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Abstract

It is of significant interest to understand how proteins interact, which holds the key phenomenon in biological functions.
Using dynamic fluctuations in high frequency modes, we show that the Gaussian Network Model (GNM) predicts hot spot
residues with success rates ranging between S 8–58%, C 84–95%, P 5–19% and A 81–92% on unbound structures and S 8–
51%, C 97–99%, P 14–50%, A 94–97% on complex structures for sensitivity, specificity, precision and accuracy, respectively.
High specificity and accuracy rates with a single property on unbound protein structures suggest that hot spots are
predefined in the dynamics of unbound structures and forming the binding core of interfaces, whereas the prediction of
other functional residues with similar dynamic behavior explains the lower precision values. The latter is demonstrated with
the case studies; ubiquitin, hen egg-white lysozyme and M2 proton channel. The dynamic fluctuations suggest a pseudo
network of residues with high frequency fluctuations, which could be plausible for the mechanism of biological interactions
and allosteric regulation.
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Introduction

Proteins have crucial roles in all kinds of biological functions

such as gene expression control, cellular communication and

immunological response. Biological functions are regulated via

protein interactions. Correct detection and understanding of

protein-protein/ligand interactions are of importance first to

relieve how proteins act and communicate for their function and

then enhance the protein and drug design. Currently, there is

neither a definite list of rules nor a general pattern describing the

mechanism. More than a local phenomenon, the concept of

nonlocal, long-range allosteric interactions via signaling appears as

a fundamental idea of engineering proteins with desired properties

[1]. Early definitions of allostery can be based on the conforma-

tional change with the binding of ligands [2,3] and displacement of

the equilibrium between conformational states [4]. The newly

emerging definition emphasizes the importance of dynamics in

allosteric regulation [5] with the identification of residues

responsible for the dynamics and combine this with the

evolutionary information [6,7,8,9,10,11].

The prediction of complex structures is a challenging task. X-

ray crystallography and nuclear magnetic resonance (NMR)

spectroscopy are the experimental methods commonly used to

have a detailed structural knowledge. With computational

methods, the main sight is concentrated on the interface or

binding site prediction. It has been found that generally only a few

of interacting residues contribute at the most to the binding energy

[12,13,14]. Experimentally, these residues can be identified by a

significant reduction in the binding energy upon mutation. The

residues that contribute more than 2 kcal/mol to the binding

energy are conventionally defined as hot spot residues [14]. Mostly

being located around the center [15] or the clefts [16] of interfaces,

hot spots stabilize the complex structure [17].

Sequence conservation shown to correlate with the alanine

scanning hot spots [18,19] is a widely used property in predictions

[15,20,21]. The propensity preferences of hot spots displayed that

the most frequently observed hot spot residues are tryptophan,

arginine and tyrosine, while leucine, serine, threonine and valine

are the less frequent [12,18,22]. It was also shown that aspargine

and aspartic acid are more common than glutamine and glutamic

acid [12,22]. Hydrophobicity, solvation energy, solvent accessible

surface area (SASA) and residue composition are the properties

used for a simple way of differentiating interacting and noninter-

acting residues [23]. Protein interactions sites have also been

considered as the sites of concave shapes or pockets on the surface

[24,25,26,27,28,29,30]. Yet, there is no single property distin-

guishing the interacting sites from the rest of the structure.

Experimental data regarding the binding energies for a limited

number of complexes is available mainly by Alanine Scanning

Database (ASEdb) [12] and Binding Interface Database (BID)

[31]. To complement experimental studies, computational meth-

ods are constantly being developed; using energy contribution

[32,33,34], sequence [18,19,35,36] and structure [16,37,38,39,

40,41] based information sources, mostly with learning tools

[20,36,42,43,44] and simulation methods [45,46]. Many servers

are available, such as ISIS [47], FOLDEF [32], ROBETTA [33],

K-FADE/K-CON/ROBETTA [42], MAPPIS [48], HotPoint

[49], HotSprint [36], and pyDockNIP [50]. All are based on

bound complex structures, except ISIS and pyDockNIP. ISIS is a

sequence based method and has an advantage of applicability

when the structure is not available as well as when the binding

partner is not known. pyDockNIP is an energy based docking

simulation technique. Table S1 in File S1 summarizes the data on
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the available servers and databases. A detailed review on the

available servers is available in recent studies [17,51].

Binding regions provide gates on the surface through which the

communication is possible between biologically interacting part-

ners. Interactions between the gates and other functional sites

should be essential for both intra- and intermolecular biological

signaling. The protein’s evolutionary properties suggested that

active sites are related to many surface sites [52]; the binding

activity at one site may affect the activity of another distinct site

[10]. It was also shown that it is possible to create multi-domain

allosteric systems with desired properties [1]. The understanding

of allosteric control achieved through hot spots on the surface and

other functional sites is of significant interest in protein mediated

signaling [52].

The fluctuations in the high frequency (fast) modes by the

Gaussian Network (GNM) [53,54] signify folding core as well as

binding core residues [55,56,57,58,59]. The slow modes describe

the global motion and relieve the residues responsible for the

collective functional dynamics; the fast modes describe localized

fluctuations and the high frequency fluctuating sites are known for

their resistance to conformational changes delineated by high

degrees of conservation. The interaction pathways [60,61]

between functional sites could be followed by the fluctuations in

the high frequency modes and these regions respond strongly to

energy fluctuations [58]. Some functional residues might be active

in both local and global dynamics, i.e. closely spaced to the

positions of hinge sites as well as high frequency fluctuations. Here,

we suggest that binding hot spots reside in a pseudo network of

functional residues that underlies the dynamics and function. To

this, we show that the residues fluctuating in the high frequency

modes highly overlap the experimentally known hot spot residues

on a dataset of unbound protein structures as well as other

functional residues. Binding sites in an intrinsic network of

functionally important residues may provide a dynamic infra-

structure to be disclosed upon activation. For this, case studies

were presented to demonstrate the correlation of known functional

residues with the residue network suggested by the high frequency

modes.

Relative solvent accessibility and evolutionary conservation as

properties of hot spots were also revisited and analyzed with

respect to the residue fluctuations in the high frequency modes.

Materials and Methods

Dataset
Up-to-date only a limited number of interfaces have been

investigated in detail for hot spots residues. The dataset in

this study is a collection of four datasets previously published

[31,32,33,62]: ASEdb, the Alanine Scanning Energetics Database

[62]; the dataset by Kortemme et al. [33] of single mutations

compiled from the databases ProTherm [63], ASEdb [62] and

some additional reports; the dataset by Guerois [32] of experi-

mentally studied mutations and mutants from ProTherm; and

BID, The Binding Interface Database [31]. Besides BID, the other

three datasets provide the change in the residue binding energy

(DDG) values. BID categorizes the effect of mutations as strong,

intermediate, weak or insignificant. The residues having strong

interaction strengths and those having binding free energies

.2 kcal/mol are considered as hot spots in the present analysis.

To be consistent within the dataset, only experimental alanine

mutations are included. PISCES sequence culling server [64] is

used to avoid redundancy by removing proteins with sequence

identity more than 25%.

The final dataset is composed of 33 unbound protein structures

having a total of 4470 residues from which 173 are detected as hot

spot residues (Table S2 in File S2). 3.9% of the total number of

residues in a protein chain on the average is reported as hot-spot

residues. Number of hot spots varies from 1 to 8 residues with a

few exceptional cases of more than ten hot spots. An additional

dataset is composed of the complex structures of unbound

structures (Table S3 in File S1). Both contain only protein-protein

interaction hot spots.

The Gaussian Network Model (GNM)
GNM [53,54] describes the protein structure as a simple elastic

network where the alpha carbons within a cut-off radius (rcut) are

assumed to be connected by harmonic springs.

The equilibrium fluctuations, DRi and DRj, of residues i and j

are given as

vDRi
:DRjw~

3kBT

c

� �
C{1
� �

ij
~

3kBT

c

� �
UL{1UT
� �

ij
ð1Þ

Where C is the Kirchhoff connectivity matrix; U is the orthogonal

matrix of eigenvectors (ui) and L is the diagonal matrix of

eigenvalues (li); kB is the Boltzmann constant and T is the absolute

temperature.

The mean square distance fluctuations, ,DR2
ij., of residues i

and j are given as

SDR2
ijT~S DRi{DRj

� �
T2~SDR2

i TzSDR2
j T{2SDRi

:DRjT ð2Þ

Where the mobility of residues i and j and the correlation between

their fluctuations are incorporated. Further details of the method

are in File S1, Table S4 in File S1 and Figure S1.

Analysis
The mean square distance fluctuations of residue i and j,

,DR2
ij., in the fast modes of motion are calculated using a cutoff

radius of 6.5 Å. The residues with high ,DR2
ij. are considered

as functionally probable. A case study is provided in File S1. The

individual modes as well as the average of a number of fast modes

are considered; the fastest, the second fastest and the third fastest,

and the average three and five fastest modes. The performance

assessments are based on the following definitions:

Sensitivity : S~TP= TPzFNð Þ ð3Þ

Specificity : C~TN= FPzTNð Þ ð4Þ

Precision : P~TP= TPzFPð Þ ð5Þ

Accuracy : A~ TPzTNð Þ= TPzFPzTNzFNð Þ ð6Þ

where TP, TN, FP and FN stand for the numbers of true positives,

true negatives, false positives and false negatives, respectively.

Here, the conditional positive stands for a residue being a hot spot.

Sensitivity, accuracy, specificity and selectivity have been calcu-

lated for all residues of all proteins in the dataset. The near

neighbors are also considered due to the low-resolution nature of

the model. The number of fast modes up to five is taken here.

There is no a definite rule to a priori decides for the number of fast
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modes to be used, as this may depend on the structural and

functional features. Yet, five to ten fast modes in general could be

considered to capture the critical residues of fast fluctuations.

The GNM predictions are compared with the experimental

binding hot spots. Additionally, the effect of relative solvent

accessibility and sequence conservation effects are investigated.

Relative solvent accessibility results are retrieved from Naccess

[65] and the conservation data is obtained from Consurf [66].

Conservation scores varying from 1 to 9 indicates the level of

evolution from a highly variable position to a position that is highly

conserved.

Results

High Frequency Fluctuations and Hot Spots
The analyses on 33 unbound protein structures, based on the

exact outcome of the fastest mode, lead to the performance values

of S 14%, C 89%, P 5% and A 86% for sensitivity, specificity,

precision and accuracy, respectively. Including more number of

fast modes improves the sensitivity performance on the cost of

specificity and accuracy. When the neighboring two residues are

taken into account, the performance values for the fastest mode

are: S 41%, C 90%, P 14% and A 88%, respectively. Table 1

summarizes the performance values for all modes. It should also be

noted that the suggested residues are 11.3%, 12.5%, 12.6%,

14.6%, 16.9% of the overall protein structure on the average for

the fastest, the second fastest and the third fastest, and the average

three and five fastest modes, respectively (Table 1).

Low sensitivity observed can be related to not being able to

determine all of the hot spot residues given. Nevertheless, taking

the neighboring residues into account improves sensitivity, as the

high frequency fluctuating residues are mostly in clusters. Low

precision observed is due to suggesting more residues as hot spot

residues than the actual. When the suggested residues that do not

match with the actually reported hot spot residues are investigated,

most of these residues have been reported to have still relatively

high binding free energies (DDG $1.5) (Figure S2) or alternatively

have other functional importance. Further, the Z-score analysis

displays that the high frequency fluctuating residues tend to be

closer to the experimental hot spots than the rest of the residues;

the distributions are shifted toward shorter distances with negative

Z-scores. 65% of the predicted residues for the fastest GNM mode

with two neighboring residues have a Z-score of less than21. The

details of the statistical analysis are given in File S1 and in Figures

S3 and S4.

For the enhancement of predictions, relative solvent accessibility

and evolutionary conservation analysis are revisited for their

possible contribution to the prediction of hot spot residues by the

fast dynamics.

Relative solvent accessibility. The relative solvent accessi-

bility (RSA) values of hot spot residues are analyzed for 33

unbound proteins in the dataset. The free energy change values

with alanine mutations [31,32,33,62] versus their RSA values by

Naccess [65] are plotted in Figure S5.

From a total of 509 mutation data, 28 of the cases have a RSA

value equal to 0 (5.5%) with 22 of them are specified as hot spots

based on the definition of binding energy change (78.5%); 282 of

the cases have a RSA value equal or less than 40 (55.4%) with 137

of them are specified as hot spots (48.5%). This confirms the

previous findings that there is no definite correlation between

solvent accessibility and residues binding energy contribution

[12,13]. As seen in Figure S5, the residues having a DDG value of

more than 2 kcal/mol cluster in the region where RSA values are

low. A RSA value threshold of 40 is expected to increase true

positives in our predictions. From the other perspective, out of 509

mutation data, 179 are hot spot residues with 137 of them having

RSA values equal or less than 40. 76.5% of hot spots have thus

RSA values less than 40. It should be noted that for the cases

where no RSA data is available, this parameter is not applicable.

After filtering the outcome of the highest frequency mode by

removing the residues having a RSA value greater than 40, the

results with two residues neighboring lead to the performance

values of S 33%, C 93%, P 16% and A 91% for sensitivity,

specificity, precision, and accuracy, respectively. On the cost of

sensitivity, the rest of the performance values are slightly improved

in comparison to only dynamics based predictions (Table 1). The

residues of the average five fastest modes are observed to

accumulate at relatively low RSA values (See Figure S6).

Nevertheless, 14.4% of the residues having low RSA values

overlap the regions of the high frequency fluctuations.

Evolutionary conservation. The evolutionary conservations

of hot spot residues are also analyzed. From a total of 509

mutation data, 310 of the cases have conservation scores equal or

greater than 5 with 139 of them are specified as hot spots (44.8%).

It shows that the evolutionary conservation itself might be

misleading in discriminating hot spot residues from the rest

[67,68]. From the other perspective, out of 509 mutation data, 179

of them are hot spot residues with 139 of them having

conservation scores equal or greater than 5. 77.7% of hot spots

are conserved with a score of at least 5.

When the evolutionary conservation is taken into account by

considering the predicted residues having a conservation score of 5

or more, the results based on the highest frequency mode and two

residues neighboring give the performance values of S 31%, C

93%, P 15% and A 91% for sensitivity, specificity, precision, and

accuracy, respectively. On the cost of sensitivity, the performance

values of the rest are slightly improved (Table 1). On the other

hand, the residues that appear in the fast modes of motion as

demonstrated for the average five fastest have high conservation

scores (Figure S7) in line with the previous studies [51,69].

Relative solvent accessibility versus evolutionary

conservation. Out of 4470 residues, 2399 of them have a

RSA value smaller thanr equal to 40 (53.6%) with 1727 of them

are being conserved (72%) and 110 of them are specified as hot

spots based on the definition of binding energy change (6.37%).

From the evolutionary conservation point of view, out of 4470

residues in total, 2665 of the cases have conservation scores equal

or greater than 5 (59.6%), 1727 of the conserved residues have a

RSA values smaller than or equal to 40 (64.8%) and 110 of them

are specified as hot spots based on the definition of binding energy

change (6.37%). In addition to the dynamics, by taking the RSA

and evolutionary conservation values into account, S 27%, C

95%, P 18% and A 92% are achieved for sensitivity, specificity,

precision and accuracy, respectively, based on the fastest mode

with two residues neighboring (Table 1).

When the relative solvent accessibility and conservation

parameters are considered individually for all residues in the

dataset, out of 4470 residues, 2399 of them have RSA value less

than 40 from which 135 are hot spot residues (5.6%). Out of 4470

residues, 2665 of them have conservation score of equal or more

than 5 from which 137 are hot spot residues (5.1%). This is an

indication that these parameters alone are not sufficient in

predicting hot spot residues.

RSA and conservation analyses were performed as a filter, thus

it doesn’t lead to an increase in true positives but can decrease false

positives for some of the cases. Thus, we observe a slight increase

in the precision but also a slight decrease in sensitivity. As the

results present, the high frequency fluctuating residues correlate

Hot Spots in a Network of Functional Sites
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with the relative solvent accessibility and RSA values and the

incorporation of these properties do not significantly contribute to

the prediction performance values.

Unbound versus bound conformations. The GNM pre-

dictions are also tested on the co-crystal (bound) conformations of

the chains. The analysis is performed on nine structures in the

dataset having a total of 39 hot spot residues (Table S3 in File S1).

Here, the analysis was performed on the bound conformations

without and with the interface information. For the former,

based on the average five fastest mode with two residues

neighboring performance values of S 51%, C 83%, P 9% and A

82% for sensitivity, specificity, precision and accuracy, respectively

(Table S5 in File S1). Relative solvent accessibility and conserva-

tion parameters have similar effects on the performance values.

The performance values are very similar to those of unbound

conformations, despite the conformational changes with RMSD

differences ranging from 0.41 to 2.95 Å. As was shown previously,

the residues that appear in the fast modes of motion in unbound

and complex conformations overlap significantly [59]. This holds a

proof to that the high frequency fluctuating residues are those

which resist to the conformational changes at the most and stand

with a predefined dynamic property. On the other hand, for the

latter, based on the average five fastest modes with two residues

neighboring, the performance values are S 51%, C 96%, P 30%

and A 95% for sensitivity, specificity, precision and accuracy,

respectively (Table S6 in File S1). The interface information

decreases the number of FPs and increases specificity, precision

and accuracy. 79% of the predicted residues for the fastest GNM

mode with two neighboring residues have a Z-score of less

than21. The results of the analysis are given in Figures S8 and S9.

For both unbound and bound conformations, the calculations

were performed on isolated chains. When the calculations were

performed on the complex structures, including both interacting

chains, the residues that fluctuate in the fast modes highly overlap

those of the isolated bound conformations. This shows that these

sites are able to display high frequency fluctuations without the

contribution of the interacting chain.

Comparison of the GNM method with the others. The

GNM approach proposed is based on unbound conformations and

does not require interacting partners. There have not been much

detailed studies on unbound structures: ISIS [20] is a sequence

based method and pyDockNIP [50] is an energy based docking

simulation technique that yet still needs interacting partners. A

direct comparison is carried between the GNM method and ISIS

Table 1. The GNM performance values of the unbound dataset.

NO GNM RSA CONSERVATION RSA & CONSERVATION

76 47 5 48 77 41 5 42 62 62 6 62

GNM modes EXACT
EXACT
& RSA

EXACT &
CONSERVATION

EXACT & RSA &
CONSERVATION

S C P A S C P A S C P A S C P A

1 14 89 5 86 12 93 6 90 11 92 5 89 9 94 6 91

2 16 88 5 85 10 92 5 89 12 92 5 89 8 94 5 91

3 24 88 7 85 20 92 9 89 20 92 9 89 17 94 10 91

1–3 25 86 7 83 21 90 8 87 18 90 7 88 17 92 8 90

1–5 29 84 7 81 27 88 8 86 23 88 7 86 22 91 9 88

GNM modes NEIGHBOR 1 NEIGHBOR 1 &
RSA

NEIGHBOR 1 &
CONSERVATION

NEIGHBOR 1 & RSA &
CONSERVATION

S C P A S C P A S C P A S C P A

1 32 90 11 87 26 93 13 91 24 93 11 90 20 95 13 92

2 34 88 10 86 25 93 12 90 26 92 12 90 20 95 13 92

3 40 89 12 87 31 93 14 90 32 92 14 90 25 94 15 92

1–3 39 86 10 85 32 90 12 88 30 91 12 89 25 93 12 90

1–5 47 84 11 83 39 89 12 87 36 89 12 87 31 91 12 89

GNM modes NEIGHBOR 2 NEIGHBOR 2 & RSA NEIGHBOR 2 & CONSERVATION NEIGHBOR 2 & RSA &
CONSERVATION

S C P A S C P A S C P A S C P A

1 41 90 14 88 34 94 17 91 31 93 15 91 27 95 18 92

2 43 89 13 87 35 93 16 91 34 93 16 90 28 95 18 92

3 49 89 15 87 37 93 17 91 39 93 18 91 31 95 19 92

1–3 50 87 13 85 40 91 15 89 38 91 15 89 31 93 15 91

1–5 58 85 13 84 47 89 15 87 46 89 15 88 38 91 15 89

Labels S, C, P and A refer to sensitivity, specificity, precision and accuracy, respectively. GNM modes 1–3 and 1–5 refer to the average three and five fastest modes,
respectively. The reported values are percentages.
doi:10.1371/journal.pone.0074320.t001
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[20] using the same dataset (Table S2 in File S1). The

performance values of ISIS are S 8%, C 90%, P 3% and A

87% for sensitivity, specificity, precision and accuracy respectively.

GNM performs better at all modes and conditions with respect to

sensitivity and precision. Nevertheless, the comparison might also

not be quite fair, as ISIS has the advantage of not requiring

structure information.

On the other hand, the GNM prediction performance values

with a single property on bound conformations appear compara-

ble to those of other available methods (Table S1 in File S1). The

reported values vary between S 15–78% for sensitivity, C 71–91%

for specificity, P 53–89% for precision, and A 68–78% for

accuracy. It should be noted that the methods use different

definitions of hot spot residues and are trained on different datasets

while using different standard of performance measurements.

Hot Spots in a Network of Plausible Functional Residues
Ubiquitin. Ubiquitin is a monomeric protein related to

approximately 100 proteins [70]; it has a significant role in

signaling events. ILE 44 located in a hydrophobic patch is a highly

conserved residue and significantly contributes to the UIM

binding of Vps 27 [71,72]. Together with HIS 68, ILE 44 is

considered to be the central binding hot spot [70,73]. ILE 36 was

shown to take part in the ternary complex formation of ubiquitin

with E2/E3 [74] and considered to be an ‘‘alternate interaction

site’’ [70]. TRABID, an OTU domain enzyme, is the first LYS 29

specific enzyme that was shown to cleave LYS 29 and LYS 33

linkages [75].

Recently, long range correlated motions in ubiquitin was

demonstrated by the NMR spectroscopy [76]. With the hydro-

gen-bonded residue pairs of ILE 13-LEU 67, LYS 6-PHE 45, ILE

13-PHE 45 and THR 14-PHE 45, a path of dynamic motion was

shown between ILE 13 and PHE 45 following a non-sequential

correlation route of ILE 13, VAL 5, LYS 6, HIS 68, ILE 44, ILE

45 [76]. These sites coincide the binding interface for ubiquitin

binding domains (UBDs); the loop between strands b1 and b2, the

C-terminal end of strand b5, and the loop between strands b3 and

b4 [77] linking the residues that are functionally important [78].

ILE 13 and VAL 70 were shown to play an important role in the

Ubiquitin’s molecular recognition events. It was also shown that

the rigidity of the structure is maintained by the packing of HIS 68

with LEU 67 and LEU 69 into the protein core [78].

The exact outcome of the fastest, second fastest and the average

three fastest GNM modes together with the known functional sites

are presented in Figure S10. While the binding sites start revealing

in the fastest mode, the residues that take part in the long-range

interactions and in the correlation route appear in the second

fastest mode. The average three fastest modes identify all known

binding hot spots as well as the residues in the allosteric route. The

details are shown in Figure 1 (A1&A2).

Hen egg-white lysozyme (HEWL). Hen egg-white lysozyme

(HEWL) has widely been studied for its hot spot residues by

various experimental and computational studies [79,80,81,82,

83,84]. HEWL is a single polypeptide that can bind up to six

saccharide units in subsites A, B, C, D, E and F at the active site.

The most important binding sites are C, B, D, and A in the order

of higher to lower affinity [79,85,86,87]. Other small organic

molecules were also observed to bind site C with the highest

occupancy [81]. Experimentally determined hot spots [79,83,

85,86,87] and key catalytic residues [83] are given in Figure S11.

Among various HEWL structures, we have applied GNM

to2 LYO [83] with a single ligand (CCN, acetonitrile) bound at

GLN 57, ILE 58, ASN 59, TRP 63, ALA 107 and TRP 108 [88].

The highest frequency mode manages to detect the catalytic site

ASP52 and the selective key binding sites ASP 52, ASN 59, TRP

63. The latter two residues are at site C, the hot spot with the

highest binding affinity (Figure S11). The exact outcome of the

average three fastest modes detects the catalytic sites and the near

neighbors. In the next fast modes (modes 5, 6, 9 and 10), the hot

spot ALA 110 starts revealing as well. The corresponding ligand

unbound structure is2 LYM [89]. The average three fastest modes

gives the catalytic site and the near neighbors of the hot spot

residues. In the next fast modes (4, 9 and 10), the hot spot ALA

110 appears as well (Figures 1 (B) and S11). On the other hand,

LYS 33, ASN 60, ARG 62–TRP 64, ASN 66, ALA 76, HIS

78, ALA 108, TRP 109, and TRP 112 of human lysozyme

(corresponding to LYS 33, ASN 59, ARG 61-TRP 63, ASN 65,

LEU 75, ASN 77, ALA 107, TRP 108 and TRP 111, respectively

in HEWL) were experimentally determined to take place in both

binding and aggregation reactions [90]. Human and hen egg

lysozymes with negligible RMSD differences (varying below 0.5 Å)

have identical GNM fluctuation behavior. The region ASN 74-

CYS 80 suggested by the fast modes of HEWL thus also appears to

be functional.

Influenza virus M2 Proton Channel. The M2 protein is a

proton channel; a homotetramer in the viral envelope of the

influenza A virus activated at low pH. Adamantine-based antiviral

drugs, amantadine and rimantadine, are commonly used to inhibit

the channel activation. M2 gene has gained resistance to these

drugs [91] and the commonly recognized drug resistant mutation

for amantadine is SER31ASN [92]. HIS 37 is the pH sensor and

TRP 41 is the gate [93,94]. ASP 44 and ARG 45 forming a salt

bridge are the integral parts of the channel gate. Lowering the pH

affects HIS 37 and destabilizes the packing of the helices. This

breaks the interaction of TRP 41 and ASP 44 and leads to the gate

opening [91]. These residues and adjacent residues are hence the

drug targets. Mostly, the polar ends of drugs are designed towards

HIS 37 [95]. Drugs stabilizes the closed state [91,95] and the

drug resistant mutations aims to destabilize this conformation.

The other mutations recognized for the drug resistance are:

LEU26PHE, VAL27ALA, ALA30THR, GLY34GLU and

LEU38PHE, which are spread all around the structure implying

an allosteric mechanism therein [96].

The primary amantadine binding hot spot residues on M2 are

VAL 27, ALA 30, SER 31 and GLY 34 in the middle of the pore

[95]. The other hot spots are within the pore between residues ILE

33 and HIS 37. On the other hand, the rimantadine was shown to

bind to: TRP 41, ASP 44 and ARG 45 on the outer surface of the

channel [91]. The primary binding site is in the pore, while

exterior binding occurs when the conditions are appropriate [97].

Allosteric relationship between ASP 44 and SER 31 was

experimentally shown [98], where ASP 44 interacts with TRP 41.

Shown with the present analysis, the fastest mode covers all

amantadine binding hot spots and the average five fastest modes

also covers some of the rimantadine binding sites or its first

neighbors (Figures 1 (C1&C2) and S12). Interesting to note that

the fluctuations in the fast modes of motion is stronger for the

amantadine binding site more than the rimantadine binding sites,

in line with the relative observed functional standing of the two

binding sites.

Discussion

Hot Spots Prediction Based on Residue Fluctuations: A
Mechanistic View

High specificity and accuracy in hot spot predictions are

observed based on the residue fluctuations in the highest frequency

mode. Yet, the lower sensitivity values increase with the increase in
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the number of fast modes and also near neighbor residues

considered. The relatively lower precision values are due to the

similar dynamic behavior of other residues which could also be

functional. On the other hand, a more extensive experimental

alanine-scanning mutation data could help to draw better

conclusions for the assessment of predictions. Most of the alanine

scanning data is based on the experiments done on the anticipated

sites rather than the whole structure. A protein might be

interacting with multiple proteins and might have multiple

interaction surfaces. [99]. A protein might use the same or

different hot spots while binding to different partner proteins; hot

spots could be partner specific [9]. The data for a protein

interaction might not be complete in terms of defining all possible

hot-spots involved. Neighboring residues might also contribute to

the binding energy [44], so do likely allosteric sites.

The performance values obtained for hot spot residue

predictions by the dynamics of unbound versus bound protein

structures imply that the energetically critical binding sites are

intrinsically predisposed. The hot spot residues fluctuating in the

high frequency modes demonstrate their nature of being tightly

packed and the centers of localization of the energy. The residues

that appear in the high frequency modes, even up to the tens of

fastest modes, only comprise a small number of residues in the

form of clusters as well as some residues along possible interaction

paths. The relationship between binding sites, protein topology

and correlated paths of energy and fluctuations were recently

described [58,61,100]. The slow modes describe the global motion

and the residues that are active in these collective dynamics of

overall structure and thus functional motion. Some functional

residue might be active in both local and global dynamics, i.e.

closely spaced to hinge positions and as well as the positions of

high frequency fluctuations. This is a property with kinetic and

thermodynamic significance closely linked to the structure’s

topology, which is not only limited to the behavior of hot spots

studied here but also to other functional sites. The high

conservation scores of these residues also implies for their

functional importance. The high frequency fluctuations possibly

provide a mechanistic infrastructure that underlies the functional

motion.

Hot Spots in a Network of Functional Sites
Fast modes of motion reveal hot spots in a network of

functionally important residues. This suggests an intrinsic dynam-

ics for the structure where the residues with localized fluctuations

play key roles. While the fastest mode appears to spell important

functional sites, incorporation of the next fastest modes could still

relieve other residues of functional importance. Different number

of fast modes most probably up to ten may need to be considered,

depending on the structure and function. This is demonstrated

with the case studies presented.

For Ubiquitin, which is a signaling protein, the binding hot spot

residues are predicted in the fastest mode, whereas the residues in

the long range correlated motions that allosterically link the

residues to the binding interface have correctly been determined in

the second fastest mode. The average three fastest modes manage

to detect the catalytic sites and the selective key binding sites for

hen egg-white lysozyme (HEWL), while other hot spot residues

have also correctly been identified in the next fast modes. In M2

protein, the first mode covers all amantadine binding hot spots,

while the average five fastest modes introduces also some of the

allosteric rimantadine binding sites. The fluctuations at the fast

end of the dynamic spectrum are likely reminiscent of functionally

important sites. Moreover, the fast modes being associated with

stability [57] imply the significance of these residues in relation to

stability.

The mode here refers to the eigenmodes of an unperturbed

linear system and the modes are independent of each other, where

no dissipation appears from one to another. In this respect,

although non linearity is of importance, such as discussed for

forming discrete breathers and independent rigid segment for

allosteric interactions [101,102,103], energy fluctuations in pro-

teins could still be discussed in a linear dynamic model [61]. In

real systems, some perturbation may cause the energy transfer

from one mode to another with a mode coupling. To this end, we

suggest a pseudo network of interacting residues based on a

number of fast modes. The couplings between fast modes and also

some functional slow (cooperative) modes are likely to be effective

in the mechanism of biological interactions and allosteric

regulation.

Conclusion

The dynamics in the fast modes of motion predict hot spot

residues together with other functional residues. Based on a single

dynamic property, a likely prediction for functional residues

should infer that there is a general mechanism inbuilt within the

protein’s topology and provide a mechanistic view. Localized

fluctuations should provide a convenient means for those residues

to participate in their functional motion and interactions, which

may have some implications for biological communication and

signaling.

Supporting Information

Figure S1 The GNM results for the fastest (a) and the
average three fastest (b) modes of motion for 1 fkb. Red

dots represent the experimentally determined hot spot residues.

(TIF)

Figure S2 The frequency of residues fluctuating in the
average five fastest GNM modes versus the free energy
(DDG (kJ/mol)) change values with alanine mutations
[32,33,62]. (The bar on 0.5 represents the values between the

cases where DDG is below 0.5, the bar on 1 represents cases where

DDG is between 0.5 and 1.)

(TIF)

Figure S3 Z-score analysis results for the fastest mode
of GNM with two neighboring residues on the unbound
dataset. (The bar on23.25 represents cases having Z-score

Figure 1. (A1 & A2) The GNM analysis performed on Ubiquitin (1 D3Z [104]). Experimentally determined hot spot residues (lines) and the
long range interactions (sticks) are shown with the exact outcome of the fastest mode (blue) and the second fastest mode (red). Details are in Figure
S10. (A1) and (A2) display the same figure from two perspectives. (B) The residues fluctuating in the high frequency modes by GNM for the unbound
(dark grey: 2 LYM [89]) and bound (light grey: 2 LYO [83]) hen egg-white lysozyme (HEWL) structures in orange and in cyan, respectively.
Experimentally determined hot spot residues (sticks), ligand (yellow sphere), and catalytic residues (dots) are also shown. See Figure S11. (C1 &C2) The
GNM analysis performed on Influenza virus M2 proton channel, 3 BKD [95]: (C1) the amantadine bound structure 2 KQT [105] and (C2) the
rimantadine bound 2 RLF [91]. The exact outcome of the fluctuations in the average five fastest modes above the threshold is colored based on the
strength of fluctuations in the decreasing order (red to green). Blue display the residues below the threshold. Rimantadine and amantadine are
shown in magenta dots with the corresponding sites in lines and in sticks, respectively. See Figure S12.
doi:10.1371/journal.pone.0074320.g001
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between23.5 and23, the bar on22.75 represents cases having Z-

score between23 and22.5.)

(TIF)

Figure S4 Z-score values of the residues by the GNM
predictions (blue shaded area) and the rest of residues
(red shaded area) for the unbound dataset.
(TIF)

Figure S5 The free energy (DDG (kJ/mol)) change
values with alanine mutations [32,33,62] versus their
Relative Solvent Accessibility (RSA) values [65].
(TIF)

Figure S6 The frequency of residues fluctuating in the
average five fastest GNM modes versus Relative Solvent
Accessibility (RSA) values [65]. (The bar on 0 represents cases

where the value of relative surface accessibility is 0, the bar on

10 represents cases where the value of relative surface accessibility

is between 0 and 10.)

(TIF)

Figure S7 The frequency of residues fluctuating in the
average five fastest GNM modes versus the residue
conservation scores from Consurf [66].
(TIF)

Figure S8 Z-score analysis results for the fastest GNM
mode with two neighboring residues on the complex
dataset. (The bar on23.25 represents cases between23.5

and23, the bar on22.75 represents cases between23 and22.5.)

(TIF)

Figure S9 Z-score values of the residues by the GNM
predictions (blue shaded area) and the rest of residues
(red shaded area) for the bound dataset.
(TIF)

Figure S10 The GNM analysis performed on Ubiquitin,
a monomeric protein with 76 residues (1 D3Z [104]).

Experimentally determined hot spot residues [70,71,72,73,74],

residues taking part in the long range interactions [104] and in the

correlation route [76,78], and that have a role in structural rigidity

[78] are shown. The GNM suggested sites of the fastest mode and

the average three fastest modes are marked.

(TIF)

Figure S11 The GNM analysis performed on hen egg-
white lysozyme (HEWL), a single polypeptide of 129
amino acids with the unbound (dark grey: 2 LYM [89])
and bound (light grey: 2 LYO [83]) structures. Experi-

mentally determined hot spot residues [79,85,86], ligand binding

sites and catalytic residues [83] are shown. The GNM suggested

sites of the fastest mode and the average three fastest modes

for2 LYM and2 LYO are marked.

(TIF)

Figure S12 The GNM analysis performed on Influenza
virus M2 proton channel, 3 BKD [95]. 3 BKD [95] is the
drug unbound structure with four chains of 26 residues
(22–47) each. 2 KQT [105] is the solid state NMR structure of

the amantadine bound M2 protein with four chains of 25 residues

(22–46) each. 2 RLF [91] is the rimantadine bound M2 protein

structure with four chains that have 38 (23–60) residues each.

Amantadine [95] and rimantadine [96] binding sites, and

allosteric sites [98] are shown. The GNM suggested sites of the

fastest mode and the average five fastest modes are marked.

(TIF)
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