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Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-
known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult
to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of
lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the
MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation
cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and
a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor
images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal
features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR
glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time
of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.

1. Introduction

Magnetic resonance (MR) imaging technology has been
widely applied tomedical diagnosis systems, and the accuracy
of many diagnosis systems is mainly based on the quality
of the images acquired. However, the images obtained by
magnetic resonance imaging usually contain heavy noise and
the effects of the biasing field, which will degrade the quality
of the images and make the subsequent postprocessing of the
images, such as segmentation, classification, and detection,
difficult. The noise and biasing-field effects in MR images
sometimes even affect the evaluation of human segmentation.
Hence, segmentation for MR images automatically becomes
a very challenging task.

In general, the essential segmentation task is to label the
different parts of the object image. Thus, the class number
of the parts for the segmented image is a very important
parameter. As is well-known, the number of clusters for

medical image segmentation is difficult to initialize as a
constant before clustering. Therefore, most classical segmen-
tation methods for medical images [1, 2] specify the number
of clusters before clustering as a matter of clinical experience,
even some advancedmethods estimate the number of clusters
from educated guesses or prior knowledge [1, 2].

Thus, an automatic segmentation method without ini-
tialization of the number of clusters is very attractive for
medical images, which can greatly improve the effectiveness
and efficiency for clinical diagnosis. In this paper, we present
an algorithm that utilizes MDP models [3, 4], which can
automatically segment a medical image without initializing
the number of clusters before clustering. In theMDPmethod,
the number of clusters is not a constant number but is
instead defined as a level of cluster resolution by the control
parameter.

The classical MDP model was proposed by Antoniak
[3] and Ferguson [4], which has been used in the fields of
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statistical problems and language processing [5, 6]. In this
study, we incorporate this model into medical brain-tumor
image segmentations. Because the computing speed and
convergence of the classicalMDPmethod is not very good for
clinical image clustering, we introduce anisotropic diffusion
and Markov random fields (MRF), which are combined with
the classical MDP models to construct our algorithm. We
apply this algorithm to segment active tumor tissue and
edema in MR brain-tumor images. The experimental results
show that the accuracy and convergence of the proposed
algorithm are extraordinary. In particular, the computing
time is significantly lower than the classical MDP algorithm.

2. Methods

2.1. Anisotropic Diffusion Filter. In order to alleviate the
effects of noise, noise reduction is generally used to remove
or reduce the noise before segmentation, classification, and
detection. Noise reduction is an important image processing
method that has wide application in various fields [7, 8].
The key to noise reduction is to reduce the noise without
deteriorating the important features in the images. Thus,
noise reduction has two goals. One is to remove the noise
from the images, and the other is to preserve the important
features such as the edges in the images.

Depending on the noise type, a noisy image can be
generally modeled as one of the two models: a linear model
and a nonlinear model. If the noise is independent of the
image, then it can be described by a linear model (an additive
noise model). An MR image is generally modeled as an
additive noise model. However, traditional noise reduction
technologies such as Gaussian andmedian filters are not very
effective in reducing the noise because the distribution of the
noise is notGaussian; it is assumed to be aRician distribution.

Here, we utilize an anisotropic diffusion (AD) filter [9]
for noise reduction in MR images. AD is a nonlinear filtering
method, which encourages diffusion in the homogeneous
region while inhibiting diffusion at the edges. The partial
differential equation (PDE) of anisotropic diffusion is as
follows in the continuous domain:

𝜕𝐼

𝜕𝑡
= div [𝑐 (|∇𝐼|) ∇𝐼] ,

𝐼 (𝑡 = 0) = 𝐼
0
,

(1)

where ∇ is the gradient operator, div is the divergence
operator, 𝐼 is the initial image, and 𝑐(⋅) is the diffusion
coefficient, which is often chosen such that 𝑐(𝑥) → 0 as
𝑥 → ∞. Further, 𝑐(⋅) should be monotonically decreasing
so that diffusion decreases as the gradient strength increases,
and the diffusion stops across edges. Several expressions for
𝑐(⋅) have been suggested for diffusion [10]:

𝑐 (𝑥) = exp[−(𝑥
𝑞
)

2

] ,

𝑐 (𝑥) =
1

1 + (𝑥2 − 𝑞2) /𝑘2 (1 + 𝑞2)
,

(2)

where 𝑞 is a parameter to control the extent of diffusion. In
our paper, a discrete form of (1) is given by
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where 𝐼𝑡
𝑠
is the discretely sampled image, 𝑠 denotes the pixel

position in a discrete 2D grid, ∇𝑡 is the time step size, 𝜂
𝑠

represents the spatial neighborhood of pixel 𝑠, 𝜂𝑠
 is the

number of pixels in the window, and
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2.2. Dirichlet Process Mixture Models. We consider the
Dirichlet process mixture (MDP) model as the statistical
model in our study. The MDP model is a kind of non-
parametric Bayesian model. A MDP model comprises three
principal components: A parametric likelihood function 𝐹,
a probability distribution 𝐺

0
, which is referred to as the

base measure, and a Dirichlet process DP(𝛼𝐺
0
), which is

parameterized by the base measure and a positive constant
𝛼 ∈ 𝑅+. In our paper, the MDP model is a set of distinct
classes, which is assumed to be generated by the observed
data 𝑥

1
, . . . , 𝑥

𝑛
. Every class (indexed by 𝑘) has a generative

distribution, which is described by the likelihood 𝐹, and is
characterized by the parameter value 𝜃∗

𝑘
. Therefore, the data

within the cluster is generated according to 𝑥 ∼ 𝐹(⋅ | 𝜃∗
𝑘
). In

contrast to the parametricmodel, the number of classes is not
a constant, which will change during the sampling process.

Data generation of 𝑛 data values 𝑥
1
, . . . , 𝑥

𝑛
according to

the MDP model can be summarized as
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(5)

Therefore, the Dirichlet process can be considered as
a distribution of distributions and assumed as the prior
distribution in the Bayesian setting. These principals can be
used to determine model selection and clustering problems
during machine learning.

For this reason, the MDP models can be thought of as
mixture models. The number of mixture components in the
mixture model is a random variable, which can be evaluated
from the input dataset. The term clustering method is used
to describe an unsupervised learning measurement, which
groups a set 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
of input data into an independent

class.
If the given set of samples 𝜃

1
, . . . , 𝜃

𝑁
𝐶

are already drawn
from the random measure 𝐺, we can integrate the measure
and obtain conditional prior distribution of a new sample
𝜃
𝑛+1

:
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The number of clusters is denoted by 𝑁
𝐶
. Each of these

classes is represented by its associated parameter value,
denoted 𝜃∗

𝑘
, for class 𝑘 ∈ {1, . . . , 𝑁

𝐶
}. The combination with

a parametric likelihood 𝐹, as in (5), results in a single, fixed
likelihood function 𝐹(⋅ | 𝜃

∗

𝑘
) for each class 𝑘. Hence, the

model is a mixture model with 𝑁
𝐶
parametric components

𝐹(⋅ | 𝜃
∗

𝑘
) and a basemeasure term (“zero” component), which

is responsible for creating the new classes.
In the classical parametric mixture model applied to a

clustering problem, the number of clusters is determined by
the fixed number of parameters. If the number of clusters
is changed, the structure of the parametric mixture model
should be changed accordingly. However, the nonparametric
MDP models provide a new description of clustering meth-
ods that could adjust the number of clusters without changing
the models. Thus, this property is the required precondition
for Bayesian inference of the number of clusters, which
defines 𝑁

𝐶
as a random variable in the model framework,

rather than a constant.

2.3. Cost Function Constrained with the MRF. This work
combines nonparametricmixture ofDirichlet processmodels
with MRF models to enforce spatial constraints. Many com-
puter vision problems involve the MRF model [9]. In our
study, we obtain a model capable of combining the clustering
andmodel selection performed by theMDPwith the smooth-
ness constraints on the class labels, which is reasonable to
assume a spatially coherent class structure, for the MRF con-
straint encourages adjacent points in the image to be assigned
into the same class.

The vectorial input data 𝑥
1
, . . . , 𝑥

𝑛
is considered in the

clustering problem. Every point 𝑥
𝑖
is assumed to be generated

with the parameter vector 𝜃
𝑖
. Two points are assigned into

the same cluster if their respective parameter vectors are
identical.

To combine the MDP model with a MRF, we restrict
the choice of MRF constraints to pairwise difference priors
[10], in which the MRF is commonly used to model spatial
smoothness of label field. The MRF definition is based on
undirected neighborhood graph𝑁.

The MRF prior Π comprises two components:

∏(𝜃) ∝ 𝑃 (𝜃)𝑀 (𝜃) . (7)

𝑃 is a parametric prior on the parametric 𝜃, which will be
referred to as the initial prior. In our paper, the initial prior 𝑃
is drawn from the DP model (described in Section 2.2).𝑀 is
a MRF contribution term, which can be defined as

𝑀(𝜃
𝑖
) ∝ exp (−𝐻 (𝜃

1
, . . . , 𝜃

𝑛
)) , (8)

where𝐻 is the cost function defined on neighborhood graph
𝑁. The term𝑀 is used as the model smoothness constrains,
which is conditional on the neighborhood of feature.

Therefore, the resulting generative model is summarized
by

𝑥
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) .

(9)

In our paper, MRF cost function with the parameters 𝜃
𝑖
is

defined as

𝐻(𝜃
𝑖
| 𝜃
−𝑖
) := ∑

𝑙∈𝜕(𝑖)

𝜃𝑖 − 𝜃𝑙

2
. (10)

We write 𝑙 ∈ 𝜕(𝑖) to denote that the feature of index 𝑙 is the
neighbor of feature 𝑖.The distribution of resulting conditional
prior distribution𝑀(𝜃

𝑖
| 𝜃
−𝑖
) ∝ ∏

𝑙∈𝜕(𝑖)
exp(− 𝜃𝑖 − 𝜃𝑙


2
) will

have similar parameter values at the neighbor sites.
Most clustering problems do not define an order for the

class labels. In our paper, two class labels are either identical
or different. Hence, the cost function is expressed with the
binary concept of similarity as

𝐻(𝜃
𝑖
| 𝜃
−𝑖
) = −𝜆 ∑

𝑙∈𝜕(𝑖)

𝜔
𝑖𝑙
𝛿
𝑆
𝑖
,𝑆
𝑙

, (11)

where 𝛿 is the Kronecker symbol and 𝜆 is the constraint
parameter, which is a positive constant. 𝜔

𝑖𝑙
are the edge

weights. The class indicators 𝑆
𝑖
and 𝑆

𝑙
specify the different

classes of all neighbors by the parameters 𝜃
𝑖
and 𝜃
𝑙
.Therefore,

if 𝜃
𝑖
defines a class different from the classes of all neighbors,

exp(−𝐻) = 1, whereas exp(−𝐻) will increase if at least one
neighbor is assigned to the same class.

Such a cost function can be used to express the smooth-
ness constraints on the cluster labels because they promote
the smooth assignment of the adjoining sites. Further, the
results of the segmentation algorithm can be smoothed with
the label constraints.

In summary, we can obtain the algorithm and the com-
plete flow chart as shown in Figure 1.

2.4. Data Acquisition. The brain-tumor image data used in
this work were obtained from the MICCAI 2012 Challenge
onMultimodal BrainTumor Segmentation (http://www.imm
.dtu.dk/projects/BRATS2012) organized by B. Menze, A.
Jakab, S. Bauer, M. Reyes, M. Prastawa, and K. Van Leem-
put. This database contains fully anonymized images from
the following institutions: ETH Zurich, University of Bern,
University of Debrecen, and University of Utah.

The brain-tumor image data contain information on 120
subjects with gliomas; 55 images are real patient data, and
65 images are synthetic data. A total of 80 images out of
120 images with ground truth data are treated as training
data (Table 1). The tumor and edema regions are manually
delineated by the experts in the clinical images and synthetic
data, which is used as the segmentation criterion and called
“ground truth” (GT) in this paper. The following accuracy
analysis is used to compare our segmentation results to the
GT.

For each patient, T1, T2, FLAIR, and contrast-enhanced
T1-weighted (T1C) MR images were available. All volumes
were linearly coregistered to the T1 contrast image, skull
stripped, and interpolated to 1mm isotropic resolution. Some
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Input MR tumor image

Anisotropic diffusion filter
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∗
j ), k = 1, . . . , NC

Figure 1: Flow chart of our algorithm.

Table 1: Cases of glioma patients in the testing data set.

High-grade glioma patients Clinical data 20
Synthetic data 25

Low-grade glioma patients Clinical data 10
Synthetic data 25

slices of a high-grade glioma patient are shown in Figure 2.
3D MRI slices of a high-grade glioma patient are shown in
the three rows of Figure 2, such as the transverse section
(images a1 to d1), median sagittal section (images a2 to d2),
and coronal section (images a3 to d3). The first four columns
show the FLAIR (images a1 to a3), T1 (images b1 to b3), T1C
(images c1 to c3), and T2 (images d1 to d3) MR images, and
the last column (images e1 to e3) shows the GT of the 3D
FLAIR high-grade clinical glioma MR images segmented by
the experts, in which the yellow regionmarks the tumor core,
and the green region marks the edema.

We applied our algorithm to 32 patients among the
MICCAI2012 data sets, the data among which there are
10 clinical high-grade glioma patients, 6 clinical low-grade

glioma patients, 10 synthetic high-grade glioma patients, and
6 synthetic low-grade glioma patients.

2.5. Multimodal Tumor Image Segmentation. Inmost studies,
segmentation is conducted for single modal brain-tumorMR
images, which targets the gross tumor volume (GTV) of the
brain tumors in T1C MR images. In this study, we introduce
a new algorithm to segment multimodal MRI images (T1C
andFLAIR), which include edema segmentation and evaluate
multimodal MR tumor images. Our algorithm is applied
to FLAIR and T1C volumes to segment the clinical tumor
volume (CTV = GTV + edema).

From the descriptions by the medical experts in the liter-
ature [11, 12], the different modalities of the images enhance
the unique information in the same region of the human
body. The MR signals of the hydrogen atom are restrained
in the FLAIR images, and the contrast of the cerebrospinal
fluid is lower than the surrounding tissues. In addition, the
highlighted abnormal “enhancement” regions indicate the
tumor core region in theT1C images.Thismedical knowledge
encourages us to utilize the image difference feature between
the two modalities. Our segmentation results are integrated
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Figure 2: Three-dimensional multimodal slices of clinical high-grade glioma MR images.

(a) (b) (c)

(e)(d) (f)

(g) (h)

Figure 3: Segmentation of a multimodal tumor image by the our algorithm: (a) FLAIR high-grade gliomaMR slice, (b) segmentation results
of (a) by our algorithm, (c) entire tumormask, (d) TIC high-grade gliomaMR slice, (e) segmentation results of (d) by our algorithm, (f) active
tumor mask, (g) edema mask, and (h) entire tumor mask; the gray region indicates the edema, and the white region indicates the tumor core.

by setting the T1C segmentation results as the tumor labels
and the difference area of the FLAIR segmentationminus the
T1C segmentation as the edema labels:

𝑉Edema = {𝑥 ∈ 𝑉FLAIR | 𝑥 ∉ 𝑉T1C} . (12)

The execution process is depicted in Figure 3.

3. Experimental Results and Discussion

3.1. Constraint Parameter of MDP/MRF. The experiments
presented in this section were conducted on single model
brain-tumor images and multimodel brain-tumor images.
Besides the visual quality of the segmentation results, we
especially study the model selection question: how does the
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constraint parameter of the MDP/MRF algorithm influence
the model selection?

A clinical high-grade glioma T1CMR image is segmented
by the MDP/MRF algorithm. Our method repeatedly com-
putes clustering solutions on randomly chosen subsets of the
input data and evaluates the predictive power of the obtained
cluster model on the remaining data. The burn-in phase
of the Gibbs sampling algorithm is assumed to have term-
inated once the number of assignments changed per iteration
remains stable below 1% of the total number of sites. This
condition is met after at most 200 iterations. The behavior of
the clustering assignments during the sampling process is vis-
ualized by the plot in Figure 4. In all the cases, the algo-
rithm is executed with different constraint parameter 𝜆 and
takes about 200 iterations to stabilize (the curves become
constant apart from fluctuations). The splitting behavior of
the algorithm differs significantly among all the cases: in the
unconstrained case, lager batches of sites are reassigned at
once to new clusters (visible as jumps in the diagram).Assign-
ments change gradually by the increasing of constraint para-
meter 𝜆, which means more adjoining sites are assigned into
the same cluster.

3.2. Single Modal Tumor Image Segmentation

3.2.1. Design of Experiments. The operation of our algorithm,
which shows the main steps and the corresponding segmen-
tation results, is shown in Figure 5 compared with classical
MDPmodel segmentation. A clinical high-grade glioma T1C
MR image is segmented in Figure 5. Figure 5(a) shows the
clinical MR image, and the focus of the tumor is indicated by
a blue rectangle. Figure 5(b) shows the segmentation of the
MR brain-tumor image by directly using the classical MDP
segmentation algorithm, in which the number of clusters is
11. The clinical brain-tumor image is anisotropically diffused

(a) Original MR
tumor image

(c) Anisotropic
diffusion

(b) Classical MDP
segmentation

(d) MDP after AD

(e) Our algorithm

Figure 5: Segmentation of a single modal tumor image.
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Figure 6: Comparative analysis for the number of clusters between
classical MDP (blue bar) and our algorithm (red bar).

in Figure 5(c). After the original MR image is anisotropically
diffused, the classical MDP algorithm is used to segment the
image in Figure 5(d), in which the number of clusters is eight.
In Figure 5(e), segmentation is carried out by our algorithm,
and the number of clusters is five.

It is important that the number of clusters is decreased
from theMDP results to the algorithms. Because the number
of clusters is very large for the classical MDP algorithm, the
tumor region is divided into many fragments, and it is diffi-
cult to accurately segment the entire tumor. This is because
more accurate segmentation boundaries of the tumor region
are created by our algorithm than the classical MDP. Hence,
it is more appropriate to use our algorithm to segment tumor
images.

3.2.2. Convergence Analysis. The clustering class numbers for
the 32 active tumor segmentation results are shown in Figure
6, which were segmented by the MDP algorithm and our
algorithm. There are 200 iterations in both algorithms. The
numbers of clusters are listed in the table in Figure 6. The
results indicate that all the class number results obtained by
the current algorithm are less than those of the classical MDP
algorithm. Thus, the modified model could properly control
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Figure 7: Comparative analysis for the convergence time of MDP
(blue) and our algorithm (red).

the segment class number in order to reduce the convergence
time.

The results in Figure 7 show the computation time of 32
brain-tumor MR images segmented by the MDP algorithm
and the algorithm. The computing time is related to the size
of the tumor region. The experiment results indicate that the
average convergence time of the algorithm is 42.04 s, which
is much shorter than that of the classical MDP algorithm
(218.37 s).The results demonstrate that the convergence speed
of the segmentation results of the algorithm is significantly
faster than the classical MDP algorithm.

Because of the high computational complexity of the clas-
sical MDP algorithm without considering the region/bound-
ary features, the application of the classical MDP algorithm
for complex target segmentation is limited.The AD filter and
MRF smooth prior are introduced into the MDP model, and
the target segmentation can be obtained with fewer iterations
by our algorithm (Figure 7). Therefore, the computing time
for convergence of our algorithm is much shorter than
the classical one (Figure 7). All the results show that the
algorithm is more efficient and robust.

3.3. Multimodal Tumor Image Segmentation Results

3.3.1. Segmentation Results. Some segmentation results of
multimodal tumor images are presented in Figures 8 and 9.
Figure 8 shows the real clinical data segmentation results, and
Figure 9 shows the results of the synthetic data. The original
FLARE and TIC MR images are shown in the line (a) and
line (b). The line (c) shows segmentation of the FLARE MR
images, which show the segmentation results of the entire
tumor region. In addition, the T1CMR images are segmented,
and the tumor core segmentation results are shown in the
line (d). The last two rows show the GT masks (line (e)) and
the segmentationmasks by the algorithm (line (f)), where the
white region indicates the tumor core mask, and gray region
indicates the edema mask. The results in Figure 8 and Figure
9 show great similarity between theGT and our segmentation
results.

Comparatively, the tumor boundaries of the real patient
data (Figure 8(f)) were more blurry than those of the syn-
thetic data (Figure 9(f)). Therefore, the tumor segmentation
performance was better in the synthetic data than that in the
real patient data. The edema boundaries of both real patient

data and synthetic data were quite blurry, which led to more
inaccurate segmentation performance in the edema regions
than those in the tumor regions.

3.3.2. Comparison with Other Methods. The segmentation
results of the testing data were evaluated by the online evalua-
tion tool in the evaluation platform.This evaluation platform
contains an archive of all uploaded results, which enables
segmentation methods to be objectively benchmarked and
compared with each other. The tumor region in the patient
data was subdivided into two classes: active tumor core and
edema. Figures 10, 11, 12, and 13 show the tumor segmenta-
tion results with different methods evaluated by the online
evaluation tool.

In order to obtain a better understanding of the data and
the performance of our algorithm, we perform four further
measurements as a statistical analysis of the segmentation
accuracy. For each segmentation result, the true positive (TP),
true negative (TN), false positive (FP), and false negative (FN)
pixels are counted. The four measurements are defined as
follows [13, 14]:

TP = 𝑅 ∩ 𝑇,

TN = 𝑅 ∪ 𝑇,

FP = 𝑅 ∩ 𝑇,

FN = 𝑅 ∩ 𝑇,

(13)

where 𝑇 is the true set and 𝑅 is the result set.
For all algorithms, the following four statistical analysis

accuracy metrics are computed: Dice similarity coefficient
(DSC), Jaccard similarity (Jaccard), Sensitivity (Sens.), and
Specificity (Spec.) [13, 14].

Dice coefficient is as follows:

DSC =
2 ∗ TP

(FP + TP) + (TP + FN)
. (14)

Jaccard similarity is as follows:

Jaccard = TP
FP + TP + FN

. (15)

Sensitivity (fraction of positives that are correctly
detected) is as follows:

Sens. = TP
TP + FN

. (16)

Specificity (fraction of negatives that are correctly
detected) is as follows:

Spec. = TN
TN + FP

. (17)

The top four results of statistical analysis are listed from
Figure 10 to Figure 13 (Bauer et al. [15], Andac andGozde [16],
and Tomas-Fernandez and Wareld [17] and our method). At
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(a) (b) (c) (d) (e) (f)

Figure 8: Segmentation results of the active tumor and edema in the real clinical glioma MR images.

(a) (b) (c) (d) (e) (f)

Figure 9: Segmentation results of the active tumor and edema in the synthetic glioma MR images.
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Figure 10: Dice similarity coefficient evaluation of the active tumor
and edema segmentation results.
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Figure 11: Jaccard similarity coefficient evaluation of the active
tumor and edema segmentation results.

the time of writing of this study, the proposed method was in
the second place about Sensitivity and in the third place about
Specificity. Moreover, the proposed method is in the first
places about Dice similarity coefficient and Jaccard similarity,
respectively. These results indicate that the proposed method
is comparable to other state-of-the-art methods.

Theoretically, the other three approaches adopted pixel
intensity rather than sufficient features from the region and
boundary term construction, and the clustering number
of the other approaches should be initialized by human
intervention. Therefore, the other algorithms exhibit lower

0

0.2

0.4

0.6

0.8

1

Sensitivity

Ba
ue

r e
t a

l.
(2

01
2)

O
ur

 al
go

rit
hm

Tumor
Edema

To
m

as
-F

er
na

nd
ez

 

A
nd

ac
 an

d
G

oz
de

 (2
01

2)

an
d 

W
ar

eld
 (2

01
2)

Figure 12: Sensitivity evaluation of the active tumor and edema
segmentation results.
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Figure 13: Specificity evaluation of the active tumor and edema
segmentation results.

performance owing to segmentation leakage in some cases,
making the segmentation prone to failure. Moreover, our
algorithm exhibits higher sensitivity and higher specificity.
On the other hand, the algorithm exhibits a relatively higher
mean value but a lower coefficient of standard variation
(mean/std) on average compared with the other algorithms
used for validation. This means our algorithm can predict a
lesion in an MR image sensitively and precisely, making little
misjudgments.
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4. Conclusions

Our algorithm combined the AD filter and the MRF con-
straint. Therefore, the AD filter can help to remove the noise
from the images and preserve important features such as
edges in the images. In addition, the MRF smooth prior con-
straint is set as the region constraint prior of the cost function
to help promote the smooth assignment of the adjoining sites.
All of the improvements to the classical MDP algorithm lead
to the modified nonparametric algorithm that can effectively
be used in clinical tumor segmentation.

To summarize, we have developed a new nonparametric
image segmentation algorithm for MR multimodal brain-
tumor images. On the basis of actual clinical and synthetic
data, our algorithm demonstrates very impressive perfor-
mance. By taking advantage of the features of multimodal
MR images, such as T1C and FLAIRmodal features, our algo-
rithm could segment active tumors and edemas, respectively,
from the MR tumor images correctly. Furthermore, it signif-
icantly reduces the computation time. Hence, this algorithm
can be used for complicated brain-tumor images with high
noise and the biasing-field effect in real-time clinical use.

However, there are some limitations in our approach. In
the proposed algorithm only two types of MR modal fea-
tures, T1C and FLAIR modal features, are used. The other
types of MR modal features, such as T1 and T2, are not uti-
lized.Therefore, our algorithm used in gliomaMR image seg-
mentation cannot separate the other types of tumors in the
brain lesion images. In the further work, we also plan to
extend the algorithm into 3D and realize a 3D tumor recon-
struction system, which can be better used in clinical appli-
cations.
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