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Abstract

Resting state has been established as a classical paradigm of brain activity studies, mostly based on large-scale

measurements such as functional magnetic resonance imaging or magneto- and electroencephalography. This term typically

refers to a behavioral state characterized by the absence of any task or stimuli. The corresponding neuronal activity is often

called idle or ongoing. Numerous modeling studies on spiking neural networks claim to mimic such idle states, but compare

their results with task- or stimulus-driven experiments, or to results from experiments with anesthetized subjects. Both

approaches might lead to misleading conclusions. To provide a proper basis for comparing physiological and simulated

network dynamics, we characterize simultaneously recorded single neurons’ spiking activity in monkey motor cortex at rest

and show the differences from spontaneous and task- or stimulus-induced movement conditions. We also distinguish

between rest with open eyes and sleepy rest with eyes closed. The resting state with open eyes shows a significantly higher

dimensionality, reduced firing rates, and less balance between population level excitation and inhibition than

behavior-related states.
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Introduction
The resting state in behavioral studies is defined operationally

as an experimental condition without imposed stimuli or other

behaviorally salient events (Raichle 2009; Snyder and Raichle,

2012). It has become a classical paradigm for experiments involv-

ing large-scale measurements of brain activity like functional

magnetic resonance imaging (fMRI) andmagneto- and electroen-

cephalography in humans and monkeys (Vincent et al. 2007;

Raichle, 2009; Deco et al. 2011; Snyder and Raichle, 2012; Baker

et al. 2014), but it has also been studied on the level of single brain

areas. Here, the spontaneous activity is referred to as ongoing,

intrinsic, baseline, or resting state activity and can be studied by

means of, for example, optical imaging combined with single

electrode recordings (Arieli et al. 1996; Tsodyks et al. 1999;

Kenet et al. 2003). Such data, collected under anesthesia, were

used to investigate the variability in evoked cortical responses

http://creativecommons.org/licenses/by/4.0/
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(Arieli et al. 1996), the switching of cortical states (Tsodyks

et al. 1999), and their link to the underlying functional archi-

tecture (Kenet et al. 2003).With our study, we aim to characterize

the resting state on yet another spatio-temporal scale, namely on

the scale of simulateneous single unit (SU) spiking activity recorded

in the motor cortex of awake macaque monkeys.

Spiking activity in monkey motor cortex has been studied

extensively during arm movements, which give rise to an

increased average neuronal firing compared with wait (Nawrot

et al. 2008; Rickert et al. 2009; Riehle et al. 2018). On a SU level,

direction-specific neuronal subpopulations encode the move-

ment direction by firing rate (FR) modulations (Georgopoulos

et al. 1986; Rickert et al. 2009). These and other studies also

investigated the spike time irregularity and the spike count

variability in monkey motor cortex during various behavioral

epochs: movements have been related to a lower spike count

variability across trials (Rickert et al. 2009; Churchland et al. 2010;

Riehle et al. 2018) and to a higher spike time irregularity (Davies

et al. 2006; Riehle et al. 2018) compared with wait or preparatory

behavior without movements. However, the resting state we

analyze in this study is conceptually distinct from waiting or

preparatory epochs: there is no task to prepare for and no signal

to be anticipated. It is a state without any particular expectations

or dispositions.

What is the interest of resting state studies? A major conclu-

sion of large-scale measurements is that the spontaneous activ-

ity can be characterized as a sequence of re-occurring spatio-

temporal patterns of activation or deactivation resembling task-

evoked activity (Fox and Raichle 2007; Vincent et al. 2007; Heuvel

and Hulshoff Pol 2010), a special example being the so-called

default mode network of brain regions with strong deactivation

during cognitive tasks (Biswal et al. 1995; Raichle 2009; Deco

et al. 2011). Likewise, the aim of resting state studies on the

level of single neurons is a comparative characterization of spik-

ing activity and its coordination between neurons at rest in

the awake animal. Such a characterization serves not only to

explain the variability in cortical responses or to differentiate

between different states (Arieli et al. 1996; Tsodyks et al. 1999;

Churchland et al. 2010; Riehle et al. 2018), but it also provides

data to validate realistic models of cortical networks (Markram

et al. 2015; Schmidt et al. 2018a, 2018b; Billeh et al. 2020) Such

models are derived from anatomical and electrophysiological

data and aim to mimic brain dynamics and function down to

the level of individual neuron activities. A prerequisite to under-

stand mechanisms underlying task-related dynamics and func-

tion in these models is, however, to first realistically emulate

the idle state and intrinsically generated dynamics (Vreeswijk

and Sompolinsky 1996, 1998; Brunel 2000; ; Kumar et al. 2008;

Voges and Perrinet 2010; Potjans and Diesmann 2014; Dahmen

et al. 2019). Therefore, it is important that benchmark data during

resting state on the level of single-neuron spiking activities is

available.

There are computational frameworks to be used for a quan-

titative comparison or, ultimately, validation of such spiking

neural network models against experiments (Gutzen et al. 2018),

but data on SU activity in the awake resting-state condition

is still lacking. As a consequence, network models are often

compared with data collected from anesthetized subjects (Kenet

et al. 2003; Renart et al. 2010) or in behavioral experiments,where

tasks or stimuli lead to transient deviations from the resting

state measurements such as, for example, increasing average

FRs during movements (Georgopoulos et al. 1986; Kaufman et

al. 2013; Riehle et al. 1997; 2018). Therefore, to provide a suitable

reference for the validation of spiking neural network models on

the single neuron level, we here present an analysis of parallel

spiking activity in awake macaque monkeys at rest.

The aimof this study is a detailed characterization of the spik-

ing activity at rest comparedwith task-induced and spontaneous

movements. To this end, we recorded the ongoing activity with

a 4×4 mm2 100 electrode Utah Array (Blackrock Microsystems,

Salt Lake City, UT, USA) situated in the hand-movement area of

macaque motor cortex. We performed 2 types of experiments:

1. During resting state (REST) experiments, we recorded the

neuronal activity of 2 monkeys seated in a chair with no

task or stimulation. The spontaneous behavior was then

classified into periods of rest, movements, and sleepy rest

(eyes closed).

2. Reach-to-grasp (R2G) experiments (Torre et al. 2016; Riehle

et al. 2013, 2018; Brochier et al. 2018) provide well-defined

periods of task-related movements and task-imposed

waiting. The latter behavior is similar to rest but contains

a mental preparation task.

We ask if a distinction between spontaneous (resting and non-

resting) and task-evoked (R2G) neuronal dynamics is expressed

on the level of SU and network spiking activity. More specifically,

we also ask if certain features of the neuronal firing during

pure resting periods allow for a differentiation from spontaneous

and task-induced movements, preparatory periods, or sleepi-

ness. Contrary to this expectation, the motor system may show

invariants, that is, statistical properties of the neuronal spiking

that do not change with respect to different behavioral epochs.

Although such comparisons have been performed on the level of

local field potential (LFP) recordings, for example, the investiga-

tion of behavior-related frequency modulations (Engel and Fries

2010; Kilavik et al. 2013), to our knowledge this is the first study

to perform such comparison on the level of spiking activity.

In the following, we first detail how we performed the seg-

mentation of REST recordings according to behavior, and then

explored the activity of single neurons in different behavioral

states. To investigate if there are comparable neuronal activity

states in task-related data, we performed similar analyses for

the R2G data. Apart from the SU dynamics, we also focused on

network properties of the neuronal activities: We evaluated pair-

wise covariances (COVs), dimensionality of rate activities, and

excitatory-inhibitory balance in the different behavioral states

of both REST and R2G. The comparison to the R2G data enabled

us to identify systematic network state changes which are less

pronounced in REST.

Materials and Methods

We first describe the 2 types of experimental recordings analyzed

in this paper: REST and R2G data. Then, we explain the experi-

mental procedure and the preprocessing of all data types with

a particular focus on the REST recordings and their behavioral

classification. Finally, the measures calculated to characterize

different behavioral states are listed and explained.

Experimental Paradigm and Recordings

Two adult macaquemonkeys (Macaca mulatta), a female (monkey

E), and a male (monkey N), participated in 2 distinct behavioral

experiments: resting state (REST) and reach-to-grasp (R2G). The

animal procedures were approved by the local ethical commit-

tee (C2EA 71; authorization A1/10/12) and conformed to the

European and French government regulations. Monkeys were

chronically implanted with a 4 × 4mm2 100 electrode Utah Array
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Figure 1. Behavioral segmentation in REST and R2G recordings. (A) Order and timing of events within a single trial of an R2G session. Colored lines above the time axis

indicate time intervals considered for the analysis: preparatory period (PP, cyan) and task-induced movements (TM, purple). SR indicates the switch-release event—

beginning of the hand movement. PP was defined as [CUE-OFF, CUE-OFF+500 ms], and TM as [SR, SR+500 ms] for monkey E, and [SR-150 ms, SR+350 ms] for monkey N

(different for the 2 monkeys due to differences in performance speed). (B) Order and relative duration of the behavioral states defined within each REST session (single

second precision): resting state (RS, light green) represents no movements and eyes open, sleepy rest (RSS, dark green) represents no movements and eyes (half-)closed,

spontaneous movements (M, pink) represent movements of the whole body and limbs.

(Blackrock Microsystems, Salt Lake City, UT, USA) situated in the

hand-movement area of the motor cortex. However, because of

unavoidable imprecision of the array placement, a few electrodes

at its edges might have been placed in the premotor cortex.

Spiking activity and LFP were recorded continuously during an

experimental session, with sampling frequency of 30 kHz. The

LFP signal was then down-sampled to 1 kHz. Details on surgery,

recordings, and spike sorting, as well as on the R2G settings are

described in Brochier et al. (2018), Riehle et al. (2013, 2018).

During a REST session, themonkeywas seated, but not immo-

bilized, in a primate chair. It was only fastened to the chair with a

collar. The chair was positioned so as to prohibit the animal from

reaching any objects. There was neither a particular stimulus

nor any task, the monkey was free to look around and move

spontaneously. In addition to the registration of brain activity,

the monkey’s behavior was video recorded and synchronized

with the electrophysiology recording. For each monkey, 2 such

sessions were recorded and lasted approximately 15 min for

monkey N and 20 min for monkey E.

In the R2G experiments, monkeys were trained to perform an

instructed delayed reach-to-grasp task to obtain a reward, see

Figure 1A. The monkey had to self-initiate a trial by closing a

switch (TS). After 800 ms, a CUE-ON signal provided some task-

related information. After another 300 ms, the CUE signal was

switched off which defined the start of the preparatory delay,

during which the monkey was required to sit still. One second

after the CUE-OFF, a GO signal provided the complementary task-

related information and indicated the monkey to start moving.

Themonkeyhad to release the switch (SR) and reach to the target.

After grasping the object, the monkey had to pull and hold it for

500 ms to obtain the reward (RW). Brain activity was recorded

together with time stamps of all events within a trial.

Typically, a REST recording was performed subsequent to an

R2G recording session. Only the second session of monkey E (E2)

was recorded directly before an R2G session, which is probably

the reason for the missing RSS intervals. The monkey was rather

twitchy, impatiently waiting for the R2G tasks, likely because

R2G experiments include a reward, whereas there was no reward

during REST recordings.

Behavioral Segmentation

Based on video recordings, each REST session was segmented

into intervals of several behavioral states. Three states were

defined with single-second precision as follows: resting state

(RS)—no movements and eyes open; sleepy resting state (RSS)—

no movements and eyes (half-)closed; and spontaneous move-

ments (M)—accounting for movements of the whole body and

limbs, see Figure 1B.

If amovement or a closed-eyes interval began during a partic-

ular second, thiswhole secondwas classified asMor RSS, respec-

tively. Eyemovements andminor headmovements were allowed

during RS. All other types of behavior (e.g., strong isolated head

movements) and periods for which it was not possible to clearly

classify the monkey’s behavior (e.g., due to a lack of visibility)

were considered as unclassified and excluded from analyses. To

increase the reliability of classification, behavioral scoring for

each session was performed by 2 independent observers, and

the results were merged later. In case of any conflicts, the parts

of the video in question were rewatched and reclassified upon

agreement.

Behavior classification in R2G recordings was based on the

events registered throughout the experiment, see Materials and

Methods: Experimental Paradigm and Recordings. Two periods

within a trial (see Fig. 1A) were considered: preparatory period
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Figure 2. Separation between broad-spiking (bs) and narrow-spiking (ns) SUs. (A) Spike-width distributions calculated from the average spike widths of all REST and

R2G recording sessions for monkey E and monkey N. The 2 vertical lines indicate the thresholds for ns (0.33 ms and 0.4 ms for monkeys E and N, respectively) and bs

units (0.34 ms and 0.41 ms for monkeys E and N, respectively). (B) Exemplary separation between ns (red) and bs (blue) units for the first REST recording of monkey N

(N1). SUs between the thresholds are left unclassified (uc, gray), as well as all SUs with a consistency smaller than 62%.

(PP), defined as 500 ms after the CUE-OFF (first half of the

preparatory delay, no movements), and task-related movement

(TM)—500ms after SR, including grasping. Because of differences

in performance speed of each monkey, this period was defined

as: [SR, SR+500 ms] for monkey E, and [SR-150 ms, SR+350 ms]

for monkey N. All successful trials were used.

Since the amount of data strongly differs between behav-

ioral states in REST, we used data slices of equal length, mostly

3 s slices, to have comparable statistics. The choice of slice

length represents a compromise between different factors: 1) the

slice length cannot exceed the typical duration of each behavior

(shortest for movement), 2) the slice length should be as long

as possible for reliable estimation of COVs within each slice,and

3) to average across slices, we need as many slices as possible.

Following these arguments, each behavioral segment was cut

into as many continuous slices as possible. For example, if a

REST segment was 7 s long, it was separated into 2 slices of 3

s and the remaining 1 s was not considered for the analysis. In

the R2G data, the slice length for the 2 behavioral states was 0.5

s by definition, see above. When directly comparing REST and

R2G data, we either considered 0.5 s slices for the REST data

(comparison of firing statistics) orwe concatenated six 0.5 s slices

of the R2G data to 3 s slices (analysis of COVs and balance).

Preprocessing

The waveforms of potential spikes were sorted into the SUs

offline and separately on each electrode using the Plexon Offline

Spike Sorter (version 3.3, Plexon Inc., Dallas, TX, USA), see Riehle

et al. (2018). Synchrofacts, that is, spike-like synchronous events

across multiple electrodes at the sampling resolution of the

recording system (1/30ms) (Torre et al. 2016),were then removed.

Sorted units were separated into broad-spiking (bs) and narrow-

spiking (ns) SUs representing putative excitatory and inhibitory

neurons, respectively. The separationwas achieved by threshold-

ing the spike-widths distribution (Bartho et al. 2004; Kaufman

et al. 2010, 2013; Peyrache et al. 2012; Dehghani et al. 2016)

in the following way. For a given monkey, average waveforms

from all SUs recorded in all considered sessions (REST and R2G)

were collected. Based on the distribution of spike-widths (time

interval between trough and peak of a waveform), thresholds

for “broadness” and “narrowness” were chosen such that the

values in the middle of the distribution remained unclassified

(Fig. 2). For monkey N, spikes with a width shorter than 0.4

ms were considered to be narrow (ns SUs, putative inhibitory

neurons), whereas spikes longer than 0.41 ms were considered

to be broad (bs SUs, putative excitatory neurons). For monkey E,

spikes narrower than 0.33 ms were considered as ns SUs and

spikes broader than 0.34 ms were considered as bs SUs. The

difference between monkeys was due to different parameters of

causal Butterworth filters applied prior to spike detection: 250–

5000 Hz with both high-pass and low-pass order 2 for monkey N

and 250–7500 Hz with high-pass order 4 and low-pass order 3 for

monkey E.

Next, a 2-step classification was performed. For a given

session, the thresholds were applied to the averaged SU

waveforms (first preliminary classification). Secondly, the single

waveforms of all SUs were thresholded and a consistency

measure c was calculated per SU: the percentage of SU single

waveforms preliminarily classified as broad. If c > 0.5, a SU was

classified as bs; if c < 0.5, a SU was classified as ns (second

preliminary classification). Typically, these 2 classifications

yielded inconsistent results for some SU, for example, a SU

with majority of spikes slightly narrower than 0.4 ms has been

classified (based on its average waveform) as bs SU. During

an iterative procedure, we increased the minimal required

consistency until there were no more contradictions in the

results of both preliminary classifications. SUs with high enough

consistency were then declared classified as putative excitatory

or inhibitory. SUs whose mean waveform’s widths fell between

two thresholds or whose consistency was too low were declared

unclassified.

Only SUs with signal-to-noise ratio (SNR, see Hatsopoulos

et al. 2004) of at least 2.5 (cf. Torre et al. 2016; Brochier et al.

2018; Riehle et al. 2018), and a minimal average FR of 1 Hz

were considered for the analysis to ensure enough and clean

data for valid statistics. Critical considerations on our assump-

tions, in particular the approach to separate ns and bs SUs,

are given in Discussion: Influence of Preprocessing and Critical

Assumptions.

Table 1 lists all single recording sessions for both REST and

R2G experiments. It provides information about the number of

SUs (separated into putative excitatory/bs and putative inhibito-

ry/ns) and the number of data slices (3 or 0.5 s long in REST) or

trials (R2G), in the different behavioral states. Thus, in total, we

have 2 sessions of 15–20 min from each monkey during REST,

and 6/5 sessions (of similar durations) of monkey E/N during

R2G. This results in 627 R2G trials of monkey E and 635 trials of
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Table 1. List of all considered experimental recordings

REST session #slices: 3 s (0.5 s) #SUs (#bs, #ns)

RSS RS M

e170103-002 (E1) 40 (232) 196 (1058) 43 (200) 115 (56, 50)

e170131-002 (E2) 0 189 (970) 67 (308) 133 (67, 56)

i140701-004 (N1) 20 (114) 151 (840) 58 (312) 130 (76, 45)

i140615-002 (N2) 45 (258) 156 (836) 36 (180) 154 (78, 62)

R2G session #trials #SUs (#bs, #ns)

e161212-002 108 129 ( 50, 55)

e161215-001 102 89 ( 39, 36)

e161220-001 114 96 ( 45, 34)

e161222-002 102 118 ( 58, 41)

e170105-002 101 116 ( 61, 44)

e170106-001 100 113 ( 56, 42)

i140613-001 93 137 ( 71, 56)

i140616-001 130 152 ( 75, 60)

i140617-001 129 155 ( 84, 59)

i140703-001 142 142 ( 84, 46)

i140704-001 141 124 ( 70, 43)

Note: Session names (first column) starting with “e” refer to monkey E, and with “i” to monkey N. Throughout the manuscript the REST sessions are referred to as E1,
E2, N1, and N2. Each R2G trial yields 1 PP and 1 TM period, equally long (0.5 s each).

monkey N. These were compared with the following numbers of

data segments of 0.5 s during REST: 232, 2028, and 508 segments

of RSS, RS, and M, respectively, for monkey E and 372, 1676, and

492 segments for monkey N.

LFP Spectra

The spectral density of the LFP in different behavioral states in

REST and R2G data was estimated with Welch’s method pro-

vided by Elephant (https://python-elephant.org). We considered

3 s slices for the REST and 0.5 s slices for the R2G data. The spec-

tra were obtained by averaging over single spectra from state-

specific slices of all respective recordings. We used a Hanning

window of 1 s and an overlap of 50% for the REST data, whereas

the R2G spectra were estimated with a Hanning window of 0.3

s with an overlap of 50%. Additionally, an artifact in session

N1—high-amplitude synchronous peak on all recording chan-

nels—was removed: it was replaced by the average of the remain-

ing signal.

Data Analysis

To characterize and compare different behavioral states, we

employed a set of analysis tools. We quantified the correlation

between neuronal firing and behavior, and we calculated the

dimensionality of population spiking activity and the balance

between time-resolved putative excitatory and inhibitory

population counts.

Preprocessing and data analyses were performed in Python,

version 2.7, with the Elephant package (https://python-elepha

nt.org). Since the distributions of our measures were typically

non-Gaussian, the significance of differences between themwas

assessed via Kruskal–Wallis tests for multivariate comparisons

(KW, nonparametric alternative to a one-way analysis of vari-

ance), with significance level α = 0.001. Multiple comparisons

were corrected for with a Bonferroni–Holm correction.

For visualizations of distributions obtained for different

behavioral states, we used notched box plots. The line in the

center of each box represents the median, box’s area represents

the interquartile range, and the whiskers indicate minimum and

maximum of the distribution (outliers excluded).

Behavioral Correlation

For each REST session, we defined a state vector based on the

behavioral segmentation, see Materials and Methods: Behavioral

Segmentation. Each element of the state vector represented the

behavioral state of a 1 s slice of the recording and was set

to −1 for RS, to 1 for M, and zero otherwise. To assess the

relation between the activity of each SU and monkey’s behav-

ior, the average FR in each 1 s slice was correlated (Spearman

rank correlation) with the corresponding element of the state

vector. Only pairs of entries in which the state vector was dif-

ferent from zero were considered. This procedure resulted in a

value, which we called behavioral correlation: BC ∈ [−1, 1], and

the corresponding P value (indicating statistical significance if

P < 0.001 after Bonferroni–Holm correction for the number of

SUs) for each SU. Positive BC indicated that the FR increased

during movements or decreased during rest, and vice versa

for negative BC. We investigated the distributions of BC values

separated between ns and bs SUs.

For a substantiation of these results, we additionally com-

pared the FRs during all 3 behavioral states defined in REST, again

separately for each SU: We applied Kruskal–Wallis test on FR

values obtained in all 3 s data slices to check for significant differ-

ences between M, RS, and RSS states. Note that this method does

not provide any quantification of the strength of the correlation

as represented by BC.

For both tests described above, we calculated the percentage

of SUs that changed their FR significantly with changes in the

behavioral states. This percentage was computed for all SUs and

also separately for ns and bs neurons.

Furthermore, we performed pairwise comparisons between

3 behavioral states per SU (again with Kruskal–Wallis tests and

in 3 s data slices), asking specifically for a significant increase

or decrease when comparing the FRs in any 2 states. We then

computed the percentages of all SUs, which either significantly

https://python-elephant.org
https://python-elephant.org
https://python-elephant.org
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Figure 3. Participation ratio (PR) to characterize the dimensionality. (A) Sketch showing relation between the eigenvalue spectrum and PR. If the first N out of 100

eigenvalues explain equal amounts of variance and the rest vanishes, the PR equals N (black vertical lines for N = 15). If a few eigenvalues are much higher than the

others, the resulting PR decreases (dark gray crosses). If, on the contrary, a uniformly distributed random value is added to each eigenvalue from the first case, the

calculated PR becomes higher (light gray circles). Experimental data are typically a mixture of the second and third case. Continuous traces show exemplary results for

a single 3 s data slice of RS (green) and M (pink) in session N1. (B) PR was calculated with different bin sizes (50, 100, and 200 ms) in exemplary session N1. PR values

were normalized by the number of SUs recorded in this session.

increased or decreased their FR in one state with respect to the

other.

Neuronal Firing in REST and R2G States

To compare the SU firing properties in behavioral states from

different experiments,we used 0.5-s-long slices of both REST and

R2G recordings. In REST, the single seconds at the transitions

from one state to another were excluded. For each time slice of

each SU, we estimated the average FR and the local coefficient

of variation (CV2) (Ponce-Alvarez et al. 2010; Riehle et al. 2018;

Voges and Perrinet 2010), and per SU across slices the Fano factor

(FF) (Nawrot et al. 2008; Nawrot 2010; Riehle et al. 2018), which

describes the variability in SU spike counts across trials (R2G) or

time slices (REST). For the REST recordings, we also calculated

the commonly used coefficient of variation (CV) (Shinomoto et al.

2003; Ponce-Alvarez et al. 2010; Voges and Perrinet 2010), shown

in the additional figure in Supplement 1.CV andCV2 are based on

the inter-spike-interval distribution of a SU: they characterize the

(ir-)regularity in neuronal firing. The CV2 corrects for transient

firing rate changes which yield inappropriately high CV values

(Ponce-Alvarez et al. 2010; Voges and Perrinet 2010).

We compared the FR and CV2 values obtained for each SU

within each slice of RSS, RS, M, TM, and PP states in 2 different

ways. On the one hand, we averaged over time slices/trials to

represent the variability with respect to SUs. On the other hand,

we averaged the results obtained for each data slice/trial over SUs

in order to analyze the variability of our measures in time. The

significance of the differences between the behavioral states was

assessed with a Kruskal–Wallis test including a Bonferroni–Holm

correction, both when comparing all 5 states and in pairwise

comparisons.

Covariance and Dimensionality

Tomeasure the joint variability in ratemodulation,we calculated

the pairwise spike count covariance (COV) (Cohen and Kohn

2011; Dahmen et al. 2019). REST data were cut, and R2G data

were concatenated into 3 s slices (state-resolved) and binned

into 100 ms intervals. The bin size of 100 ms was a compromise

between obtaining enough bins to calculate COV values (given

a slice length of 3 s), considering enough spikes for reliable

estimation of COV, and using a time scale appropriate for the

examination of rate modulations. Correspondingly, the R2G data

from 6 consecutive trials contributed to a single COV value.

The COV between spike trains i and j was defined as:

COV(i, j) =
〈bi − mi,bj − mj〉

l − 1
, (1)

with bi and bj—binned spike trains, mi and mj being their mean

values, l the number of bins, and 〈x,y〉 the scalar product of

vectors x and y. Thus, for each 3 s slice of a particular state, we

obtained a COV matrix M ∈ R
NSU×NSU with NSU—number of SUs.

Based on the COV matrices, we calculated the participation

ratio (PR) to characterize the dimensionality of activity in differ-

ent behavioral states, seeMazzucato et al. (2016), Gao et al. (2017).

Eigenvalue decomposition of COV matrix M yields NSU eigenval-

ues λ with corresponding eigenvectors ν, such that Mνi = λiνi.

The eigenvalues were used to calculate the PR of the neuronal

dynamics:

PR =
(
∑

i λi)
2

∑
i λ

2
i

. (2)

The PR thus quantifies how many eigenvectors are necessary

to explain a significant part of variance in dynamics described

by M.

The PR is low if most of the variability is captured by the first

few eigenvectors.A large PR indicates thatmany eigenvectors are

necessary to capture the dynamics—a sign of high complexity,

see Figure 3A. In order to test the robustness of our results,

we performed our analysis with different bin sizes. The result

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab033#supplementary-data
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is shown in Figure 3B. Here, all bin sizes revealed the same

PR-dependent ordering of behaviors. This suggests that our

results are robust to the choice of bin size.

The value of the PR depends on the number of SUs present

in the analysis: It can take values 1 ≤ PR ≤ NSU. Additionally,

the relation between the PR and NSU is generally not linear (see

Supplement 3). In order to make the PRs comparable across

recording sessions with different numbers of SUs, we computed

the PR always using only 89 SUs, which is the number of SUs

in the session with the smallest number of SUs (i.e., session

e161215-001). To avoid any bias in PR values due to a specific

choice of SUs, for each 3 s long data slice a random subsampling

of 89 SUs for PR computation was repeated 100 times, and the

obtained PRs were averaged over the repetitions. Thus, we get 1

PR value per data slice, in the range [1, 89].

Balance between Putative Excitatory and Inhibitory Firing

The balance between putative excitatory (bs SUs) and inhibitory

(ns SUs) population firing was examined similarly to the pro-

cedure proposed in Dehghani et al. (2016). In the first place, we

examined the differences between z-scored population activities

at various time scales (bin sizes from 1 ms to 10 s) across the

whole recording (no state-specific slices). Obtained values were

generally close to zero, indicating balanced activity. However, for

bin sizes ≥30 ms, we observed transient deviations from perfect

balance. This means that the difference between the ns and bs

population activities becomes occasionally large relative to the

magnitude of their fluctuations on such time scales. To compare

the level of balance in different behaviors, we selected the bin

size of 100 ms, but similar results can be obtained with bin

sizes up to 500 ms. For each REST and R2G session of a given

monkey, we binned the 3 s time slices (concatenated from 6

consecutive trials of 0.5 s for R2G data) into 100 ms bins (in the

same manner as for the dimensionality calculation). Next, we

applied 2 methods to quantify the balance between population

activities.

Firstly,we z-scored the population activities, using the respec-

tive mean and standard deviation of the whole recording (not

state-specific). Then,we calculated, separately for each state, the

difference between the z-scored bs and ns population activity of

each 100 ms bin in each time slice: If this difference was close

to zero, that is, if pooled ns and bs spike counts were nearly

identical, the network activity was called balanced. A negative

value indicated a domination of ns activity, whereas a positive

value meant that the bs activity was higher.

Secondly, we calculated the Spearman rank correlation

between raw bs and ns population activities across 100 ms

bins within each 3 s time data slice: The higher the correlation

ρ(bs, ns), the more strict the balancing between the ns and bs

populations (cf. Renart et al. 2010; Tetzlaff et al. 2012).

To investigate the relationship between balance and dimen-

sionality, we calculated the Spearman rank correlation between

ρ(bs, ns) and PR for each monkey, pooled over all REST and R2G

sessions, respectively.

Results

We aim to determine in what regards spiking activity during

rest is distinct from other behavioral states like spontaneous

movements, sleepiness, movement preparation, or task-induced

grasping. To this end, we first clarify that the behavioral seg-

mentation is meaningful in terms of neuronal activity on 2

different scales. On the mesoscopic scale, which incorporates

the collective behavior of neurons, we show that the LFP spectra

differ considerably across states. On the microscopic scale, we

show that SU firing is clearly correlated to themonkeys’ behavior.

We then examine the relations between behavior, spiking activity

dimensionality and excitatory-inhibitory balance.

Behavioral Segmentation

For each REST session, the behavioral segmentation provides

data segments of the following 3 states: resting state (RS)—no

movements and eyes open; sleepy resting state (RSS)—no move-

ments and eyes (half-)closed; spontaneous movements (M)—

movements of the whole body and/or limbs (cf. Fig. 1B). For R2G

recordings,we extracted 2 behavioral states defined with respect

to trial events (Riehle et al. 2018): the preparatory period (PP) and

task-inducedmovements (TM). Table 1 in Materials andMethods

lists all recording sessions for both REST and R2G experiments

together with the resulting number of SUs and data segments.

The segmentation based on video recordings is substantiated

by comparison of the LFP spectra in the above-defined states

(Fig. 4). The relationship between LFP and behavior has been

shown in several studies, for example, Pfurtscheller and Aranibar

(1979), Fontanini and Katz (2008), Engel and Fries (2010), Taka-

hashi et al. (2011), Kilavik et al. (2013). Beta oscillations (≈13 to

30 Hz) have been linked to states of general arousal, movement

preparation, or postural maintenance (Baker et al. 1999; Kilavik

et al. 2012) and are typically suppressed during active movement

(Pfurtscheller and Aranibar 1979).

In our data, the awake, no-movement periods RS and PP show

peaks in the range from ≈10 to ≈30 Hz (alpha/beta range), the

peak in PP occurs for a higher frequency than in RS (Fig. 4).

In both monkeys, the movement periods M and TM contain

more power compared with other states in frequencies above

≈50 Hz (gamma), whereas beta power is reduced. However, the

spectrum during sleepiness RSS differs between monkeys. In

monkey E, RSS seems to be a distinct physiological state: it shows

strong slow oscillations, as to be expected (Gervasoni et al. 2004;

Fontanini and Katz 2008) for a sleepy version of RS. In monkey N,

however, the spectra during RSS are more similar to RS, but still

with more power in the lower frequency bands.

Relation between Neuronal Firing Rates and Behavior

A prerequisite for the following analyses is to formalize a rela-

tionship between neuronal spiking activity and the behavioral

states of a monkey. Therefore, we quantified the correlation

between SU firing and the behavioral states.

Figure 5A shows the time-resolved FR of all recorded SUs

in 1 REST session (N1) (see Materials and Methods: Behavioral

Correlation). They change in time and are variable across SUs,

which is true for all REST sessions. The FRs range from 0 up to

≈100 spikes per second. Some SUs exhibit a constant firing (not

visible by eye), for example, unit 127 in Figure 5A with a small

(in relation to the mean value) standard deviation, FR = 25.29 ±

6.46. The firing of other SUs changes considerably over time,

for example, unit 17 with a relatively large standard deviation

FR = 1.74 ± 3.53.

To examine this variability with respect to the behavior of

the monkey, we defined a behavioral state vector (bottom panel

of Fig. 5A). Its entries represent the behavioral states: the value

is set to +1 if there are movements (M) and −1 if the monkey

is at rest (RS), and for the following analysis all other states

are not taken into account. The bottom row of Figure 5B shows

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab033#supplementary-data
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Figure 4. Power spectral density of LFP in different behavioral states. Panels inA pertain to REST, panels in B to R2G, left formonkey E and right formonkey N, respectively.

States are defined in Figure 1A and B. The peak at 50 Hz in the R2G spectra is an artifact (line frequency) and was not considered.

Figure 5. The correlation between SU firing and behavior for 1 REST session of monkey N. (A) Time- and population-resolved firing (spikes/s). SUs are sorted according

to average FRs in increasing order from bottom to top. The behavioral state of the monkey is shown below. The time resolution is 1 s. Empty spaces denote periods of

unclassified behavior, vertical lines indicate transitions between identified states. (B) Comparison of average FRs (top row) and behavioral correlation values (bottom

row, only M and RS states are taken into account). The SUs in both diagrams are sorted according to increasing values of BC. Blue bars indicate bs (putative excitatory)

and red ns (putative inhibitory) SUs, gray indicates unclassified units. Black stars above the BC bars indicate significant correlations. (C) Distributions of BC values. In

this recording session the difference between the ns (red) and the bs (blue) distribution is significant.

the value of correlation between the state vector and the FR

(in 1 s bins) of each of the SUs, termed as behavioral correlation

(BC, see Materials and Methods: Behavioral Correlation), ordered

from minimum to maximum of the obtained BC value. The bars

in the panel above are ordered identically and show the FRs

of the corresponding SUs, averaged across the whole recording.
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Table 2. Behavioral correlation for all REST sessions

Session % SUsBC (bs, ns) mean BC (bs, ns) ρBC,FR % SUsKW (bs, ns)

E1 53.9 (50, 60) 0.13 (0.14, 0.13) –0.19, P = 0.03 54.7 (51.7, 58)

E2 66.9 (64.2, 71.4) 0.14 (0.14, 0.15) –0.09, P = 0.3 76.9 (79.1, 76.8)

N1 40.8 (32.9, 53.3) 0.10 (0.07, 0.15) –0.13, P = 0.2 48.1 (39, 62.2)

N2 46.8 (39.7, 54.8) 0.12 (0.09, 0.14) –0.04, P = 0.7 43.5 (39.7, 50)

Note: The second column gives the percentage of SUs that show a significant behavioral correlation (BC, P < 0.001), the third column gives BC averages, and the fourth
column the Spearman rank correlation between average single unit FR and BC (ρBC,FR). Column 5 lists the percentages of SUs that change their firing significantly
(P < 0.001) with the behavioral state, obtained with a Kruskal–Wallis test on M, RS, and RSS. The numbers in brackets indicate the values obtained when separating
between bs (first entry) and ns (second entry) SUs. 1 s resolution.

Most SUs increase their FR during M (mostly on the right side

of the panel), many of them significantly (BC > 0.17, P <

0.001). A much smaller set of SUs increases their firing during RS

(BC < −0.17), seen mostly on the left side of the panel. This

asymmetry between the 2 states is reflected by the positive

average BC in all 4 REST sessions (Table 2 column 3). The second

column of Table 2 lists the percentage of SUs with significant BC,

for all sessions. They range from 40.8 to 66.9%, however, neither

the sign nor the amount of the behavioral correlation can be

reliably predicted from the average FR: Both SUs with very high

or very low mean FR show negative, positive and close to zero

BC values. This is also indicated by the insignificant correlation

between FR and BC (Table 2 column 4): ρBC,FR. Yet, the consistently

negative ρBC,FR values suggest that SUs with lower FRs tend to be

more sensitive to behavior than highly active ones (the lower the

mean FR, the higher the mean BC).

In order to include the RSS state (in addition to M & RS) in

the correlation of neuronal activity and behavioral states, we

performed a Kruskal–Wallis test, per SU, for differences in FR

among the 3 behavioral states. This provides information about

the significance, but no quantification of the strength of the

correlation. The obtained percentage of significantly correlated

SUs (P < 0.001) ranges from 55 to 77% in monkey E and from

44 to 48% in monkey N (last column of Table 2). Thus, we find

a clear inter-relation of the behavioral state and the neuronal

activity.

Figure 5C shows the distribution of the BC values in session

N1 for all SUs (green shaded area), and for SUs separated into

putative excitatory/bs SUs and putative inhibitory/ns SUs (blue

and red lines, respectively). In this session, we find a significant

difference between the distributions for ns and bs SUs. However,

this could not be substantiated in the data from other recording

sessions, indicating that the neuron type does not determine the

strength of correlation with behavior. Still, the firing of putative

inhibitory as compared with excitatory neurons seems to be

more related to behavioral states. This is indicated by higher

percentages of significantly correlated ns than bs SUs (cf. Table 2

column 2 and 5), particularly in monkey N, see also the higher

mean BC of ns units in monkey N (cf. Table 2 column 3).

To examine in more detail behavior-related modulations

of average FR, we performed a set of pairwise compar-

isons between behavioral states per SU (using 3 s slices, see

Materials and Methods: Behavioral Correlation). Table 3 sum-

marizes the results by listing the percentages of SUs that

significantly change their FR with respect to behavior. We

observe that ≈34 to 67% of the SUs show significantly higher

FRs during M as compared with RS, but still, 5–11% of SUs show

significantly higher FRs during RS (second and fifth column in

Table 3). Correspondingly, the percentages for RSS versusM show

a similar tendency (≈25 to 48% and 2 to 8%, respectively, column

3 and 6). This confirms the results obtained so far, that there are

mostly lower FRs during rest (RS and RSS) than duringmovement

(M).

The above findings are consistent in both monkeys, but the

firing during sleepy rest (RSS) showsmonkey specific differences.

In monkey N, only 3–4% of all SUs show significantly lower FRs

in RS than in RSS but in monkey E the percentage is ≈20%

(Table 3 column 4). Vice versa, only 3.8% of all SUs in monkey

E show significantly higher FRs in RS than in RSS, whereas this

is true for ≈20% to 30% of all SUs in monkey N (last column).

Similarly, the percentages of SUs with lower FRs during RS and

RSS as compared with M (second and third column in Table 3)

are similar in monkey N. In monkey E, however, only 25% of SUs

show higher FRs during M than during RSS, whereas 38% of the

SUs show a higher FRs during M as compared with RS. Thus,

in agreement with our observations of the LFP spectra, rest and

sleepy rest in monkey E express rather different features while

they are quite similar to each other for monkey N.

Above we show that the firing of approximately half of the

SUs is significantly correlated to the behavior and that RS is,

on average, associated with lower FRs than movements. How-

ever, the absolute value of the FR alone is not predictive of the

response of a SU to different behavioral states. In the following

section, we aim to investigate other aspects than mere SU firing

rate in different behavioral states.

Single Unit Firing Properties in Spontaneous
and Task-Related Behaviors

Given the relation between behavior and SU firing rate mod-

ulations, we now ask if other features of SU activity can be

directly linked to particular behavioral states. From now on, we

include R2G data to additionally look for differences on the level

of spontaneous versus task-related behaviors.

The box plots in Figure 6 and the values listed in Table 4

describe averaged FR, CV2 and the FF, calculated for 0.5 s time

slices of all REST and R2G sessions, per SU and time slice (see

Materials and Methods: Data Analysis). The CV2 characterizes

the (ir-)regularity of neuronal firing across time. A value closer to

zero (CV2 / 0.5) indicates regular spiking, the Poissonian firing

is characterized by CV2 = 1 (Shinomoto et al. 2003; Voges and

Perrinet 2010), and values higher than one indicate even more

irregular spiking (characteristic, e.g., for certain types of gamma

point processes, see Nawrot et al. 2008). The FF describes the

variability of SU spike counts across trials (R2G) or time slices

(REST) (Nawrot 2010; Nawrot et al. 2008; Riehle et al. 2018). It

equals one for a Poisson process and decreases for more reliable

spiking.

Kruskal–Wallis tests for differences among the 5 behavioral

conditions yield highly significant results for FR and FF (P ≪

0.0001) for both monkeys. The results of pairwise comparisons

are listed in Table 5. Averaged across time slices (Fig. 6A), FRs are
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Table 3. Pairwise comparisons of SU firing rates in different states

Session RS < M RSS < M RS < RSS RS > M RSS > M RS > RSS

E1 37.6 24.8 18.8 7.7 7.7 3.8

E2 67 11

N1 33.6 30.5 3.8 6.1 1.5 19.8

N2 42.9 48.1 2.6 4.5 1.9 30.5

Note: Percentage of SUs that exhibit significantly lower (first 3 columns) or higher (last 3 columns) FRs in the first of the 2 states indicated in the column header (RS
vs. M, RSS vs. M, and RS vs. RSS) for all REST sessions (in 3 s slices).

Table 4. Quantification of average FR (top row), regularity of spiking (CV2, middle row) and spike count variability (FF, bottom row)

Monkey RSS RS M TM PP

Firing rate FR [Hz]

E 6.67 ± 5.38 6.50 ± 5.74 8.86 ± 6.59 9.21 ± 9.29 6.30 ± 6.91

N 6.66 ± 4.67 7.83 ± 5.52 9.47 ± 6.32 13.26 ± 11.47 9.28 ± 7.06

Local coefficient of variation CV2

E 0.86 ± 0.16 0.83 ± 0.17 0.83 ± 0.15 0.85 ± 0.22 0.81 ± 0.24

N 0.83 ± 0.15 0.79 ± 0.15 0.80 ± 0.16 0.83 ± 0.17 0.78 ± 0.20

Fano factor FF

E 3.14 ± 1.55 2.06 ± 0.88 3.05 ± 1.72 1.30 ± 0.80 1.40 ± 0.63

N 2.31 ± 1.30 1.86 ± 1.07 2.29 ± 1.42 1.11 ± 0.59 1.20 ± 0.75

Note: Given are mean values (averaged across time slices and SUs) and corresponding standard deviations with respect to SUs. All values are obtained from 0.5 s slices,
for different behavioral states in REST (RSS, RS, M) and R2G (TM, PP), pooled across all recordings of the respective type.

highest during movement states (M & TM) and lowest during

rest RS(S) and PP (many differences being significant). Inferred

from CV2, the firing is most regular in PP and least regular

in RSS and TM, with a slightly larger spread of values in both

R2G states as compared with REST, though these differences are

mostly insignificant. In contrast, the differences in spike count

variability as measured by FF are pronounced and statistically

significant: R2G states exhibit a much smaller and less variable

FF, that is, a higher reliability of spike counts across data slices,

than REST states. Among the REST data, M and RSS show the

highest mean and spread of FF values, whereas the spike count

variability during RS is lower and less variable.

Averaging across SUs (Fig. 6B), we also examine the variability

in time. Note that even though the number of RS time slices

highly exceeds that of SUs (cf. Table 1), the observed spread of

the corresponding values is much smaller. This holds for all

behavioral states. Since the variability across time slices (panel

B) is much smaller than the variability across SUs (panel A), we

later on average over time and consider only the variability with

respect to SUs.

In summary, we find high SU variability in most of the mea-

sures formost of the states and the observed differences between

states aremostly significant.Resting periods are characterized by

rather low FRs as compared with movements in agreement with

the results in section Results: Relation between Neuronal Firing

Rates and Behavior. The RS in particular shows a higher reliabil-

ity of spike counts (lower FF) than M and RSS, but all REST states

show a clearly higher FF as compared with R2G states.

Network Firing Properties

We now turn toward the analysis of coordinated firing as

opposed to SU dynamics. Coordination between neurons can

be measured at various time scales and quantified with various

methods. We here consider spike count covariances calculated

for 3 s sliceswith a bin size of 100ms, seeMaterials and Methods:

Covariance and Dimensionality. To this end, we first show the

COV distributions, averaged over slices of the REST data (Fig. 7A).

Although the mean COV value during all behavioral states

in REST is close to zero, the spread of the COV distribution

differs between states. Statistical comparisons of the shapes

of the distributions with 2-sample Kolmogorov–Smirnov tests

reveal significant (P ≪ 0.0001) differences for all pairs in both

monkeys. In monkey E, the standard deviation of the COVs is

considerably lower during RS (COVRS = 0.003±0.018) than during

RSS (COVRSS = 0.018 ± 0.058) and M (COVM = 0.02 ± 0.08). The

same is true for monkey N: COVRS = 0.005±0.021 compared with

COVRSS = 0.01±0.042 and COVM = 0.01±0.055. For bothmonkeys,

the mean COV value is the smallest during RS. In summary, we

find that neuronal firing is much less correlated during rest as

compared with movements.

The differences in the COV distributions motivate a more

detailed investigation of the coordination of all recorded neu-

rons. Apart from mean and variance of the COV distribution,

another summarizing measure for the COV structure has been

established and discussed in recent years: the participation ratio

(Abbott et al. 2011; Mazzucato et al. 2016; Gao et al. 2017). The

PR depends on all COVs in the network as it is derived from

the eigenvalues of the COV matrix. Mazzucato et al. (2016) show

that the PR depends on a combination of the first and second

order moments of auto- and cross-covariances. The physical

interpretation of the PR is the dimensionality of the manifold

spanned by the neuronal activity: a small PR indicates that only

a few eigenvalues are necessary to account for a major fraction

of the variance in the data, and hence only a few dimensions cor-

responding to the respective eigenvectors are needed to describe

the dynamics of the activity, for example, in case of a coherent

increase in neuronal firing of a majority of SUs. The higher the

PR, the more dimensions are needed to capture the variability of

the activity. We performed an analysis for the REST and also for

the R2G states (0.5 s slices were concatenated to 3 s slices).

Figure 7B shows the time-resolved visualization of PR,

calculated in a sliding window of 3 s length and 2 s overlap

for 1 REST session of monkey E. The PR varies over time and
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Figure 6. Comparison of firing properties in REST & R2G states calculated for

0.5 s data slices. (A) Box plots showing the variability across SUs: firing rate,

spiking regularity, and spike count variability characterized by FR, CV2, and FF,

here averaged over time slices. (B) Box plots showing the variability over time:

distributions of time-resolved FR and CV2 averaged over SUs. Data pooled over

REST sessions, two for each monkey (states RSS, RS, and M), and over R2G

sessions, 6 of monkey E and 5 of monkey N (states TM and PP).

it typically changes coherently with behavioral state (Fig. 7B,

bottom panels). This observation is consistent across recordings

and monkeys, as summarized in Figure 7C. The box plots

visualize the distributions of PRs obtained in all nonoverlapping

3 s time slices from all recording sessions of a given type (REST or

R2G) per monkey. These results indicate that the dimensionality

of population spiking activity is highest during RS and PP, and

lowest during TM. The PR during the RSS state is much lower

than the one during the RS state, closer to the value obtained

during movements, especially for monkey E. The spread of the

values is notably higher in REST than in R2G states, especially in

monkey N.

Kruskal–Wallis tests for PR differences among all behavioral

conditions yield highly significant results (P ≪ 0.0001) for both

monkeys. Pairwise comparisons yield mostly significant results

except for RS versus PP and RSS versus TM in monkey E, as well

as RSS versus M and PP in monkey N. These results hold for

Table 5. Significance of pairwise comparisons of FR, CV2, and FF
results shown in Figure 6A

Note: Upper triangle of each table: monkey E; lower: monkey N. Stars indicate
significant differences (*P < 0.001) and minuses insignificant differences
after Bonferroni–Holm correction with α = 0.001. Gray background highlights
significant results.

different bin sizes (see Materials and Methods: Covariance and

Dimensionality).

The higher dimensionality of RS and PP as compared with

movement states and sleepy rest is a clear evidence for the com-

plexity of these states: more dimensions are needed to capture

their activity dynamics. Moreover, the large difference between

the PR of RS and RSS emphasizes the necessity to distinguish

between rest with eyes open and closed. In the following, we will

support this claim by analyzing the balance between putative

excitatory and inhibitory population activity.

Balance in Population Activity

Complementary to the dimensionality analysis that is sensitive

to single neuron-specific fluctuations, we now investigate the

population-level coordination that depends only on average

single-neuron COVs. Balance between excitation and inhibition

is considered as an attribute of a physiological network state in

contrast to nonphysiological states like, for example, epilepsy,

though transient deviations from perfect balance, that is, an

instantaneous dominance of excitation or inhibition, have been

observed during physiological activity (Zhang and Sun 2011;

Dehghani et al. 2016). Theoretical studies simulating cortical
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Figure 7. Network firing properties. (A) Distributions of pairwise COVs for the REST recordings of monkey E (left) and monkey N (right), calculated in 3 s slices with 100

ms bins, averaged over slices per SU pair and pooled over sessions. (B) Time-resolved PR in session E1, calculated in 3 s long sliding windows with an overlap of 2 s. Each

value on the plot corresponds to the center of the respective window. Colors in the background indicate behavioral states (cf. legend in the right panel of A). Two bottom

panels show close-up view at periods marked by dashed lines in the top panel. (C) Dimensionality: Box plots show the PR of REST (RSS, RS, M) and R2G (TM, PP) states

for monkey E (left) and monkey N (right), each single value of the distributions corresponds to a single 3 s data slice. Pooled over sessions.

network dynamics mostly assume a balanced resting state

(Vreeswijk and Sompolinsky 1996, 1998; Brunel 2000) and relate

this to low average COVs between neurons (Renart et al. 2010;

Tetzlaff et al. 2012). We here investigate the balance between

putative excitatory (bs) and inhibitory (ns) population activities

across different behavioral states.

To begin with, we compute FRs in 0.5 s slices averaged sepa-

rately over bs and ns SUs across all REST and R2G sessions and

states: The average FR of ns SUs is 9.93±9.33 spikes/s for monkey

E and 11.97 ± 9.48 spikes/s for monkey N, whereas the average

FR of bs SUs is considerably lower, namely 5.73 ± 5.54 spikes/s

for monkey E and 8.51 ± 7.49 spikes/s for monkey N. The same

tendency can be observed when considering separate behavioral

states in REST recordings (Table 6): Putative inhibitory neurons

exhibit higher FRs than putative excitatory cells, and the ratio

between the rates (ns/bs) is always larger than one. There is,

however, no specific relation between the ns/bs ratio and the

behavioral state.

Therefore, we now look at a much smaller time scale and

at the balance defined as the difference between ns and bs

population spiking. Figure 8A presents time-resolved, z-scored

spike counts of bs (blue) and ns (red) population in 100 ms bins,

and the difference between the population activities in gray.

Putative excitatory and inhibitory activities seem to fluctuate
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Table 6. Average FRs of bs and ns SUs and their ratio

Session RSS RS M

bs ns ns:bs bs ns ns:bs bs ns ns:bs

E1 4.38 ± 3.11 8.68 ± 6.1 2.0 4.17 ± 3.36 8.43 ± 7.18 2.0 5.8 ± 5.14 10.67 ± 7.57 1.8

E2 4.94 ± 4.04 8.71 ± 6.69 1.8 6.91 ± 4.53 12.05 ± 7.14 1.7

N1 5.67 ± 4.5 8.22 ± 5.24 1.4 6.7 ± 5.51 9.24 ± 5.56 1.4 7.26 ± 5.33 12.19 ± 6.32 1.7

N2 5.92 ± 4.09 7.55 ± 4.28 1.3 6.77 ± 4.88 9.3 ± 5.57 1.4 7.72 ± 5.07 12.16 ± 7.27 1.6

Note: FRs are computed from 3 s slices in 4 REST sessions and separately for each REST state (RSS, RS, and M).

Table 7. Quantification and correlation of balance and dimensionality

Monkey RSS RS M TM PP

Putative excitatory/inhibitory prevalence 1 (bs, ns)

E −0.19 ± 0.86 0.00 ± 0.72 0.06 ± 0.85 −0.16 ± 1.04 0.16 ± 0.89

N −0.32 ± 1.01 0.09 ± 0.98 −0.06 ± 1.07 −0.28 ± 0.97 0.28 ± 0.67

Instantaneous balance ρ(bs,ns)

E 0.39 ± 0.22 0.21 ± 0.23 0.44 ± 0.29 0.27 ± 0.22 0.1 ± 0.21

N 0.36 ± 0.21 0.16 ± 0.24 0.16 ± 0.24 0.39 ± 0.24 0.08 ± 0.21

Participation ratio (PR)

E 17.2 ± 4.4 27.5 ± 5.1 21.7 ± 6.9 15.4 ± 3.9 28.9 ± 4.9

N 21.0 ± 5.9 27.3 ± 6.8 18.0 ± 6.3 13.7 ± 4.1 23.4 ± 5.5

Spearman rank correlation between ρ(bs,ns) and PR

E –0.28 –0.13 (P < 0.01) –0.63 (P ≪ 0.001) –0.15 –0.15

N –0.19 –0.14 (P < 0.05) –0.29 (P < 0.01) –0.29 (P < 0.01) 0.16

Note: Top rows: quantification of balance between putative excitatory and inhibitory population activities (1(bs, ns) and ρ(bs, ns)). Middle row: quantification of
dimensionality as measured by the PR. Bottom row: Spearman rank correlation between ρ(bs, ns) and PR; only P values smaller than 0.05 are listed. All values were
obtained from 3 s slices, for different behavioral states in REST (RSS, RS, M) and R2G (TM, PP), pooled across all recordings of the respective type.

simultaneously, indicating balance: Pronounced deviations from

average spike counts can be seen in both populations, especially

during RSS (dark green background color) and M (pink back-

ground). Considering the distributions of mean population spike

counts (Supplement 1 Fig. 1), the standard deviations during M

and RSS (9.56 ± 2.49 and 7.81 ± 2.75, respectively, ns population,

session E1) are much higher than during RS (7.56 ± 1.54). They

are even larger (approximately factor 1.7) than expected from

the largermeans (approximately factor 1.1)—an indication of dis-

tributions with more extreme values, that is, potential transient

increases in the population spike count.

We performed a quantitative analysis of how the balance

between bs and ns SUs relates to the behavioral states, on the

time scale of 100 ms, for our REST and R2G data. Firstly, we

asked if there was a state-specific prevalence of ns or bs activ-

ity. Figure 8B shows the results of subtracting z-scored ns from

z-scored bs population activity. The histograms show the distri-

butions of values obtained in all 100 ms bins in the pooled REST

and R2G sessions of monkey E and N, and Table 7 (top row) lists

the values of mean and standard deviation.

We find a clear difference between the distributions obtained

for the PP and TM in the R2G data of both monkeys: TM distribu-

tions are shifted toward negative and PP toward positive differ-

ence values (mean ± std: 1TM = −0.16±1.04,1PP = 0.16±0.89 for

monkey E and 1TM = −0.28 ± 0.97, 1PP = 0.28 ± 0.67 for monkey

N), pointing out a prevalence of ns or bs activity, respectively. This

indicates that the balance between the excitatory and inhibitory

activity dynamically changes depending on the behavioral state

of the monkey during task performance.

In the REST data of both monkeys, the sleepy rest state

is slightly dominated by inhibition (1RSS = −0.19 ± 0.86 for

monkey E and 1RSS = −0.32 ± 1.01 for monkey N). Concerning

rest and movements, however, the general tendencies are less

pronounced: For monkey E, we find 1RS = 0 ± 0.72 and 1M =

0.06±0.85, thus no particular dominance. For monkey N, we find

1RS = 0.09±0.98 and 1M = −0.06±1.07, so again not significantly

dominated by any population.

Secondly, in addition to the mere difference between the bs

and ns activities, we quantified how they covary with each other

within each time slice by computing the Spearman rank corre-

lation ρ(bs, ns) between bs and ns population activity (cf. Renart

et al. 2010; Tetzlaff et al. 2012). A higher correlation value indi-

cates a more strict instantaneous balancing between the exci-

tatory and inhibitory activity. Figure 9A shows box plots of the

correlation measure ρ(bs, ns) for the different behavioral states

of the 2 monkeys, and the corresponding means and standard

deviations are listed in Table 7. For monkey E, the correlation

between bs and ns activity is highest during M (ρM = 0.44± 0.29),

meaning that the balance was kept best during M state, closely

followed by RSS (ρRSS = 0.39 ± 0.22), see Figure 9A, left. RS shows

the lowest correlation (ρRS = 0.21 ± 0.23), it is thus the least

balanced state in the REST recordings. Pairwise comparisons

confirm significantly different results for RS versus RSS and

M, but not for RSS versus M. In monkey N, RS and M exhibit

identical mean correlations (ρRS = 0.16 ± 0.24, ρM = 0.16 ± 0.24)

(see Fig. 9A, right), both are significantly less balanced than RSS

(ρRSS = 0.36 ± 0.21).

In the R2G data of both monkeys, we find that the PP (ρPP =

0.1 ± 0.21 for monkey E and ρPP = 0.08 ± 0.21 for monkey N) is

less balanced than task-induced movements (ρTM = 0.27 ± 0.22

for monkey E and ρTM = 0.39 ± 0.24 for monkey N); the PP

state shows a significantly (P < 0.001) lower correlation between

ns and bs activities. We thus conclude that behavioral states

without movements (RS, PP) are less balanced than movement

states when considering a timescale of 100 ms.

Participation ratio and balance measure different aspects of

correlations in the underlying network. We now ask if and how

thesemeasures relate to each other. To this end,we analyzed the

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab033#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab033#supplementary-data
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Figure 8. Balance between putative excitatory and inhibitory population activity. (A) Population activities and the difference (gray) between z-scored putative excitatory

(bs, blue) and inhibitory (ns, red) firing during a single REST session ofmonkey E on a 100ms time scale. Colors in the background denote behavioral states (cf. Fig. 4A). For

a better visualization, spike counts of bs and ns populations are normalized by their standard deviation instead of z-scoring. Additionally, ns time series is multiplied by

(−1). (B) Histograms of the difference between globally z-scored population activities of putative excitatory (bs) and inhibitory (ns) SUs of all REST (left) and R2G sessions

(right) for monkey E (first 2 panels) and monkey N (last 2 panels), calculated in 100 ms bins. Results are pooled across all recordings of the respective type.

relation of PR and ρ(bs, ns) using scatter plots (Fig. 9B)—each 3s

slice is represented by a single data point. The points are colored

according to the behavioral state they are computed from. For

the REST data, we observe a negative correlation between PR

and ρ(bs, ns) (see Table 7): The higher the complexity, the lower

the balance. Data points from different behavioral states overlap

strongly and are thus not clearly separable. In contrast, TM and

PP of the R2G data separate into 2 different clouds according to

their PR, but there is no clear correlation to ρ(bs, ns).

Discussion

Experiments without any imposed stimuli or task have been

investigated in numerous studies and referred to with multiple

names: 1) ongoing, intrinsic, or baseline activity of single brain

areas (Arieli et al. 1996; Tsodyks et al. 1999) in anesthetized

animals, 2) spontaneous or resting state activity on the whole

brain level (Vincent et al. 2007; Raichle 2009; Deco et al. 2011),

and 3) idle state of point-neuron network simulations (Brunel

2000; Potjans and Diesmann 2014; Dahmen et al. 2019). Yet, a

thorough characterization of spiking activity in the awake resting

condition on the level of single neurons was still missing.

Here, we investigate the properties of spiking activity in

macaque motor cortex during 5 behavioral states: resting state

(nomovements, RS), sleepy rest (nomovements with eyes closed,

RSS), spontaneous movement (M), task-related movement (TM)

and task-imposed waiting without movements (PP), with a

particular focus on RS. Our main findings are: 1) we demonstrate

a considerable correlation between neuronal firing and behavior,

2) we find that RS SU activity is characterized by relatively

low average firing rates and a high variability of spike counts

across data slices, 3) compared with other states, we identify

a higher dimensionality of the joint activity during RS, which

is 4) correlated with a low level of balance between putative

excitatory and inhibitory population spiking.

Single Unit Activity and LFP during Different Behaviors

Many studies investigate the link between neuronal activity in

the motor cortex and behavior using LFP data (e.g., Pfurtscheller

and Aranibar 1979; Fontanini and Katz 2008; Engel and Fries 2010;

Kilavik et al. 2013). Low-frequency oscillations (<15 Hz) are often

linked to sleep (Gervasoni et al. 2004; Fontanini and Katz 2008),

beta oscillations (≈13-30 Hz) typically appear during movement
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Figure 9. Instantaneous balance and its relation to dimensionality. (A) Box plots of the correlation between putative excitatory and inhibitory population activity

calculated in 3 s slices, which quantifies the instantaneous (100 ms) balance for monkey E (left) and N (right). (B) Scatter plots showing the relationship between the

instantaneous balance ρ(bs, ns) and dimensionality PR, for monkey E (panels on the left) and N (panels on the right). Each dot represents the PR and ρ(bs, ns) values of

one 3 s slice during REST or R2G recording. Results are pooled across all recordings of the respective type. Color code is the same as in Figure 7.

preparation or postural maintenance (Baker et al. 1999; Kilavik et

al. 2012), whereas faster oscillations mostly reflect attention and

neuronal processing duringmovements (Liu and Newsome 2006;

Fontanini andKatz 2008).Our visual classification of the behavior

is in good agreement with the LFP characteristics shown in the

above studies.

Firstly, all states without movements (RSS, RS, and PP) show

pronounced beta oscillations that are shifted toward higher fre-

quencies during task-imposed rest (PP) compared with spon-

taneous rest (RS). Secondly, both spontaneous and task-related

movements (M and TM) show stronger fast oscillations than

nonmovement states. The spectra obtained during RSS (eyes

closed) indicate distinct physiological states in the 2 monkeys:

the peak frequency during RSS of monkey E occurs at a much

lower frequency compared with monkey N. This suggests that

closing the eyes indicates drowsiness in monkey E but not nec-

essarily in monkey N.

Furthermore, in agreementwith previous studies on behaving

monkeys (Nawrot et al. 2008; Rickert et al. 2009; Churchland et al.

2010; Nawrot 2010; Riehle et al. 2018), we find that the spiking

activity is highly variable across SUs and that the average FR

is increased during movements as compared with waiting for

the cue at rest. In REST data, we find a significant correlation

between SU firing and the monkey’s behavior. This indicates

that the analysis of spiking activity is another valid approach

next to LFP and large-scale recordings to investigate behavioral

states, including resting state. Analogously to activations and

deactivations of specific brain areas reported in fMRI studies

(Biswal et al. 1995; Raichle 2009; Deco et al. 2011), we observe

systematic increases and decreases in firing rates in numer-

ous SUs. Also in agreement with Nawrot et al. (2008), Rickert

et al. (2009), Churchland et al. (2010), Nawrot (2010), Riehle et

al. (2018), we find a lower spike count variability during task-

relatedmovements (TM) than duringmovement preparation (PP)

and vice versa for the spike time irregularity (Our results are

less significant than those presented in Riehle et al. (2018); we

analyze only a subset of the R2G data and use partially different

methods.).

A new finding of our study is a pronounced difference in

variability between REST and R2G states, that is, between spon-

taneous and task-related behavior. All REST states show a sig-

nificantly higher spike count variability than the R2G states.

These differences are probably due to the behavioral constraints

present in the R2G but not in the REST experiments. During R2G

tasks, the monkey received visual input to control periods of

waiting or arm movements, resulting in well-defined behavioral

states and partially constrained mental states with a more regu-

lar and reliable firing. In contrast, during REST experiments, the

monkey itself decided what to do (e.g., movement preparation or

onset), resulting in a less well-defined behavior and its timing.

The above findings are consistent for the 2 monkeys, but

there are differences concerning the sleepy resting state: For

monkey E, FRs during RSS are higher than during RS, thus closer

to the values measured during M, whereas this is not the case

for monkey N. Thus, in agreement with what we find for the

LFP spectra, the distinction between RS and RSS (eyes open

versus eyes closed) is more pronounced in monkey E than in

monkey N.
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Network Activity

During all behavioral states, the network activity of groups of

neurons in themotor cortex is characterized by a dimensionality

much lower than the maximal possible dimension, that is, the

total number of recorded single neurons. Task-related move-

ments show the lowest dimensionality, expressed by a small

PR, whereas nonmovement states show a significantly higher

dimensionality. Accordingly, neuronal firing during rest is less

coordinated than during other states, as indicated by the nar-

rower COV distribution centered at zero. These findings agree

well with Mazzucato et al. (2016), Gao et al. (2017) who compare

stimulus-evoked and ongoing neuronal activity, assuming M and

TM to represent the evoked activity, and RS and PP the ongoing

activity. The low mean PR of approximately 13–15 (compared

with the possible maximum value of 89 given by the number

of recorded units) during TM (Fig. 7) shows that the neural state

space dynamics of the R2Gmovement can be reconstructed from

only a fewprincipal components. In contrast, the ongoing activity

during RS and PP is of significantly higher dimensionality (≈27

and ≈23–29, respectively) and thus more complex.

In accordance with Csicsvari et al. (1999), Peyrache et al.

(2012), Dehghani et al. (2016), we also find that putative exci-

tatory and inhibitory population spiking are primarily well bal-

anced. However, our detailed time-resolved analysis, that is,

calculating the balance in 100 ms bins, uncovers the following

particularities. During R2G experiments, the activity alternates

between excitation-dominated movement preparation (PP) and

inhibition-dominated movement execution (TM). During non-

movement states (PP and RS), we find a reduced correlation

between putative excitation and inhibition, that is, a reduced

instantaneous balance of nonmovement states. In addition, the

instantaneous balance is anticorrelated to the dimensionality,

particularly strongly in REST.

We suspect that the relatively high instantaneous balance

during movements and sleepy rest is partially an effect of an

enhanced number of transient changes in population spiking

in these states as compared with the other states (Fig. 8A). A

prominent increase in firing as observed during movements

is an unambiguous type of activity change and is thus easy

to capture by correlation measures. Such transient increases

correlated in time between 2 neuronal populations could result

from the recurrent coupling between excitatory and inhibitory

neurons (see Supplement 1). In addition to the transients in

population activity, we find hints of a prevalence of nonstation-

arities (e.g., transients) in the SU firing during movements and

sleepiness, but not during rest (Supplement 1 Fig. 2) Strong tran-

sient comodulations of spiking activities amplify correlations

between neurons, which in turn decrease the dimensionality of

network activity. Therefore, transient changes in FRs might also

be partially responsible for the reduced dimensionality during

task-related movements.

Influence of Preprocessing and Critical Assumptions

Specificities of extracellular recordings and the following prepro-

cessing steps impose particular biases on the resulting statistics

and their interpretation. Firstly, the spike sorting procedure,

necessary to identify single cells recorded on the same electrode,

is well-known to be problematic (Lewicki 1998; Quian Quiroga

2012). Additional limitations on minimal SNR and FR of a sorted

unit to be considered for statistical evaluation contributes to the

undersampling of sparsely firing neurons and thus biases results

toward highly active neurons. This is often referred to as the

problem of “dark matter” of the brain (Shoham et al. 2006).

Secondly, the separation between putative excitatory and

inhibitory neurons based on the widths of their spike waveforms

is known to have several limitations but it is still a widely-used

approach (Bartho et al. 2004; Kaufman et al. 2010, 2013; Peyrache

et al. 2012; Dehghani et al. 2016; Peyrache and Destexhe 2019).

Some pyramidal neurons, in particular when recorded close to

the axon, exhibit narrow waveforms (Vigneswaran et al. 2011)

and approximately 10% of M1 interneurons have intermediate

or broad waveforms (Merchant et al. 2008; Kaufman et al. 2013).

Thus, when discussing the differences between the 2 popula-

tions, it should be kept inmind that not all ns units are inhibitory

and only the majority of bs SUs are excitatory (Peyrache and

Destexhe 2019). Nevertheless, our separation yields consistently

higher average FRs for putative inhibitory neurons, both when

considering single behavioral states in every REST session (see

Table 6) and when looking at the mean across all behaviors

(REST and R2G), which agrees well with what is known from the

literature (Kaufman et al. 2010; Peyrache et al. 2012; Dehghani

et al. 2016). The average difference is as high as ≈3 spikes/s for

monkey N and ≈4 spikes/s for monkey E: a 1.5–2-fold difference

in FR between the ns and bs population.

Thirdly, our study relies on the behavioral segmentation of

REST recordings, which is highly subjective and has rather poor

temporal resolution (∼1 s) in comparison to the recorded neu-

ronal activity (∼1ms). Nevertheless, our behavioral classification

seems to be accurate in terms of separating sets of dissimilar

neurophysiological network states, as reflected by differences

in state-resolved LFP spectra, see above. Still, our definitions of

the behavioral states are based on visual inspection and may

not be as precise. For example, the identification of “whole body

and limb movements” in the video recording does not account

for the fact that, due to the exact placement of the Utah array,

our recordings are particularly sensitive to contra-lateral arm

movements. Likewise, the RS classification is simply based on

the exclusion ofmovementswith the additional criterion of “eyes

open.” Compared with the very precise behavioral classification

in R2G recordings—for example, PP is defined as 500 ms after

CUE-OFF when the monkey is forbidden to move, and constrain-

ing the analyzed data to only successful trials ensures that the

monkey was focused on the upcoming cue to perform the task—

the behavioral segmentation of REST recordings is vague and

allows for a much broader range of actual behaviors.

Finally, reliable covariance estimation necessitates very long

data slices (Cohen and Kohn 2011). To satisfy this requirement,

in R2G data, we had to concatenate slices from 6 consecutive

trials into 3 s slices for the analysis of COV and PR. Thus, a single

PR value results from averaging over 6 independent recording

periods in contrast to the continuous REST data. However, this

approach can be justified by our observation of a low inter-trial

variability obtained for 0.5 s slices of the R2G data.

Toward Experimental Data for Spiking Model Validation

Modeling studies focusing on spiking-neuron networks often

claim to model an idle state, that is, without any relation to

functional aspects, characterized by sparse asynchronous irreg-

ular spiking and balanced input statistics (Amit and Brunel 1997;

Vreeswijk and Sompolinsky 1996, 1998; Brunel 2000; Kumar et al.

2008; Voges and Perrinet 2010, 2012; Potjans and Diesmann 2014).

To isolate the ongoing and recurrently generated activity, many

of these studies consider stationary states without any transient

network activations due to external impacts (e.g., stimuli or

drugs). In this case, single-neuron and population FRs fluctuate

around somemean activity.However,data collected in behavioral

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab033#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab033#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab033#supplementary-data
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experiments often contain transient FR fluctuations on the level

of both SUs and whole populations. For motor cortex recordings,

such FR changes typically occur during movements, which has

been shown here and in many other studies (Nawrot et al. 2008;

Rickert et al. 2009; Churchland et al. 2010; Riehle et al. 2018,

2013). We find that this disagreement can (mostly) be avoided

by considering nonsleepy resting periods (RS) in REST recordings

only. Using nonmovement epochs (PP) during behavioral tasks

yields results that are more similar to RS in terms of network

firing properties, but the SU variability is still different (much

lower for FF). A comparison to inappropriate data sets could

lead to erroneous conclusions on model parameters and on the

mechanisms that shape the network dynamics. Hence, network

models that claim to mimic an idle state in terms of SU and net-

work activity should ideally be validated against awake resting

state data.

Balance and Correlations

The modeling literature discusses different types of balance

(Deneve and Machens 2016), which generally refers to a cance-

lation of excitation and inhibition in the neuronal input. One

distinguishes between a static and a dynamic view on balance.

The static view focuses on the strength and number of excitatory

and inhibitory afferent connections (Poil et al. 2012), leading to

dynamics characterized by avalanche-like behavior (Beggs and

Plenz 2003). Dynamical balance, also called the balanced state

(Amit and Brunel 1997; Vreeswijk and Sompolinsky 1996, 1998;

Brunel 2000), emerges when excitatory and inhibitory inputs

cancel each other at each point in time (Renart et al. 2010)

as an effect of excess inhibitory feedback (Tetzlaff et al. 2012).

Our extracellular recordings do not allow us to assess inputs to

neurons, we therefore study balance based on neuronal outputs

in form of correlations between population activities, similar to

Dehghani et al. (2016). Input and output correlations between

excitatory and inhibitory activities are related in recurrent net-

works; their mapping is, however, not unique (Helias et al. 2014):

Often a cancelation of inputs to a single neuron is associatedwith

strong correlations between excitatory and inhibitory spiking of

the network (Renart et al. 2010). However, balanced networks

can also exhibit deviations between population activities if the

latter are organized such that their net effects on the summed

input to single neurons cancel out (Tetzlaff et al. 2012; Baker et

al. 2019). The Balance of population activities is therefore not

fully informative on the amount of balance in inputs. We here

find principally well-balanced population firing in all behav-

ioral states, and we show that spiking during rest with eyes

open is neither dominated by excitation nor by inhibition. The

apparent reduction of instantaneous balance in RS periods could

be an effect of fewer transient activities contributing to the

correlation between excitatory and inhibitory population firing

(cf. Supplement 1). As discussed above, this is still consistent

with predictions from balanced network models. Our results on

balance in RS and the differences from periods with activity

transients can therefore be used to constrain spontaneous and

evoked population activities in network models.

Related to balance, modelers often assume uncorrelated or

weakly correlated external inputs to local networks, but it is

impossible to determine the amount of correlations in the neu-

ronal input with extracellular recordings. Strongly correlated

inputs, attributed to sensory (Decharms and Merzenich 1996)

or movement processing (Murphy et al. 1985), may boost the

modulation of FRs on the population level. This could lead to

higher pairwise COVs and subsequently lower dimensionalities

than expected in artificial networks with a well-controlled input

structure. We find that such a decrease in dimensionality is,

for example, particularly pronounced during task-inducedmove-

ments. This again points out the necessity to separate between

rest and movements in order to avoid potential unrealistic mis-

match between input and output statistics of spiking models.

Heterogeneity of Neuronal Networks

Another point is the remarkable heterogeneity of neuronal

activities in experimental recordings: SUs show a broad range of

FR profiles and spiking (ir-)regularities, as well as distinct activity

modulation related to behavioral state changes. Neuronal

network studies mostly are able to reproduce this heterogeneity.

Single-neuron properties (e.g., time constants, synaptic weights)

and connectivities are typically given as parameter ranges

described by certain distributions derived from experimental

measurements (Kumar et al. 2008; Voges and Perrinet 2012;

Potjans and Diesmann 2014). Depending on the widths of these

distributions (and other features), the resulting activities can and

should be adapted to the heterogeneity in experimental data

(Dahmen et al. 2019). An advantage of heterogeneous network

activity is that it enhances the stability of the idle state (Denker

et al. 2004), which is essential for real-world neuronal networks

that need to be able to operate under various conditions.

For example, the different behavioral states analyzed here

demonstrate that themotor cortex operates in similar dynamical

regimes for various kinds of behaviors, includingmovements and

sleepiness. The stability range of network models can be further

increased by includingmore real-world features like homeostatic

mechanisms (e.g., adaptation, short-term plasticity) which also

support a high (temporal) heterogeneity.

In summary, we encourage modelers to (continue to) incor-

porate the heterogeneity of real-world neuronal activities, and

we conclude that the validation of network models that claim to

simulate idle states should be based on resting state data from

awake subjects. Still, even when considering REST recordings

without any task or stimulus, it is necessary to separate out

the “pure” resting state periods with eyes open because they

show distinct statistical properties: lower FRs, fewer transient

activities, smaller COVs and thus a higher dimensionality.

Definition of Behavioral States

The rather vague classification of behavioral states in REST

recordings is based on observing the monkey in contrast to

the precise classification in R2G experiments, which relies on

external cues. The consequence of this difference in precision

is clearly visible on the level of the spiking activity statistics:

In addition to the higher (broadly distributed) spike count

variability in REST compared with R2G, REST states also show a

less clear state-specific difference in the dimensionality results.

In addition, there is the problem of different time scales

(i.e., slice lengths): 0.5 s as forced by the R2G settings versus

the heuristically chosen 3 s in REST. Thus, some comparisons

between single behavioral states of these 2 data types might

be unfair, but we still observe the expected commonalities in

the states with (TM, M) versus without movements (PP, RS):

Nonmovement states show generally lower FRs, a higher dimen-

sionality, and a lower instantaneous balance.

Eyes Open versus Closed

The sleepy resting state RSS turns out to be a special case. As

already mentioned, the LFP spectra and the firing statistics of

RSS are monkey-specific: in monkey E, the distinction between

RS and RSS is more pronounced than in monkey N. RS and RSS

can be distinct physiological states in a given monkey: monkey

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab033#supplementary-data
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E seems to be really drowsy when its eyes are closed, whereas

monkey N might be simply bored. It is known that the neuronal

activities in awake subjects show considerable differences from

sleep (Gervasoni et al. 2004) or anesthesia (Nelson et al. 2004).

This example shows the importance of verifying the result of

the visual behavioral segmentation with the LFP spectra of the

resulting states.

However, concerning both dimensionality and instantaneous

balance, the RSS distributions of themonkeys are similar. In addi-

tion, in both monkeys mean dimensionalities are closer to the

ones obtained for M than for RS, even though RSS is a nonmoving

state. In accordance with observations that the motor cortex can

show distinct reactions to visual stimuli (Wannier et al. 1989;

Riehle 1991), we conclude that the distinction between eyes open

and eyes closed is indispensable even in the motor cortex, since

there is an impact on the neuronal activity.

Alternative Classification Methods

There are other possibilities for the behavioral segmentation of

REST recordings. One idea would be an automatic decoding of

behavioral state purely based on SU firing properties bymeans of

machine learning methods, for example shown in Pandarinath

et al. (2018). Given that approximately 50% of all SUs exhibit a

strong correlation between FR modulations and behavior, such

an approach would probably be possible but not necessarily

straightforward. If there were enough data to define an appropri-

ate learn set, a machine learning algorithm could, for example,

identify SUs that consistently increase or decrease their FR with

specific state changes. Such an approach, however, is beyond

the scope of this study. Another idea would be to increase the

temporal precision of the visual segmentation by means of an

automated detection of transient neuronal activities. Yet, the

detection of transient activities in itself is not trivial (Ito et al.

2019), it does not allow to distinguish between RSS and M, and

particularly in our data a 3 s long movement epoch contains

several such transients in an unknown frequency. We do not

pursue this approach, as it is again beyond the scope of this study.

Resting State as Superposition of Subnetwork Activities

An interesting hypothesis emerges from the comparison of our

study to resting state studies based on large-scale measure-

ments. Similar to the observation of activations and deactiva-

tions of specific brain areas in fMRI studies (Biswal et al. 1995; Fox

and Raichle 2007; Raichle 2009; Deco et al. 2011; Heuvel and Hul-

shoff Pol 2010), we observe systematic in- and decreases in the

spiking activity of numerous SUs. Large-scale studies conclude

that spontaneous brain activity emerges from a set of resting

state networks (RSNs) (Fox and Raichle 2007; Raichle 2009; Heuvel

andHulshoff Pol 2010; Deco et al. 2011), that is, froma sequence of

consistently re-occurring spatio-temporal activity patterns that

resemble task-evoked activity, but are present during rest (Fox

and Raichle 2007; Vincent et al. 2007; Heuvel and Hulshoff Pol

2010). One could thus hypothesize a similar phenomenon on

the microscopic level of spiking activity: a resting state com-

posed of the activities of several subnetworks of single neurons

in the motor cortex. During movements, one could imagine a

convergence of the neuronal activity into specific networks (cf.

Fox and Raichle 2007; Mazzucato et al. 2016). The larger spatial

spread of the activity observed during RS compared with M

(see Supplement 2) would be in line with the above hypothe-

sis, assuming that a superposition of many spatially embedded

networks yields an enlarged spatial extent as compared with a

single such network (cf. Fig. 1 in Supplement 2). Likewise, the

high dimensionality observed during RS agrees well with the

hypothesis of a superposition of several subnetworks.

Yet another question concerns the definition of “rest” in

general: how to define it in other cortical areas than motor

cortex, for example, in sensory systems? For the auditory system

one would intuitively assume that silence or white noise as

auditory input represents the resting condition. Similarly, for

the visual system one could use a uniform or noise background

as visual input. The choice of ”eyes-closed” as rest condition

would, however, represent a different behavioral state compared

with our assumption of sleepy rest being a qualitatively different

condition.

Given all the issues concerning the definition of “rest” and

the behavioral segmentation, together with the superposition

of RSNs on the scale of brain areas, one could claim that it is

futile to attempt to characterize the spiking activity during an

assumed resting state. However, our results clearly demonstrate

a set of significant differences between the spiking activity in

motor cortex during “rest” as compared with other behavioral

conditions.

Conclusion

We demonstrate that spiking activity in monkey motor cortex

during rest differs significantly from other spontaneous and

task-related behavioral states, for example sleepiness andmove-

ments. The main characteristics of the resting state activity are

low average firing rates combined with a high variability of SU

spiking statistics, and a pronounced complexity as indicated by a

less coordinated firing, which results in a higher dimensionality

of the network activity. We show that and explain why neuronal

network models should be validated against resting state data,

aiming to enhance the trend toward realistic network models

that account for the heterogeneity in neuronal data. We hope

that our study is just the beginning of the characterization of

“rest” on the level of spiking neurons. More specific analysis

is needed to quantify transient activities, their relation to the

balance between excitatory and inhibitory population activities,

and to provide an automated algorithm for the behavioral seg-

mentation of REST recordings.

Supplementary Material

Supplementary material can be found at Cerebral Cortex Commu-

nications online.
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