-loop5-5'

SacB.2-5'
SacB-3'

Bpml 2621
Bpml 3288
Bpml 3922
Bpml 4411
BssHII 3288

The portion in green corresponds to GFP and the portion in red, the conserved portion of the HCDR3. Underlined bases represent restriction sites (BpmlI and Smal).

For each of the different loops, the primers in Table 1 were
used. These PCR products were cleaved with Bpml and lig-
ated to SacB amplified with sacB.2-5 and sacB-3' also
cleaved with Bpml (Table 1). These SacB primers placed
Bpml sites at equivalent positions, allowing the SacB gene
to be removed by cleavage with Bpml in the ligated clone.
After cloning, bacteria were tested for their inability to
grow on both liquid and agar media containing 2—-5% sucrose,
as well as by restriction digestion.

HCDR3 amplification

Total RNA was prepared from 40 different samples of human
peripheral blood lymphocytes purified by Ficoll Hypaque
(Amersham Pharmacia Biotech, UK). Pathogens were deemed
to be inactivated by the use of Trizol to purify RNA. This work
was carried out under the auspices of the LANL IRB. cDNA
was synthesized using random hexamers and reverse tran-
scriptase following standard protocols. HCDR3s were ampli-
fied by nested PCR using the IgM for forward primer and a
mixture of VH primers (4-6,10,12,14,22,51) with the follow-
ing temperature cycle: 94°C, 60 s followed by 30 cycles of
94°C, 30 s, 55°C, 30 s, 72°C, 1 min followed by 72°C for
7 min. One microliter of the first PCR after gel purification
was used as template in the second PCR. Biotinylated primers
in Tables 2-5 were used to amplify the CDR3 sequences with
the following temperature cycle: 94°C, 60 s followed by
30 cycles of 94°C, 30 s, 50°C, 30 s, 72°C, 1 min followed
by 72°C for 7 min. The PCR product was phenol/chloroform
extracted and ethanol precipitated. It was dissolved in 90 pl of
water and digested with 50 U of Bpml for 2 h. The enzyme

was heat inactivated at 65°C for 20 min. A total of 100 ul of
M-280 Streptavidin Dynabeads (Dynal, Norway) was washed
three times with TE and the beads were resuspended in the
Bpml digested PCR products. The beads were mixed at
room temperature for 30 min and collected with a magnet.
The supernatant, which contains digested HCDR3s was used
directly in the ligation reactions.

Library construction

pET-CK3-stGFP-SacB in eight different loops were digested
with Bpml, treated with Antarctic phosphatase and gel puri-
fied using the Qiagen gel purification kit. The concentration
of the vector was measured by spectrofluorometer and liga-
tions were set up with CDR3 fragment with a vector:insert
ratio of 1:3 overnight at 4°C in 20 pul volume using 800 U
of T4 DNA ligase (NEB). tRNA (1 ug) was added to the reac-
tions and the total ethanol precipitated and redissolved in
50 ul of water. A total of 2 ul of each of the ligation reactions
were electroporated into BL21 (DE3) Gold (Novagen) cells
and plated on nitrocellulose filters on Luria—Bertani (LB)
plates containing 50 pg/ml kanamycin/2% glucose/2% suc-
rose. Cells were grown overnight at 37°C. The filters were
transferred onto kanamycin LB plates containing 1 pg/ml
isopropyl-B-D-thiogalactopyranoside (IPTG) and induced for
4 h at 30°C.

Determination of c-lys affinity by flow cytometry

Streptavidin coated beads (50 ul) (Spherotec) were incubated
with either 1 ng of biotinylated (Pierce Biotechnology) lyso-
zyme (Sigma) or 15 ng of biotinylated 9E10 (anti-myc,
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G
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Loop insertion sites in GFP
| . 2 3 4

SacB insertion

Bpml digestion

sA GCC TAA AGA CCC
CGA CCT CGG ATT TCT GGC
EpmI R

After cleavage with Bpml and removal of SacB insert

PCR product from HCDR amplification using VR35-1.4 and JH1.4-3" (B=biotin), showing the

portions between the Bpml sites

A T ¥ Y = A

B..CTGGAG GCC ACR TAT TAC TGT GCN-HCDR3-TGG

GG TGY ATA ATG AC GN
BpmI Recognition

After cleavage with Bpml

A

CN-HCDR3-T

GHN

After mixing with Bpml cleaved SacB vector

Bpml Cleavage

GG
ACC

H G T 1

C CAG GGC ACC CTG CTCCAG

G
ACC CCG GTC CCG TGG GAC C GAGGTC..B

BpmI C BpmI Recognition

W
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A
CN-HCDR3-TGG
GN

Final cloned product after ligation
A

0]

TGG

CN-HCDR3-
GN ACC

Figure 1. (a) The genetic rearrangement which creates human VH genes, and the PCR strategy used to amplify, digest and purify HCDR3s is shown on the left,
while on the right is shown the general scheme used to create a template for simple insertion of HCDR3s exploiting type IIs restriction sites and a negative
selectable marker, such as SacB. (b) The detailed sequence of a recipient vector containing SacB inserted into loop 2, and the cloning strategy used to insert
HCDR3s. The letters depicted in green represent GFP sequences, black are HCDR3 sequences, and red are junctional sequences which come together during the
ligation procedure. As a result of the cloning procedure, the conserved cysteine present in the HCDR3 is converted into a serine. BpmI R (underlined) identifies

the Bpml recognition site, while BpmlI C identifies the cleavage site.

Upstate, New York) antibody in a final volume of 100 ul
phosphate-buffered saline (PBS), for 1 h at room temperature.
A total of 100 ul of 5% BSA was added to block the bead
surface and incubated for a further hour at room temperature.
Beads were washed once in PBS and resuspended in 150 pl of
PBS. GFP containing the anti-lysozyme CDR3 with an initial

concentration of 0.6 mg/ml was 2-fold serially diluted and 5
pl of antigen coated beads added to 50 pl diluted protein per
well. After 1 h incubation at room temperature the supernat-
ant was removed by washing once in PBS and the beads were
analyzed by flow cytometry using a FACSAria instrument
(BD Biosciences). For the determination of affinity at each
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dilution, the mean fluorescence intensity of the non-specific
binding of c-lys to the beads coated with an irrelevant target
was subtracted from the specific fluorescence of the lysozyme
coated ones. The resulting fluorescence values at each dilu-
tion were fitted to a logistic function using Origin (Microcal
Software, Inc., Northampton, MA) and the affinity determ-
ined as the concentration at which half maximal fluorescence
was obtained (52).

Flow cytometric analysis of bacterial fluorescence

Bacterial libraries expressing GFP clones were inoculated
in minimal medium (53) and grown overnight at 37°C. The
following day 1 ml of autoinduction medium (53) was inocu-
lated with 10 pl of each library and grown at 30°C overnight.
The cells were diluted in PBS and analyzed using a BD LSR
II flow cytometer (BD Biosciences), using the 488 nm laser to
excite GFP).

Protein expression, purification and characterization

All plasmids were transformed into Escherichia coli BL 21
Gold, plated on 2XTY/Kan/10% glucose and grown overnight
at 37°C. Individual colonies were picked and grown overnight
in liquid 2XTY/Kan/Glucose at 37°C. Confluent culture (1 ml)

Table 2. GFP insertion sites

Loop Amino acids Loop Amino acids
1 23/24 VN/GH la 22/24 DV/N/GH

5 51/52 TG/KL

2 102/103 KD/DG 2a 101/102 FK/DD

3 173/174 ED/GS 3a 172/173 IE/DG

4 213/214 NE/KR

The sites at which HCDR3 libraries were inserted into GFP are indicated. For
loops 1, 2 and 3, two different insertion points were used as shown in the table.
In loop la the underlined asparagine was deleted and the HCDR3s inserted
between the valine and the glycine.

Table 3. Primer analysis

Nucleic Acids Research, 2006, Vol. 34, No. 19 el32

was used to inoculate 50 ml 2XTY/Kan/IPTG in 250 ml sha-
ker flasks for expression at 30°C overnight.

Proteins were purified by low-salt immobilized metal affin-
ity chromatography. Cultures were harvested by centrifuga-
tion, sonicated and resuspended in 10 mM Tris.HCI (pH 8.0)
and recentrifuged at 3000 g for 30 min at 4°C. The supernatant
was applied to IMAC columns pre-equilibrated with Tris for
initial adhesion. The flow-through was reapplied three addi-
tional times and washed with 20 bed volumes Tris. An addi-
tional wash of 20 bed volumes of 10 mM Tris/300 mM
NaCl/10% glycerol was performed preceding a final Tris
wash before elution in 600 mM Imidazole. The buffers were
exchanged from the eluted proteins using three passes of
spin filtration with 10 000 MWCO Amicon Ultra centrifugal
filtration devices at 4°C. The desalted proteins were diluted
in prechilled Tris and stored at 4°C preceding further evalu-
ation. Protein samples for SDS-PAGE comparison were
diluted for equivalent fluorescence utilizing a Tecan Spectra-
fluor Plus plate fluorometer equipped with 485 nm excitation
and 535 nm emission filters prior to standard denaturation
and gel loading.

Absorption spectra were collected on a ThermoSpectronic
Genesys2 and exported to Microsoft Excel for comparison.
Excitation and emission spectra were generated by either a
QuantumMaster 6SE (Photon Technologies Incorporated,;
Edison, NJ) or a SPEX Fluorolog spectrofluorometer utilizing
1 cm? cuvettes. Excitation scans were evaluated with 509 nm
emission wavelength. Emission scans were generated with 488
nm excitation. All emission scans were normalized to the
maximum value obtained at the main emission peak for each
sample.

Surface plasmon resonance analysis
of anti-lysozyme HCDR3 clones

SPR analysis was performed on a BIAcore 2000, using a
Streptavidin chip (purchased from BIAcore). Our in-house

Primer Sequence Degeneracy Rearranged V Germline V
5 set
VR35-1.4 GCCACRTATTACTGTG 2 123 (72, 51) 3
VR35-2.4 GCCATNTATTACTGTG 4 434 (107, 30, 258, 39) 3
VR35-3.4 GCCGTHTATTACTGTG 3 577 (356, 148, 73) 1
VR35-4.4 GCCTTGTATTACTGTG 1 66 2
VR35-5.4 GCTGTHTATTACTGTG 3 391 (120, 162, 109) 0
VR35-6.4 GCYGTGTATTACTGTG 2 2118 (974, 1144) 35
VR35-7.4 GCYGTVTATTATTGTG 6 303 (33, 36, 95, 23, 49, 67) 0
VR35-8.4 GCYGTNTATTTCTGTG 8 170 (17, 23, 37, 17, 8, 13, 47, 9) 0
Total 4182/5646 74% 44/49 90%
3’ set
JH1.4-3 CCAGGGTGCCCTGGCCCCA 1 170 JH4, JHS
JH2.4-3 CCAGGGTGCCACGGCCCCA 1 94 JH6
JH3.4-3 CCATTGTCCCTTGGCCCCA 1 487 JH3
JH4.4-3 CCAGGGTTCCCTGGCCCCA 1 1958 JHI
JH6.4-3 CCGTGGTCCCTTGGCCCCA 1 802 JH2
Total 3511/5646 62% 6/6 100%

Sequences of those portions of the 5" and 3’ primers corresponding to the VH or JH genes suitable for the amplification of HCDR3s are shown. These were analyzed
by using only the portion of the primer which recognizes the V or J gene and searching against the database of 5646 rearranged V genes or the 49 germline V genes or
6 JH genes. These analyses are stringent (100%), so it is likely that in real experimental situations, more sequences are likely to be amplified, as in each case the
3’ primer sequences are extremely well conserved. Under ‘Rearranged V’, the total numbers of the 5646 rearranged VH genes downloaded from IMGT with
absolute homology to each of the primers are given. In brackets are given the number of VH genes recognized by each of the individual primers making up the
degenerate pool. Under ‘Germline V’, the number of germline VH genes with 100% homology to the primers is given.
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Table 4. Primer localization

VH genes
102103 104 105106 107
Y YH C AKT
TAT TAC TGT GCG AGA GA

PrErOoB0SES;

. ... .G
.A CACAG
AC.GAT
_>primer set
JH genes
115116117 118119120121 122123124 125126127128

FM QD W G OR G TMLT V. T V S S
JH1 TTC CAG CAC TGG GGC CAG GGC ACC CTG GTC ACC GTC TCC TCA G/
1557 U L R L, Y
JH3 ..TG.TAT. vvv vve v oA eiG i iAR s v cee e eee e ]
JH4 ..TG.CT.. ... .. ..A. ./
JHS .. GuCuChvs oo e cdB s et i e e e
JH6A.GG.CGT. vov .ve v iAo Gt AC. v vee aen ./

P — primer set

The sequences shown represent the full diversity found in the germline V genes
centered around the conserved cysteine (TGT). All six JH sequences are
indicated. For both VH and JH, the region of primer recognition is given,
and the cut site when BpmlI is used is underlined. The IMGT numbering system
is used.

Table 5. HCDR3 amplification primer sequences

5’ primer sets
VR35-1.45'Biotin-AACGTGCTGGAGGCCACRTATTACTGTG
VR35-2.45'Biotin-AACGTGCTGGAGGCCATNTATTACTGTG
VR35-3.45'Biotin-AACCGTGCTGGAGGCCGTHTATTACTGTG
VR35-4.45'Biot in-AACGTGCTGGAGGCCTTGTATTACTGTG
VR35-5.45'Biotin-AACGTGCTGGAGGCTGTHTATTACTGTG
VR35-6.45'Biot in-AACGTGCTGGAGGCYGTGTATTACTGTG
VR35-7.45'Biotin-AACGTGCTGGAGGCYGTVTATTATTGTG
VR35-8.45Biot in-AACGTGCTGGAGGCYGTNTATTTCTGTG

3’ primer sets o
JH1.4-3'5'Biotin-TGAGGAGACTGGAGCCAGGGTGCCCTGGCCCCA
JH2 . 4-3'5'Biot in-TGAGGAGACTGGAGCCAGGGTGCCACGGCCCCA
JH3.4-3'5'Biot in-TGAAGAGACTGGAGCCATTGTCCCTTGGCCCCA
JH4.4-3'5'Biot in-TGAGGAGACTGGAGCCAGGGTTCCCTGGCCCCA
JH6.4-3'5'Biot in-TGAGGAGACTGGAGCCGTGGTCCCTTGGCCCCA

The 5’ and 3’ primer sequences used are shown. Each primer is biotinylated at
the 5" end. The biotin is followed by four bases to assist in recognition and
cleavage by the type IIs enzyme, Bpml (recognition sequence CTGGAG16/
14). The cut site is underlined.

biotinylated lysozyme was used as ligand on the Streptavidin
chip (flow cells 1,2,3), and our biotinylated myoglobin was
used as the negative control (non-specific binding control)
ligand on the same chip (flow cell 4). Approximately 4000
RUs of both ligands were bound to the chip, under which
conditions specific binding could be demonstrated.
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RESULTS

Inserting a defined CDR3 into GFP
to confer binding activity

The HCDR3 from a VHH recognizing lysozyme has been
transplanted to neocarzinostatin, a bacterial chromoprotein
with a beta sheet structure, with the chimeric molecule recog-
nizing lysozyme with an affinity of 500 nM (44). We attemp-
ted to replicate this finding, by transferring the same HCDR3
to two surface exposed loops in ‘Superfolder’ GFP (sfGFP)
(50), a GFP mutant selected to be resistant to the destabilizing
effects of poorly folding proteins fused to its N-terminus, and
hence more stable than other forms of GFP. In order to effect-
ively use HCDR3s as diversity elements, both structural and
sequence conservation must exist at the N- and C-terminal
ends of the isolated HCDR3. Structural conservation is
required to ensure that once a permissive site has been cho-
sen, different HCDR3s can be inserted equally effectively
at the same site, while sequence conservation is required to
allow effective cloning of the isolated HCDR3s. Within the
four N-terminal and six C-terminal amino acids from differ-
ent HCDR3 regions found to be structurally similar by Morea
et al. (37), the DNA sequences encoding the N-terminal
cysteine and C-terminal tryptophan and glycine are extremely
conserved. As the cysteine 104 [IMGT numbering (54)] usu-
ally forms a double hydrogen bond with the glycine 119 (37),
these two amino acids were chosen to be the limits of the
cloned HCDR3. However, to avoid the presence of an
unpaired cysteine (the HCDR3 N-terminal cysteine normally
disulfide bonds with another cysteine in framework one), this
codon was mutated to a serine. This is identical to cysteine,
except for the replacement of sulfur by oxygen, and so is
able to form the same hydrogen bonds. In order to create
recipient GFPs which could be used for cloning HCDR3 lib-
raries, as well the specific anti-lysozyme HCDR3, we inserted
(see Figure 1 and below) a SacB gene at each targeted inser-
tion site flanked by Bpml sites. The SacB gene is a negative
selector able to reduce vector background by 10°-fold by plat-
ing bacteria on sucrose after transformation (49,55). Bpml is
a type IIs restriction site which cleaves 14/16 bp away from
its recognition site. The cleavage sites were designed to
include conserved 5’- and 3’-HCDR3 sequences, which
were exposed after digestion by Bpml, allowing the recon-
struction of full-length HCDR3s within the GFP from either
annealed oligonucleotides or amplified PCR fragments.

The anti-lysozyme HCDR3 described above was synthes-
ized as a pair of overlapping phosphorylated oligonucleotides.
These were annealed and ligated directly into two of the BpmlI
cut vectors (Figure 1). Loops 1 and 3 (see Table 2 for nomen-
clature) were both independently targeted. Both clones, named
c-lysl and c-lys3, depending upon the loop insertion site,
yielded fluorescent proteins. These were expressed in BL21
using either 100 uM IPTG or autoinduction media (53), and
subsequently purified by immobilized metal affinity chroma-
tography using the C-terminal His6 tag.

Binding between GFP containing this HCDR3 was demon-
strated in an enzyme-linked immunosorbent assay (ELISA)
format in which the lysozyme was biotinylated and interacted
with the modified GFP prior to capture on a neutravidin coated
plate (Figure 2A). Specific binding could also be demonstrated
using a flow cytometric bead based method, in which detection
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was carried out by measuring the fluorescence of streptavidin
coated beads to which biotinylated lysozyme and GFP contain-
ing the anti-lys HCDR3 had bound (Figure 2B). Unlike ELISA,
this method relies on the intrinsic fluorescence of the binder,
demonstrating that binding activity and fluorescence reside in
the same protein, and that, at least in this case, HCDR3 insertion
has not disrupted GFP function. This technique can also be used
to determine affinity (52) by incubating microspheres coated
with antigen with increasing concentrations of fluorescent bin-
der. As concentration increases, the bead bound fluorescence
reaches a plateau, as all target sites on the microspheres are
bound. By subtracting background binding and determining
the concentration of fluorescent binder at which half maximum
fluorescence is obtained, we were able to estimate the affinity of
this interaction to be 1.34 uM for c-lys1 (Figure 2C), similar to
the estimate, obtained by isothermal calorimetry, for neocar-
zinostatin containing the same HCDR3 (44). Binding was
also examined using surface plasmon resonance. Although,
specific binding could be demonstrated when chips were den-
sely coated with lysozyme, similar to the neocarzinostatin res-
ults (44), affinity was not high enough to show binding when the
lower levels of coating required to determine affinity were used
(data not shown).

These results indicate that the orientation and structure of
the HCDR3 is maintained at both insertion sites and is similar
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to that in the original VHH, suggesting that HCDR3s are a
valid potential source of diversity, and may alone provide
sufficient binding energy to yield micromolar binders.

Analyzing human HCDR3 flanking sequences

In order to determine the best way to clone HCDR3s, 5669
human heavy chain variable genes were downloaded from
the IMGT web site (56), using ‘human heavy chain variable
genes of any specificity’ as search criteria. These were pared
down to 5646 full-length VH genes representing a wide spec-
trum of different V genes, and encompass the full range of
mutations found at all different sites within the V genes,
including potential primer sites flanking the CDR3. Of
these 5646 VH genes, 4842 can be accounted for by search-
ing for the following motifs (all based on the 10 bases finish-
ing with the extremely conserved cysteine and the base which
follows it—TGT G) found at the 3’ end of framework region
3 just before the CDR3 (number of times found):

TATTACTGTG (4061)

TATTATTGTG (462)

TATTTCTGTG (319)

As amplification usually requires more than 10 bases of
homology, the 4842 sequences described above were extrac-
ted from the database and analyzed for homology upstream of

B: Analysis of lysozyme binding by flow cytometry

GFP + lysozyme

=
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Figure 2. (A) ELISA was carried out by first interacting biotinylated antigen with the GFP clone of interest and then capturing on a neutravidin coated plate. GFP
binding was revealed using SV5, a monoclonal antibody (73), which recognizes a tag appended to the C-terminus. The non-specific clone was GFP containing
the myc epitope (74) at the loop 3 position, and indicates the level of binding due to a similarly disrupted GFP molecule. clyslpl and clyslp3 have the lysozyme
binding HCDR3 inserted into loop 1 and loop 3, respectively. (B) Streptavidin coated beads were incubated with either biotinylated lysozyme or myoglobin,
(which serves as the negative control for non-specific binding to coupled beads) and subsequently with GFP or GFP containing the anti-lysozyme HCDR3
inserted at loop 1 (c-lysl). Analysis was carried out using a FACSCalibur. (C) As in (B), except that different concentrations of c-lysl were used and the mean
fluorescence of the non-specific (myoglobin) beads was subtracted from the fluorescence of the lysozyme coated beads and plotted. The affinity is calculated

from the concentration of c-lys1, which gives half maximal fluorescence.
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these 10 bp sequences. Based on the homology found, the
sequences described in Table 3 were designed. A similar pro-
cedure was carried out for the 3’ end of the HCDR3 in the JH
gene sequences. However, in this case, the sequences were
centered around the highly conserved CTGGGGCC sequence
found in all JH genes. The alignment of these sequences with
germline V and J genes is given in Table 4.

Seven of the thirteen primer sequences were degenerate,
with each component sequence recognizing V genes.
Table 3 shows the numbers of the 5646 rearranged and germ-
line VH genes recognized by each of these sequences, assum-
ing 100% homology. In experimental use, it is likely that
many more genes will be recognized by each individual
primer, since single mismatches do not usually prevent
PCR amplification, especially when found upstream of nine
homologous bases.

Cloning design

The strategy used to clone HCDR3s amplified from B cells
into GFP 1is described in Figure la and detailed in
Figure 1b. The GFP recipient vectors contain the SacB
gene flanked by the highly conserved 5’ and 3’ portion of
the HCDR3. GFP containing SacB at the different insert
sites is non-fluorescent, and the only way fluorescence can be
restored is by removal and replacement of the sacB negative
selector with a sequence that encodes a peptide permissive
for GFP folding at the targeted insertion site. In order to
isolate these sequences, without flanking framework
sequences, and to recreate full-length HCDR3s, a type IIs
restriction site, Bpml, was used. This cuts 16/14 bases
away from its recognition site, allowing it to be placed
upstream of an amplifying oligonucleotide in such a way
that the majority of the oligonucleotide sequence can be
removed after PCR, leaving a 2 bp 3’ extension for ligation
(see Figure 1b). Based on the sequences described in
Tables 4 and 5, the Bpml site in the 5 HCDR3 primer was
placed to cleave across the conserved cysteine and adjacent
codon (TGTG) (Tables 4 and 5), while at the 3’ end it was
placed to cleave within the conserved tryptophan codon
(TGGGGC). Overhanging bases are underlined in both
cases. Altogether, eight vectors containing SacB insertions
at eight different sites, comprising five different loops, were
created (Table 2 and below).

In order to eliminate the primer ends removed by Bpml
cleavage (corresponding to the framework sequences), the
oligonucleotides were biotinylated at their 5’ ends (Table 5),
allowing their removal with streptavidin Dynabeads.

PCR amplification and cloning

Non-biotinylated primers were tested by amplifying HCDR3s
from the peripheral blood lymphoctye cDNA of 40 donors
using non-biotinylated primers. Using each individual primer
with a pool of the complementary primers yielded a 75-150
bp smear for all primers (Figure 3A and B), which is more
visible for the primers recognizing more rearranged V
genes (e.g. VR-35-36.4). When the length of the primers is
taken into account, this corresponds to HCDR3s ranging
from ~20-95 bp, similar to the previously published range
of HCDR3 lengths (36) (24-90 bp and Figure 5).
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Biotinylated versions of the primers were created and
pooled for amplification before purification and cloning.
Unfortunately, primer JH4.4-3 had to be omitted, due to the
sub-optimal quality of the biotinylated primer. Lane 1 in
Figure 3C shows the HCDR3 smear prior to digestion with
Bpml, ranging from 75 to 150 bp (arrow A). After digestion
(lane 2), the smear is reduced in size by 55 bp (range 25-95 bp,
arrow B), corresponding to the primer portions removed by
Bpml, which can be seen as an additional sharp lower band
(arrow C). Lane 3 shows the final purified HCDR3 preparation
after removal of the biotinylated primers using magnetic strep-
tavidin beads (Dynabeads). The extent and intensity of the
smear is essentially identical to that in lane 2, except that
the lower band is eliminated, indicating the efficiency of the
use of streptavidin to remove the biotinylated external primer
portions.

HCDRS3 libraries

In order to assess the effects of the insertion of many different
HCDR3s on protein folding in general, and GFP folding and
function in particular, five different loops in GFP were tar-
geted for the insertion of HCDR3 libraries (Table 2). The
insertion sites were identified by an examination of the struc-
ture of GFP (57), with the goal of placing the HCDR3s at the
tips of the loops, and so hopefully continue the GFP beta
strand structure into the first part of the HCDR3. In addition,
one alternative site, differing by a single amino acid, and
consequently slightly off the tip center, was also targeted
for three of the loops (1, 2 and 3 in Table 2), to see whether
insertion within loops had to be precisely localized, or
whether it was sufficient to target a loop, without concern
for the exact insertion sites.

The HCDR3 fragments were gel purified and cloned into the
eight recipient GFP vectors. The libraries were then induced
and analyzed by flow cytometry. Each of the libraries showed
significant numbers of fluorescent bacteria (Figure 4) when
induced with IPTG, with loops 1, la, 3, 3a and 5 providing
the greatest number, many of which overlapped with the fluor-
escence of bacteria expressing GFP. The mean fluorescence
for these libraries ranged from 10711-25260, while GFP
had a mean fluorescence of 23 274. The remaining loops (2,
2a, 4) were less fluorescent (941-2295), although still signific-
antly more fluorescent than BL21 (mean 61). All the fluores-
cent profiles for bacteria containing GFP with inserts were
broader than GFP with a slightly longer tail on the low fluor-
escence portion of the curve. The differences between libraries
inserted at different loops sites differed by as much as 27-fold
(loop 2a compared to loop 1), while the greatest difference
between insertions in the same loop differing by a single
amino acid were in no case greater than 2.5. This suggests
that the primary determinant of fluorescence is the targeted
loop, with the site within the loop playing a lesser role.

Sequence analysis of HCDR3s

302 random clones containing inserts were sequenced to fur-
ther analyze the nature of the cloned diversity. The length dis-
tributions of the HCDR3s (Figure 5) showed a slight increase
in shorter HCDR3s (14-16 amino acid), and a reduction in
longer ones (>21 amino acid) compared to the HCDR3 length
distributions reported in the literature (36). All inserts were in
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Figure 3. PCR amplification of lymphocyte cDNA using a mixture of the 3’ J region primers and individual 5’ V gene primers (a), or a mixture of the 5’ V gene
primers and the individual J region primers (b). In (c), the pooled PCR product prior to digestion is shown in lane 1. In lane 2 the PCR product after digestion
with Bpml, and in lane 3 the product after the biotinylated primers are removed. In each case the arrows show the amplified HCDR3s except C in 3c.

frame with GFP, and nucleotide blast searches showed homo-
logy to HCDR3s (Figure 6a shows representative sequences).
Only 1.3% of the sequences contained stop codons, and 4.8%
lacked the characteristic C(S)....WG HCDR3 sequence.
In addition there were 18 sequences repeated more than once,
corresponding to 5.9% of all sequences. Interestingly, two of
these duplicated HCDR3 sequences were each found in three
different loops (Figure 6b) indicating duplication was present
in the source cDNA, rather than a cloning artifact. This has
been previously observed in sequencing human peripheral
B cell V genes (58), and reflects different VH gene pools
with different representations, such as those derived from
recent infections, rather than the saturation of diversity.

A number of clones from each library were picked at
random and analyzed for their fluorescence, and correlated
with the length of the HCDR3 insert. Figure 6¢ shows the
fluorescence of individual clones expressed as a percentage
of GFP fluorescence, correlated with the length of the inser-
ted HCDR3. As can be seen, the spread of HCDR3s ranges
from 40 to 75 bp, with little correlation between length
and fluorescence, except beyond 80 bp, where fluorescence
is reduced. This indicates that providing the HCDR3 length
is within the normal range (40-75 bp), larger HCDR3s do
not reduce fluorescence more frequently than smaller
HCDR3:s.

In order to determine whether there were any differences
between HCDR3s found in strongly fluorescent clones com-
pared to weakly fluorescent ones, bacteria containing the
libraries were flow sorted for fluorescence, and an additional
434 sequences analyzed. Although the length distributions of
the HCDR3s in the unsorted and sorted libraries were
extremely similar (see Figure 5), the percentages of repeated
sequences (1.6%), non-characteristic HCDR3 sequences (2%)
and sequences containing stop codons (0.7%) were all
reduced.

Examination of protein properties

A number of fluorescent clones containing HCDR3 inserts
were expressed and purified to study their properties com-
pared to GFP. The expected size differences between GFP
and clones containing inserts were apparent for all clones
(Figure 7a). The expression levels of the different clones
ranges from 5.2-138 mg/l, 1.3-30% the level of GFP.
Normalized absorption/emission spectra were essentially
identical to GFP (data not shown).

The stability of some of these proteins was studied using
a real time PCR machine in which protein fluorescence was
monitored as temperature was gradually raised (0.1°C/s)
(59). Figure 7d shows fluorescence levels for GFP and a
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Figure 4. Flow cytometric analysis of bacteria containing GFP with HCDR3 lib

raries at different insertion positions. In each panel the grey line represents

BL21 bacteria, and the green line BL21 expressing GFP. Each panel represents libraries inserted at a different loop, with different positions indicated for loops
1, 2 and 3. The mean fluorescence for each of the populations, calculated from the plots, is given in the table.

number of different clones, scaled to start at the same fluor-
escent level. All proteins, with the exception of 2-G2, showed
two phase melting curves with an initial slow phase for
15-30°C after 50°C, followed by a sharp transition to com-
plete melting. The midpoint of the cooperative transition
for GFP was 83.5°C, while clones containing HCDR3 inserts
ranged from ~71-83.5°C, with two clones (3a-Al12 and
3a-C4) slightly more stable than GFP. By 88.5°C all clones
had completely lost fluorescence. This melting pattern is sim-
ilar to that shown by the engineered ankyrins, with a less
steep first phase than that seen with the ankyrins (60).
Although not examined in detail, the proteins with the
lower thermal stabilities tended to come from the less fluor-
escent libraries (loops 2, 2a and 4).

DISCUSSION

Antibody CDRs, or hypervariable regions, are the portions of
the variable regions, which constitute the antigen binding
loops. Of the six CDRs, the HCDR3 is the most diverse,
reflecting its complex genetic origin (Figure 1). It also
plays the most important role in antigen recognition, as
shown by the isolation of pairs of antibodies recognizing
different antigens which differ only in their HCDR3s
(41,42). This has not been shown for any of the other
CDRs, indicating that HCDR3s alone, within the context of
an antibody variable domain, are able to provide sufficient

binding affinity to discriminate between different antigens.
Furthermore, it has recently been shown that some antibodies
are able to bind distinctly different antigens as a result of con-
formational flexibility, in which the HCDR3 undergoes large
structural changes when binding (38), a property likely to be
far more widespread than hitherto expected. Coupled with the
known length (36), chemical (36) and structural (37) diversity
of HCDR3s, as well as the relative lack of stop codons, these
results indicate that HCDR3s may serve as useful sources of
diversity if ways could be found to transplant them from anti-
bodies to alternative scaffolds with different properties. In
this regard, a tissue plasminogen activator (TPA) able to
recognize integrins av3 and o3 was created by inserting
the HCDR3 from a recombinant anti-integrin antibody (61)
into a TPA loop flanked by a beta sheet structure (43), and
a functional neocarzinostatin derivative able to recognize
lysozyme was similarly created by grafting an HCDR3
from a camelid anti-lysozyme VHH to a surface loop (44).
In the first experiments reported here, we were also able to
transfer this VHH CDR3 to two different GFP loops and con-
fer lysozyme-binding with an affinity comparable to that
obtained when transferred into neocarzinostatin, indicating
the generality of transferring HCDR3s with specific binding
properties to alternative scaffolds.

The main problem with isolating libraries of HCDR3s,
rather than specific ones, is the fact that their diversity is
embedded within relatively conserved structured beta sheet
framework regions that form extensive contacts with other
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Figure 5. The length distribution of cloned HCDR3s derived from bacterial libraries, which were unsorted (blue), or sorted for fluorescence (red), with published
distributions (36) in green.
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Figure 6. (a) Shows the sequence of random HCDR3s cloned into the different loops. In (b) are shown two HCDR3 sequences whose sequences were found in
different loops. (¢) Shows the correlation between HCDR3 length and bacterial fluorescence as expressed as a percentage of the fluorescence of bacteria

expressing GFP.

VH region amino acids. In this paper we overcome this
problem with a PCR based method that uses flanking type
IIs restriction sites to remove the framework regions after
amplification. This relies on the structural, DNA and amino
acid sequence conservation found at either end of human
HCDR3s: cysteine 104 and tryptophan 119 (IMGT number-
ing) are essentially 100% conserved at the amino acid and

nucleotide levels. Structurally these amino acids are joined
by two hydrogen bonds and so very close to one another, pro-
viding further justification for their use as diversity elements.
This allowed us to design 13 primers annealing within the
flanking framework regions which were able to amplify a
large percentage of rearranged VH gene CDR3s. By adding
Bpml sites at the ends of the primers, these framework
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Figure 7. (a) Shows a polyacrylamide gel of different purified clones containing HCDR3 inserts at different positions. (b) Shows the normalized fluorescent
emission of different clones gradually heated up at the rate of 0.1°C/second. For each clone, the first figure indicates the loop insertion site.

regions could be removed, leaving two base pair overhangs
residing within the conserved amino acids at either end of
the HCDR3. These overhangs were ligated to sequences
encoding the remaining portion of the HCDR3 (with the
cysteine exchanged for serine), exposed when the negative
selector (SacB) gene was removed from GFP by digestion
with BpmlI (Figure 1). This arrangement facilitated the clon-
ing of a diverse set of HCDR3s, independently of knowledge
of their sequences.

By inserting HCDR3 libraries into the tips of five loops on
one end of GFP, we were able to assess the degree of disturb-
ance these HCDR3s caused to folding, since GFP must fold
correctly to become fluorescent (47). Of the eight sites
examined, five were very permissive, giving mean bacterial
fluorescence profiles within 2.3-fold of GFP. The remaining
three sites, although up to 25-fold less fluorescent than GFP,
were nevertheless significantly fluorescent. The mean fluores-
cence per cell is a combination of the number of fluorescent
proteins per cell and the intrinsic fluorescence of those

fluorescent proteins. In Figure 7a, the amount of each fluores-
cent protein loaded on the polyacrylamide gel was normalized
for fluorescence. The similar intensity of the coomassie blue
staining suggests that the greatest variability between different
bacterial clones is in the amount of expressed fluorescent
protein, rather than any difference in intrinsic fluorescence.
This is supported by the differing levels of protein which
can be purified from each clone.

For three of the sites (loops 1, 2 and 3) two insertion sites
were tested. These differed by a single amino acid, and the
rationale was to determine whether it was sufficient to
place the HCDR3 within a permissive loop, or whether the
exact site within that loop was critical. Although there was
a small (<2.5-fold) difference in the fluorescence at the two
sites for each loop, this was far less than the difference
observed between different loops (up to 27-fold), suggesting,
at least within this small set, that the loop targeted is more
important than the precise position within the loop. We did
not examine insertion at other sites, and it is possible that
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insertion of HCDR3s into secondary structures which are not
loops, or perhaps at the loop extremities, may be significantly
more disruptive, especially since loops tend to be less well
conserved than more structured elements.

We sequenced over 300 cloned HCDR3s. Over 90% had
the characteristic HCDR3 sequence: C(S)XX...XXWG.
The sequence characteristics of HCDR3s more permissive
for GFP fluorescence were identified by flow sorting bacteria
expressing GFP containing HCDR3 libraries in different
loops. We found that HCDR3s in the more fluorescent clones
were less likely to contain stop codons, non-characteristic or
repeated HCDR3 sequences. There was no bias in favor of
either bulged or non-bulged HCDR3s (37), with the propor-
tion remaining constant before and after sorting. As both
non-characteristic and repeated HCDR3s are more likely to
be derived from heavily mutated clones, this may explain
their detrimental effect on GFP fluorescence.

GFP is known to be an extremely stable protein. The GFP
we used, superfolder (50), was selected to be particularly
resistant to the effects of poorly folding proteins fused to
its N-terminus. This also confers improved stability to the
protein generally (50). This was confirmed in our thermal sta-
bility studies, in which the cooperative transition midpoint
was 83.5°C, not dissimilar to GFP containing loops which
ranged from 71 to 83.5°C. This minimal disturbance likely
reflects both the stability of GFP as well as the relatively
non-perturbing nature of the HCDR3 inserts, which was
also shown by the fact that the spectral properties of these
proteins were essentially identical to GFP.

This study was carried out with human HCDR3s because
of the great deal of sequencing information available. This
made the design of appropriate framework primers relatively
straightforward. However, with sufficient information on the
sequences of appropriate flanking regions, this approach
could be applied to the harvesting of diversity from the anti-
body genes of other species. This may be of more than aca-
demic interest, since the means by which antibody diversity
has evolved in different species, although sharing some com-
monalities, has tended to be species-specific (62,63). As a res-
ult, different CDRs have different properties, lengths and
amino acid distributions in different species, with tendencies
to bind to different classes of antigens. Cow (64) and drom-
edary heavy chain genes (65,66), e.g. have far longer
HCDR3s than humans. In camels, these have been shown
to be important in the mediation of enzyme inhibition by dir-
ect insertion into active sites (67,68), as well the recognition
of conserved cryptic epitopes of infectious agents, perhaps by
penetration into conserved receptor binding sites (69).
Although less dramatically different, murine HCDR3s tend
to be shorter than human HCDR3s, with different amino
acid compositions (36), resulting in more HCDR3s which
have stabilized hydrogen bond ladder structures, as opposed
to human HCDR3s which contain more prolines, preventing
the formation of such ladders.

The method we describe here can also be adapted to other
antibody CDRs, as well as to other immunological proteins,
such as T cell receptors, which share similar primary struc-
tures: variable regions flanked by relatively conserved frame-
work regions. Y and & TCRs have CDR3s which resemble
immunoglobulin heavy chain CDR3s in their length variabil-
ity, while o and B TCRs have CDR3s, which are extremely
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homogenous in length (8-9 amino acids), in common with
the other antibody CDRs (70). The common component of
all such diversity elements is that they have evolved to
bind, and so are likely to be more functional than random
peptides, which generally contain more stop codons and are
more likely to contain destabilizing inserts.

An alternative to the use of completely random amino
acids, has been the use of restricted amino acid sets in the
generation of antibody libraries (26,27,71,72). In these
experiments it has been shown that different amino acid
diversities at specific sites significantly affect the successful
outcome of selection experiments, and in one of the most sur-
prising results, specific high affinity antibodies can be selec-
ted from libraries in which heavy chain diversity is limited to
only two amino acids (27). These careful studies of the roles
of different amino acids in functional diversity, are similar to
those which nature has been conducting over evolutionary
time in the different molecules involved in immune recogni-
tion in many different species. The method described here
enables the harvesting of such diversity for transplantation
into heterologous proteins, setting the stage for the explora-
tion of the use of libraries containing such sequences for
selection experiments.
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