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Abstract

In order to describe how humans represent meaning in the brain, one must be able to

account for not just concrete words but, critically, also abstract words, which lack a

physical referent. Hebbian formalism and optimization are basic principles of brain

function, and they provide an appealing approach for modeling word meanings based

on word co-occurrences. We provide proof of concept that a statistical model of the

semantic space can account for neural representations of both concrete and abstract

words, using MEG. Here, we built a statistical model using word embeddings

extracted from a text corpus. This statistical model was used to train a machine learn-

ing algorithm to successfully decode the MEG signals evoked by written words. In

the model, word abstractness emerged from the statistical regularities of the lan-

guage environment. Representational similarity analysis further showed that this

salient property of the model co-varies, at 280–420 ms after visual word presenta-

tion, with activity in regions that have been previously linked with processing of

abstract words, namely the left-hemisphere frontal, anterior temporal and superior

parietal cortex. In light of these results, we propose that the neural encoding of word

meanings can arise through statistical regularities, that is, through grounding in lan-

guage itself.
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1 | INTRODUCTION

Understanding abstract and concrete concepts is a fundamental

aspect of human language that enables us to discuss matters ranging

from everyday objects to fantastic stories of fiction. A common view

is that word meanings are grounded in experiences with the world

(Binder et al., 2016; Kiefer & Pulvermüller, 2012; Martin, 2007; Vig-

liocco & Vinson, 2007). For example, the word “tomato” is linked

with the look, feel and taste of a tomato. This view of lexical

semantics asserts that these types of physical associations form the

building blocks of how words are encoded in the brain. However,

the grounding framework fails to account for abstract words, which

lack physical referents and, in many cases, an emotion or an internal

state to which the word meaning can be grounded. This issue can be

overcome if word meanings can also be grounded in the experience

of language. That is, if language is seen as another physical environ-

ment that a person can interact with, language becomes equivalent

to perceptual data, enabling what has been coined as linguistic
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scaffolding (Clark, 2006). In line with this conceptualization, the rep-

resentations of both concrete and abstract words will mirror, not

merely physical regularities, but also regularities in the language

environment. Here, we propose that modern multivariate methods

applied on time-sensitive MEG signals may serve as useful tools for

investigating this issue. We aim to demonstrate that emergent prop-

erties based on the statistical regularities of our language environ-

ment capture the abstractness/concreteness of a word, and that

these properties are correlated with how words are represented in

the brain, as reflected in the neural signals elicited during word

reading.

Computational models in the field of natural language processing

(NLP) have demonstrated that a distributed representation of word

meanings can be derived from the context in which the words are

used. The core idea of these models is to find an optimal decomposi-

tion of semantics that can represent each unique concept without

excessive use of memory or processing effort. Statistical regularities

in the training data (typically a large text corpus) will drive the organi-

zation of the distributed representations, which together form a

semantic space. Categorical structures, such as that of abstract and

concrete words, can emerge in such a semantic space (Hollis &

Westbury, 2016). These models rely on the same general computa-

tional principles that underlie brain function, namely Hebbian learning

(Hebb, 1949) and basic principles of optimization (Friston, 2012;

Zipf, 1949). If we further assume that a large text corpus is a fair esti-

mate of the natural language environment that our brains are

immersed in, a statistical model of a text corpus could serve as a rea-

sonable approximation of the organizational principles of word mean-

ings also at the level of the brain. This assumption builds on the

recognition that intralinguistic distributional and sensorimotor data

are interdependent (Andrews, Frank, & Vigliocco, 2014) and allows for

a model to approximate the meaning of both concrete and abstract

words by the same general computational principles. Indeed,

unsupervised methods that build a distributed semantic space through

optimization have been shown to find a dimension of conceptual con-

creteness regardless of whether the model is trained on a text corpus

(Hollis & Westbury, 2016) or image data (Kiela, Hill, Korhonen, &

Clark, 2014).

Here, we built a statistical model of word meanings by apply-

ing the word2vec algorithm to a large text corpus of the Finnish

internet. The algorithm was developed in the field of natural lan-

guage processing (Mikolov, Chen, Corrado, & Dean, 2013), and it

bases its notion of semantic similarity on the principle that two

words are similar if they occur within a similar linguistic context,

even if they never directly co-occur. Word2vec will discover the-

matic relationships (bear – zoo), that is, concepts that either serve

complementary roles or that co-occur in common situations, loca-

tions and/or times, but do not necessarily share perceptual or

functional characteristics (De Deyne, Verheyen, & Storms, 2016;

Lin & Murphy, 2001).

Systematic patterns in the (language) environment can give rise to

qualitative differences in the way concrete and abstract words are

represented or processed, even if those word types share the same

organizational principles. Behaviorally, concrete words elicit faster

reaction times than abstract words (James, 1975). Patient data sug-

gest a double dissociation between abstract and concrete word types

as either one may be selectively impaired (Reilly, Peelle, &

Grossman, 2007; Warrington, 1975). Furthermore, numerous neuro-

imaging studies have shown that processing of abstract and concrete

words activate brain areas differently (for a meta-analysis see Wang,

Conder, Blitzer, & Shinkareva, 2010). Generally, processing of abstract

words (nouns in particular) activates classical language areas, such as

the inferior frontal gyrus and the middle/superior temporal gyrus,

more strongly than processing of concrete words. In contrast, con-

crete words seem to activate the posterior cingulate, precuneus, fusi-

form gyrus, and parahippocampal gyrus more strongly than abstract

words (Wang et al., 2010). Electrophysiological evidence reports a

stronger and longer-lasting neural response for concrete than abstract

words at around 400 ms after word onset (Huang, Lee, &

Federmeier, 2010).

Important advances regarding the structure of the semantic

space in the brain have been made by using multivariate analyses

and decoding (Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016;

Mitchell et al., 2008; Pereira et al., 2018). However, these studies

have not addressed the how, where, and when abstract words are

represented in the brain. By linking brain activity during word read-

ing, measured by magnetoencephalography (MEG), with a statistical

model of semantics, we can tap into both the time and location

where semantic information is processed. This entails overcoming

the difficulty of decoding written stimuli from electrophysiological

signals; a previous EEG study found that the average categorical

classification accuracy for pictures was 77% and above chance for

all participants, whereas decoding concrete written words in the

same participants was only successful in two participants, maximally

scoring 68% correct (Simanova, Hagoort, Oostenveld, & van

Gerven, 2014).

A statistical model of semantics is theoretically appealing as it

contains a neurally feasible way to describe how semantic representa-

tions may arise in the brain. However, a statistical model does not in

itself contain any information about how the emergent dimensions of

the semantic space should be interpreted. To aid us with this, we cre-

ated a behaviorally derived classification of the level of abstractness

of a word, which we call the Abstractness model. By comparing

whether the Statistical and the Abstractness models capture the same

information, we are able to interpret whether some part of the statis-

tically derived semantic space relates to word abstractness. We can

then test whether any shared information is also mirrored in the neu-

ral signals elicited during word reading. To do this, we test if a super-

vised machine-learning method can successfully model the

relationship between the MEG data for each stimulus word and

the corresponding feature decomposition of the word from the Statis-

tical model. As one step further, we use representational similarity

analysis (RSA, Kriegeskorte, Mur, & Bandettini, 2008) to discover time

bins and cortical regions where the variation in the source estimate of

the MEG signal is similar to the variation in the Statistical model of

word meanings.
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2 | MATERIALS AND METHODS

2.1 | Participants

MEG measurements were performed on 20 volunteers (mean age

21 years, sd 3.6, range 18–34; 50% identified themselves as females).

All participants were native Finnish speakers, had normal or corrected

to normal vision, and were scored as highly right-handed on the Edin-

burgh handedness questionnaire. All participants were healthy,

reported no diagnosed neurological disorders or reading disabilities

and were compensated financially for their participation. Informed

consent was obtained from all participants.

In addition, a total of 408 respondents filled behavioral question-

naires, created either for stimulus evaluation or to collect the behav-

ioral feature sets (see more information below). The respondents

were volunteers who were reimbursed for the effort with movie

tickets. All respondents had Finnish as their first language, their mean

age was 27 years (sd 7, range 19–63) and 65% identified themselves

as females.

The study was approved by the Aalto University Research Ethics

Committee in agreement with the Declaration of Helsinki.

2.2 | Stimuli

The stimuli consisted of 118 nouns grouped into two main categories:

concrete (59 words) and abstract (59 words). The two main categories

did not differ significantly in lemma frequency (unpaired two-tailed

t test: t(58) = �1.1, p = .28), based on the prevalence in a large corpus

of internet sites in Finnish (1.5 billion words). All words were within

the 90th percentile of the corpus distribution and can thus be consid-

ered common, high frequent words. The length of the stimulus words

ranged from 3 to 10 letters and did not differ between the abstract

and concrete words (t(58) = � 1.9, p = .065).

All stimulus words were assessed on a scale from 1 to 7 on the

level of concreteness, estimated age of acquisition (AoA), imageability,

concreteness, emotionality and valence, in a web-based behavioral

questionnaire. The assessment was done by 13 naïve respondents

that did not partake in any other part of the present study. The con-

crete words were judged as very concrete (mean rating: 6.5 [sd 0.5]).

The abstract category contained 30 highly abstract words (mean con-

creteness: 2.0 [sd 0.9], mean imageability: 2.3 [sd 1.0]) and

29 medium-abstract words (mean concreteness: 3.9 [sd 0.7]; mean

imageability: 4.1 [sd 0.8]). It has previously been shown that highly

imaginable words tend to be acquired earlier than words with low

imageability (Stadthagen-Gonzalez & Davis, 2006). Also in the present

stimulus set the estimated AoA for concrete words (mean rating 1.2

[sd 0.3]) was significantly lower (t(58) = �9.2, p < .001) as compared

to abstract words (mean rating 2.1 [sd 0.6]). There was no difference

in valence between the word categories (t(58) = 1.20, p = 9.23).

The concrete words were sub-grouped according to the catego-

ries that have been derived from specific impairments following brain

damage (Caramazza & Shelton, 1998; Sartori, Miozzo, & Job, 1993;

Warrington & Shallice, 1984), namely Animal (e.g., dog, bear), Body

part (e.g., hand, foot), Building (e.g., bridge, hospital), Human character

(e.g., child, princess), Nature (e.g., island, fire), and Object

(e.g., hammer, ball). Each category contained 10 items, with the excep-

tion of the Human character category that only contained 9 items.

The full list of the stimuli is reported in the Table S1.

2.3 | Corpus-derived statistical model of semantics

The corpus-derived Statistical model was created using a continuous

skip-gram word2vec algorithm (Mikolov, Chen, et al., 2013) which

looks for co-occurrences between a particular word and the neigh-

boring words (i.e., linguistic context) and represents this information

as a N-dimensional vector. The model was trained on the same cor-

pus that was used to estimate the frequency of the stimulus words,

which contains a large sample of internet sites in Finnish (1.5 billion

words) (Kanerva, Luotolahti, Laippala, & Ginter, 2014), using nega-

tive sampling which is a computationally efficient method to approx-

imate the conditional log-likelihood of the model (Mikolov,

Sutskever, Chen, Corrado, & Dean, 2013). In the resulting vector

space, words that share a similar linguistic context are located close

to each other. Here, we used the default vector length of 300. A

context window before and after the stimulus word was used to

capture the co-occurrences.

Different sizes for the context window were tested (3, 5, 10),

with the size of 10 yielding best decoding performance (see Sec-

tion 2.7) and hence selected to be carried throughout the entire analy-

sis. The vectors corresponding to the words that were presented as

stimuli were visualized using theUniform Manifold Approximation and

Projection (UMAP) algorithm, with 15 neighbors and 500 iterations

(McInnes, Healy, & Melville, 2018).

2.4 | Experimental design

During the MEG recording written words were presented one by one

in a black monospaced font (Courier New) on a gray background. Each

word was presented for 150 ms followed by a blank screen for

950 ms. Between trials, a fixation cross was presented for 1,000 ms.

Each word was presented a total of 20 times, over the course of two

one-hour long MEG sessions that took place on separate days. The

sessions included breaks of a few minutes every 20 min. The order of

the stimulus words was randomly determined for each day, so that

each stimulus was repeated 10 times each day but words were never

repeated back to back.

In order to ensure the compliance of the participants, 10% of the

trials were followed by a catch trial, during which the end part of a

sentence was presented on the screen and the subject was instructed

to determine if the preceding word would make sense as the first

word of this sentence. For example, the word “beauty” might be

followed by the phrase “… is in the eyes of the beholder” in which case

the correct answer would be “yes” as the phrase “beauty is in the eyes
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of the beholder” is a reasonable sentence. Stimuli were presented

using the Presentation software by Neurobehavioral Systems.

2.5 | MEG and MR measurements

MEG was measured using a whole-head Vectorview MEG device

(Elekta Oy, Helsinki, Finland) with 102 triplet sensor elements, each

containing two planar gradiometers and one magnetometer. The data

was filtered at 0.003–200 Hz and sampled at 1,000 Hz. Eye move-

ments and blinks were recorded using an electro-oculogram (EOG),

configured as pairs of electrodes placed vertically and horizontally

around the eyes. The head position with respect to the scanner was

determined by four indicator coils placed on the forehead and behind

the ears. The head position was measured at the beginning of each

20 min segment of the recording session. The position of the coils, as

well as approx. 60 additional points along the surface of the head,

were determined in a coordinate system spanned by three anatomical

landmarks (the left and right preauricular points and the nasion) using

a 3D Polhemus digitizer (Polhemus, Colchester, VT). The MEG data

was co-registered to the anatomical MR images based on the anatom-

ical landmarks and the additional data points, using the Elekta

Maxfilter software package.

Anatomical MR images were scanned on a separate day using a

3T MAGNETOM Skyra scanner (Siemens Healthcare, Erlangen, Ger-

many), a standard 20-channel head–neck coil and a T1-weighted MP-

RAGE sequence.

2.6 | MEG data analysis

The MEG data was preprocessed by aligning head positions from the

different data segments and different days into one head position and

removing external noise sources using the spatiotemporal signal space

separation method (Taulu & Simola, 2006) in the Elekta Maxfilter soft-

ware package. Artefactual signals due to eye blinks were suppressed

using a PCA approach (Uusitalo & Ilmoniemi, 1997), where the 1–2

components that capture the most variance of the average MEG

response to blinks were removed from the raw data.

Event-related epochs were extracted from the gradiometer data

from 200 ms before to 1,000 ms after each word onset and averaged

across the multiple presentations of the same item. Since we are

mostly interested in cortical signals, we opted to only use the gradi-

ometers for the multivariate analyses, as they have a slight edge in

signal-to-noise ratio over the magnetometers for superficial sources.

The event-related responses were baseline-corrected to the interval

from �200 ms until the word onset and low-pass filtered at 25 Hz.

Any trials where the signal exceeded 3,000 fT/cm were removed

(max. 1 trial per word).

Separate source-level estimates for each stimulus item, averaged

across the 20 repetitions of this item, were computed using Minimum

Norm Estimates (MNE) (Gramfort et al., 2013; Gramfort et al., 2014;

Hämäläinen & Ilmoniemi, 1994) constrained to the cortical surface.

The volume conduction model was based on the individual structural

MRIs using the Freesurfer software package (Dale, Fischl, &

Sereno, 1999; Fischl, Liu, & Dale, 2001) and modeled as a single-

compartment boundary element model with an icosahedron mesh of

2,562 vertices in each hemisphere for each participant.

In the inverse solution, currents perpendicular to the cortical sur-

face were favored by setting the loose orientation constraint parame-

ter to 0.3, and depth-weighting was used to reduce the bias towards

superficial sources (Dale et al., 2000). The source estimate regulariza-

tion parameter lambda was set to 0.1. An empirical noise-covariance

matrix based on the baseline period across all stimuli was used for

noise normalizing of the source estimates, resulting in dynamical sta-

tistical parametric maps (dSPM; Dale et al., 2000). Lastly, the individ-

ual source estimates were morphed onto FreeSurfer's average

template brain.

2.7 | Zero-shot decoding

In order to determine whether the Statistical model of the semantic

space is a good description of the neural responses during word read-

ing, we used linear ridge regression to learn a linear mapping between

the sensor-level MEG evoked responses and the Statistical model

(Pedregosa et al., 2011).

To reduce the dimensionality of the input data, the MEG

responses were downsampled by creating 20-ms bins within the time

window 0–800 ms relative to the onset of the stimulus presentation,

resulting in 40 bins. To evaluate the performance of the model over

time, we applied the model across the bins in a sliding window fash-

ion, using a window size of 5 bins. For each of the 118 stimulus

words, the averaged signals for each bin at each of the 204 sensor

locations were concatenated into a single vector, yielding a

118 � 1,020 input matrix. The target matrix contained the word2vec

vector for each of the 118 stimulus words, yielding a 118 � 300

matrix. The columns of both the input and target matrices were z-

transformed before being entered into the ridge regression.

The resulting mapping was evaluated by attempting to match two

previously unseen segments of MEG data with two unseen stimulus

words. This is referred to as zero-shot decoding (Palatucci, Pomerleau,

Hinton, & Mitchell, 2009). To do this, the zero-shot approach employs

two steps. First, the algorithm uses the learned mapping between the

MEG data and the individual features to translate the two MEG seg-

ments into two predicted feature vectors. The identity of the two

unseen stimulus words is then determined by comparing the cosine

distance between the predicted vectors and the original Statistical

model vectors for these items (Sudre et al., 2012). This binary discrimi-

nation task is carried out for all possible pairs of two stimulus words,

using the remaining 116 words for training. For each participant, we

report the mean accuracy across all word pairs, which ranges between

50% (i.e., algorithm fails to distinguish between words) and 100%

(i.e., successful discrimination between all stimulus words).

To test whether the obtained accuracy scores were significantly

higher than chance level, the zero-shot classification procedure was

repeated 1,000 times on randomly permuted data. Random data was

produced by choosing the data of one subject at random and
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randomizing the assignment between the word labels and the MEG

data segments. As p-value, we report the percentage of accuracy

scores for the random permutations that equaled or exceeded the

accuracy score obtained on real data.

2.8 | RSA analysis

RSA (Kriegeskorte et al., 2008) was performed between the source

localized MEG data and Statistical model, using the MNE-RSA soft-

ware package (https://github.com/wmvanvliet/mne-rsa). For the Sta-

tistical model, a single word-to-word dissimilarity matrix (DSM) was

created by computing the Pearson correlation r across the feature

vectors for each possible word pair, and using 1 � r as the dissimilarity

score. The values along the diagonal (the dissimilarity between a word

and itself) were set to zero.

The MEG data underwent the same downsampling and z-

transformation procedure used for the zero-shot learning. Then, for

each subject, time bin and source-level vertex, a word-to-word DSM

was formed using a searchlight approach: the signal at all vertices

within a certain radius of the vertex under consideration was assem-

bled into a vector. To compute a reasonable DSM, enough signal vari-

ation inside a single searchlight patch is needed. Given the spatial

smoothness of the MNE source estimate, utilizing data from a rather

large patch of the cortex is motivated, and hence the radius of the

searchlight patches was set to 2 cm. Pairwise comparisons were then

carried out between all resulting vectors that represent the words

using Pearson correlation, with 1 � r as dissimilarity score.

The RSA maps for each subject and each feature set were

obtained by comparing the MEG-based DSMs with the feature-set

DSMs using Spearman rank correlation. Finally, the RSA maps were

analyzed across subjects using a cluster permutation test (Maris &

Oostenveld, 2007) with a cluster threshold of p = .01 (one-sample

t test) and a cluster-wide significance threshold set to p = .05. To cre-

ate a random distribution of the data, 5,000 permutations were per-

formed using random sign flips. Any clusters with a corresponding

cluster t-value that was lower than 95% of the randomly obtained

cluster t-values were pruned from the RSA maps. The remaining clus-

ters were deemed significant (p ≤ .05).

To aid the interpretation of the main RSA, an additional RSA was

calculated between the MEG data and a separate, questionnaire-

based model quantifying only the abstract – concrete dimension

(Abstractness model; see below). This additional RSA was computed

in the same manner as the main RSA between the MEG data and the

Statistical model, with the exception that the Euclidean distance was

used as the distance metric in the word-to-word DSM of the one-

dimensional Abstractness model.

2.9 | Abstractness model

The Abstractness model was derived from a behavioral web-based

questionnaire answered by 10 naïve respondents (who did not

respond to the stimulus assessment questionnaire). The respondents

were asked to assess how well each of the 118 stimulus words could

be classified as belonging to each of the predefined categories

(Animal, Body part, Building, Human character, Nature (excluding ani-

mals), Object, Abstract words) using a scale from 1 to 7 (1 = does not

belong to this category, 7 = a typical example to this category). As an

example, for the word “problem” 100% of the respondents indicated

that it was a typical example of the category Abstract word. However,

for the remaining categories the agreement (“the word ‘problem’ does
not belong to this category”) was somewhat less consistent (80–

100%). From this data set, we extracted the abstractness scale to be

used as an Abstractness model.

3 | RESULTS

We used a Uniform Manifold Approximation and Projection for

Dimension Reduction (UMAP) algorithm (McInnes et al., 2018) to

visualize the internal structure of the high dimensional Statistical

model (see Figure 1; for an interactive visualization see https://

projector.tensorflow.org/?config=https://users.aalto.fi/�vanvlm1/

redness1/projector_config.json (left-hand panel options allow view-

ing by category, labels may be turned on from the top panel symbol

A). The model spatially separates several of the categories. In par-

ticular, Body part, Nature and Animal, as well as the abstract words,

all form distinct clusters; the Medium Abstract and Highly Abstract

categories do not separate from each other. The abstract words

(e.g., problem, power, pressure) group together and are distinct from

the concrete words (e.g., scissors, showel, sheep).

To determine whether the information in the Statistical model is

mirrored in the brain activity during word reading, we used an item-

level decoding algorithm (Palatucci et al., 2009). The model was able

to successfully discriminate between different stimulus words based

on brain activation at 290–410 ms after the stimulus presentation

(Figure 2a).

The decoding accuracy fell within the 95% confidence level for

the majority of participants (Figure 2b). The adjusted chance level was

determined statistically to be 60.1% (p < .05). The algorithm was thus

able to find a mapping between the brain data and the Statistical

model, which implies that the information encoded in the

Statistical model is correlated with the information in the brain signal.

The accuracy of the zero-shot model was also evaluated using the

cosine distance between the semantic location predicted from the

MEG data and the semantic location indicated by the Statistical model

(Figure S1). The time course of the cosine distance mimics the time

course of the decoding accuracy (Figure 2a).

A breakdown of the item pairs used in the evaluation showed no

clear between-category advantage compared to within-category com-

parisons, indicating that categorical structure is unlikely to be the sole

driving factor of the decoding results (see Figure S2). However, by

evaluating the decoding performance as a function of time using only

the within-category items of the abstract and concrete words, a slight

advantage for the within-concrete word decoding did emerge (see
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Figure S3). As the number of words in each category was half of the

full set, comparing this result to that of the whole set results is

difficult.

We proceeded to investigate when and where the information

expressed in the Statistical model is manifested in brain activation.

Sensor-level evoked responses (see Figure S4) and MNE-dSPM source

estimates (see Figure S5) show, on average, slightly more activation

for abstract than concrete words in the temporal and inferior frontal

regions. To investigate the relationship between the Statistical model

and the brain activation further, we used an RSA (Kriegeskorte

et al., 2008) between the MEG data and the semantic decompositions

provided by the Statistical model (Figure 3a). Based on the UMAP

(Figure 1), the dominant organizational principle of the Statistical

model is the abstractness-concreteness dimension. Therefore, to

guide the interpretation of the RSA between the MEG data and the

Statistical model (henceforth, Statistical model RSA), we additionally

calculated a complementary RSA between the MEG data and a model

used to quantify only the abstractness–concreteness dimension based

on independently collected questionnaire data (see Methods; hence-

forth, Abstractness model RSA).

The Statistical model showed a high correlation with the

Abstractness model (one-dimensional questionnaire data) (Mantel test

with Spearman's rho = 0.3, p < .001; 5,000 permutations used). This

is probably due to the fact that both models clearly dissociate well

between concrete and abstract words (see dissimilarity matrices in

Figure 3b).

The spatio-temporal overlap between the Statistical model RSA

and Abstractness model RSA (Figure 3a) suggests that neural activity

in the highlighted cortical regions contains information incorporated

in both model types. A large portion of this information is related to

the abstractness dimension, as shown by the high correlation between

the Abstractness model and the Statistical model (see above).

The earliest neural response that was significantly correlated with

the Statistical model was observed in the lateral superior posterior

temporal cortex and medial occipital cortex at 270 ms. At 290–

350 ms after stimulus presentation, the correlation advanced via the

F IGURE 1 Visualization of the semantic space created by the Statistical model, obtained by projecting the word2vec vectors onto a two-
dimensional sheet using a Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP). An interactive version of the figure
is available at https://projector.tensorflow.org/?config=https://users.aalto.fi/�vanvlm1/redness1/projector_config.json
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middle temporal, lateral and medial parts of the parietal and precentral

cortices to the anterior temporal and frontal cortices. Activation in the

temporal and frontal cortices was correlated with the Statistical model

until 450 and 470 ms, respectively. Neural activity uniquely correlated

with the Statistical model was also found in the right frontal cortices

at 290–350 ms.

There was substantial overlap between the Statistical model RSA

and the Abstractness model RSA in the precentral gyrus starting at

310 ms and extending into large portions of the superior and medial

frontal cortex until 450 ms post stimulus presentation. The overlap

occured in temporally distinct time windows in the superior frontal

(320–370 ms) and the inferior frontal cortex (410–450 ms). Another

prominent overlap was observed in the middle and anterior parts of

the temporal cortex, including the ventro-medial parts (320–430 ms).

Overlap was also observed in the parietal cortex (starting from the

angular gyrus) at 310–350 ms.

The areas highlighted uniquely by the Abstractness model RSA

were found in the left precuneus (290–410 ms), the left inferior

precentral gyrus (inferior parts 370–390 ms; superior and medial parts

370–410 ms), as well as the left posterior temporal cortex and

temporo-parietal junction (310–430 ms).

A complementary version of the RSA using partial correlation can

be found in the supplementary information (see Figure S6).

4 | DISCUSSION

The results of the present study show that a semantic space gener-

ated based on word co-occurrence in sentential contexts has an emer-

gent abstract and concrete categorical structure and can be used to

describe the neural substrates of word meanings. The salient abstract-

concrete dimension of this corpus-derived semantic space is in line

with a previous observation that the semantic space generated by the

word2vec algorithm is heavily loaded on word concreteness (Hollis &

Westbury, 2016). The alignment of words rated as medium abstract

between the concrete and abstract words in the semantic space fur-

ther suggests that the abstract-concrete distinction is, rather, a con-

tinuum. The categorical grouping within concrete words only partly

aligned with the predefined taxonomic categories found in behavioral

feature sets (e.g., Devereux, Tyler, Geertzen, & Randall, 2014). Behav-

ioral and statistical models of semantics may thus be largely comple-

mentary descriptors of semantic organization. We found no clear

categorical structure within the abstract words. However, this is to be

expected given that the abstract stimuli did not follow a predefined

categorical substructure, unlike the concrete stimulus words which

were selected based on categories that have been linked to category-

specific impairments following brain damage.

The statistical properties of word meanings, derived through co-

occurrences in the text corpus, were successfully used to decode the

identity of concrete and abstract written words based on their MEG

responses, thereby showing that a statistical model of semantics

serves to describe the organization of word meanings in the brain.

The main correlations between brain activity and the Statistical model

were found in the left precentral, frontal and temporal cortex as well

as in superior and medial parietal areas. In the time domain, the

decoding algorithm was most successful at decoding the word identity

at 290–410 ms after the stimulus presentation, which suggests that

the type of semantics captured by the Statistical model is not present,

to a large extent, before 290 ms. We interpret the findings in light of

the complementary model that expresses the level of abstractness,
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F IGURE 2 (a) Group-level item-level decoding accuracy as a function of time. (b) Overall item-level decoding results. The box plot on the left
shows the quartiles and the variation in the group performance (percent of successful decoding across all stimulus-item pairs permutations). On
the right are the individual scores of each participant. Accuracy scores above 59% and 60%, respectively, for the time-resolved and the overall
decoding results were deemed to be statistically significantly above the chance level based on a permutation test. CI, confidence interval
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focusing on the brain areas revealed by both the Statistical model RSA

and the Abstractness model RSA.

The overlap discovered between the Statistical model RSA and

Abstractness model RSA is in line with the common finding that

processing of abstract words (nouns in particular) activates classical

language areas more strongly than processing of concrete words (see

Figure S5, for a meta-analysis, see Wang et al., 2010). Given the size

of the searchlight patches used for the RSA analysis (2 cm), only a

rough analysis of the cortical areas involved can be made. Among the

classical language areas, we observed effects in the inferior frontal

gyrus and the middle/superior temporal gyrus. The left inferior

frontal gyrus, in particular, has been highlighted as an especially

Abstractness model RSA

Overlap with Statistical model RSA

RIGHTLEFT

320–380 ms

380–440 ms

440–500 ms

Statistical model RSA

Overlap with Abstractness model RSA

320–380 ms

380–440 ms

440–500 ms

(a) RSA maps

(b) Dissimilarity matrices

Statistical model Abstractness model

0

c
o

s
in

e
 d

is
ta

n
c
e

Building

Highly Abstract

Body part

Object
Nature

Animal

Human charac.

Medium Abstract

0

e
u

c
lid

e
a

n
 d

is
ta

n
c
e

260–320 ms 260–320 ms

1.11 5.85
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Statistical model and Abstractness
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similarity analysis (RSA) between
the Statistical model and the MEG
data (red) on the left and between
the Abstractness model and the
MEG data (purple) on the right.
The overlap between the two

RSAs is plotted in yellow. The
results show all regions and time
windows with statistically
significant findings. For
visualization purposes, the data
was averaged over 60-ms time
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matrices of the Statistical model
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informative area in classification of the abstract/concrete word class

(Wang, Baucom, & Shinkareva, 2013). In the present study, overlap

between the two RSA maps was observed in the left frontal cortex

(inferior areas 410–450 ms; superior areas 320–370 ms) and temporal

cortex (320–430 ms). In previous studies, more activity for abstract

than for concrete words in these areas was interpreted to reflect

greater engagement of the verbal system for processing of abstract

concepts (Wang et al., 2010). It is therefore not surprising that the

information processed in these classical language areas (i.e., inferior

frontal cortex and posterior temporal cortex) mirrors both the statisti-

cally derived categorical structure and especially the questionnaire-

based abstract-concrete dimension. The present RSA findings further

suggest that the adjacent superior and medial parts of the frontal cor-

tex are also able to capture the abstractness dimension of word

meanings.

The present RSA results also identified areas that in previous

studies have shown stronger activation to concrete than abstract

words (Wang et al., 2010) or have been robustly linked to object-

specific semantics of concrete objects (Clarke & Tyler, 2014), namely

the posterior cingulate, precuneus, fusiform gyrus, and para-

hippocampal gyrus. In previous studies, increased activation for con-

crete words has often been interpreted in terms of grounding

conceptual information to the perceptual system, particularly in the

ventral or dorsal visual processing streams (Binder, Westbury,

McKiernan, Possing, & Medler, 2005; Wang et al., 2010). The present

findings show that the patterns of activation in these areas are also

correlated with the Statistical model derived from corpus data.

The Statistical model RSA and Abstractness model RSA both rev-

ealed semantic encoding in the lateral and medial parts of the anterior

temporal lobe at 320–430 ms (including ventro-medial regions). The

anterior temporal cortex is well-known for its role in both semantic

dementia (Patterson, Nestor, & Rogers, 2007) and associative seman-

tics (Price, 2012). In light of the associative nature of the statistical

semantic model, the present results support the notion that this

region is in some manner also linked with processing of word mean-

ings through their associative properties to other words.

A prominent overlap between the Statistical model RSA and

Abstractness model RSA was additionally observed in the left

precentral cortex. This region has previously been linked to category-

specific semantic activation related to body parts and shape

(Pulvermuller, Kherif, Hauk, Mohr, & Nimmo-Smith, 2009). Here we

show that the activity pattern in this region also aligns with the

abstract-concrete structure in the Statistical model.

It is worth noting that the temporal dimension of the decoding and

the main RSA findings broadly align with the typical sustained response

to visual words at about 400 ms after stimulus onset (the so-called

N400/N400m; see the evoked responses in the Supplementary infor-

mation). Abstractness model RSA results seem to suggest that

processing related only to the abstractness dimension lasts a little lon-

ger (especially in the anterior temporal lobe) than the semantic

processing captured by the Statistical model. This result may be related

to the small difference seen in the temporal dynamics of the evoked

responses in some of the channels over the left temporal cortex.

Self-organization of the semantic space provides an account of

how differences along the abstract-concrete dimension could arise. If

the premise stands that neural representations of word meanings arise

from similar computational principles as the ones that govern the Sta-

tistical model, then words that co-occur in the environment would

also share some aspects of their neural representation (Li &

Zhao, 2013). This could lead to categorical groupings that may give

rise to the type of categorical differences observed in previous experi-

mental and clinical studies (Wang et al., 2010).

Most of the cortical areas discovered in the RSA analyses align

with classical language areas, outside of the primary motor or sensory

areas. This suggests that the abstractness dimension is more than a

mere reflection of direct sensory-motor associations, put forward by

some advocates of the embodied cognition view (Binder et al., 2016;

Kiefer & Pulvermüller, 2012). This finding would explain why previous

attempts at decoding abstract words based on sensory-motor attri-

butes have been unsuccessful (Fernandino et al., 2015) whereas even

a crude nominal categorical classification of the abstractness dimen-

sion seems to work (Wang et al., 2013). When using a more detailed

description of the semantic space, such as the present corpus-derived

Statistical model, we were able to decode MEG signals of individually

presented written words; the written modality has previously proven

to be challenging even in categorical classification of concrete words

(Simanova et al., 2014).

In all neuroimaging research, the choice of task plays a crucial

role in terms of how the brain is activated and how the activity can

be interpreted. Here, the participants were asked, during catch trials

that followed the stimulus word, to evaluate whether the previously

presented word would make sense as the first word of the pres-

ented sentence. This task cannot be done on superficial linguistic

information alone, which may be a weakness of tasks such as lexical

decision or word association (Barsalou, Santos, Simmons, &

Wilson, 2008). However, the task does include a working memory

component, in that the stimulus words must be kept active until the

participant knows if a catch trial will appear. This is admittedly dif-

ferent from how meanings are processed in real life. Moreover, we

cannot exclude the possibility that the conceptual knowledge may

only have been accessed post hoc when needed in a catch trial.

However, these possible caveats would impact the Statistical model

RSA and the Abstractness model RSA in the same manner, and as

the semantic models are qualitatively different, comparing their RSA

results is still informative.

The present results suggest that the choice of semantic model

used to describe the semantic space does indeed matter. Despite the

marked overlap between the Statistical model RSA and the Abstract-

ness model RSA, several areas were uniquely highlighted by only one

of the models. This suggests that the Statistical model does not cap-

ture all aspects of the abstract-concrete dimension (or these aspects

may remain below the statistical significance threshold). Similarly,

while the word2vec model is a well-argued model of distributional

semantics, alternative models such as those based on behavioral fea-

ture descriptions may provide complementary views to the semantic

system.
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On a theoretical level, the human equivalent of the statistical

model could be thought of as deriving word meanings from their sta-

tistical properties within language, thus essentially grounding the

meaning of words to other words. In order for this process to start, a

person needs to have at least some vocabulary in place derived by, for

example, motor and sensory pairings. Nonetheless, the meanings of

these words may also be refined as the vocabulary grows, though

whether a word can ever be solely grounded in language without at

least a partial sensory-motor association remains an open question.

Moreover, different sources of learning data may also load differently

to different regions in the brain, as it has been shown that reading

induced fMRI signals in the posterior-parietal/lateral-temporal/infe-

rior-frontal region shows the strongest correlation with text-models,

whereas activity in ventral-temporal and lateral-occipital regions

shows stronger correlation with image-based semantic models

(Anderson, Bruni, Lopopolo, Poesio, & Baroni, 2015).

The notion of grounding words to language should be seen as an

attempt to reconcile the perhaps artificial disparities between the dis-

tributed and embodied views of semantics (Andrews et al., 2014). It

alludes to the fact that the computational principles that govern the

brain such as Hebbian learning (Hebb, 1949) and basic principles of

optimization (Friston, 2012; Zipf, 1949) can take advantage of any

environment, be it physical or linguistic. Future research may thus

need to focus not only on the type of data that is used but also on the

process and computational principles by which the words become

represented in the brain. In our view, emergent categorical structures

pose a tempting computational solution to how the organization of

the semantic space may arise.

5 | CONCLUSION

The present study used a computationally explicit framework to eval-

uate how semantic representations can be expressed in the brain as a

result of statistical regularities in our language environment and com-

putational principles known to exist in the brain. We were able to link

specific cortical areas to semantic representations, describe the type

of information that could be processed there, and demonstrate that

this information can arise merely through statistical co-occurrences in

the language environment. We show that a statistical model is suffi-

cient to account for a substantial part (i.e., enough to enable success-

ful encoding) of the semantic processing. This may be taken as proof

of concept that exposure to language in itself can serve a similar pur-

pose as other sensory, motor, emotional or perceptual experiences in

forming neural representations of word meanings. In theory, this could

mean that abstract words, in particular, could be grounded in the lan-

guage experience, thereby overcoming the need for physical referent.
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