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Background
Currently, the United States Environmental Protection Agency 
(EPA) regulates emission of 187 specific hazardous air pollut-
ants (HAPs) via the Clean Air Act.1 Unlike criteria air pollutants, 
HAPs are defined as air toxics with known or suspected serious 
health effects, usually focusing on cancer outcomes.1 However, 
105 of these 187 HAPs are known to be associated with health 
effects other than cancer, including adverse birth outcomes.2 
Many areas, such as Portland, OR, attain criteria air pollutant 
standards but fail to maintain HAP levels that are compliant.3,4 
There is no exposure threshold for HAPs that is considered safe 
for human health per the EPA,1 but there is a dearth of epidemio-
logical research linking HAP exposure to birth outcomes.

Most of the evidence for an association between HAP and 
adverse pregnancy outcomes come from studies of traffic-re-
lated air pollutants. For example, a meta-analysis of 62 studies 
observed a decrease in term birth weight of 28.1 g (95% con-
fidence interval [CI]: −44.8, −11.5) per 20 ppb increase in ni-
trogen dioxide (NO2).

5 NO2 is a surrogate for the traffic-related 
air pollution mixture that contains numerous HAPs, such as 
diesel particulate matter (DPM), polycyclic aromatic hydrocar-
bons (PAHs), and benzene, toluene, ethylbenzene, and xylene 
(BTEX).6,7 While there are fewer studies specifically examining 
nonvehicle air toxic exposures, some studies have observed 
associations between adverse birth outcomes and nonspecific 
ambient HAP exposures to PAHs, chromium, and nickel8–10 as 
well as proximity to industrial sources such as oil and gas de-
velopment,11–14 coal power plants,15–17 mining activity,18,19 and 
metal smelters.20 Overall, there are limited studies examining 
exposure to specific HAPs during pregnancy, especially HAP 
mixtures from multiple sources.5,21,22
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What this study adds
Using a vital statistics cohort (n = 279,051 births), our study exam-
ined associations between adverse birth outcomes and hazardous 
air pollution (HAP) exposures in Portland, OR. Few studies have 
addressed the effects of HAP exposures during pregnancy, a 
major shortcoming to the literature that we address in a city with 
high HAP concentrations and extensive community concern. We 
documented exposure gradients by sociodemographic character-
istics, highlighting a potential environmental inequity. However, 
we did not observe consistent associations between adverse birth 
outcomes and cumulative HAP exposures after accounting for 
sociodemographic characteristics. Some HAP-specific models 
(e.g., butadiene, cadmium, chromium) demonstrated elevated 
risks that should be investigated in more depth.
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Background: The impact of multiple hazardous air pollutant (HAP) exposures during pregnancy on adverse birth outcomes is 
unknown. We examined associations between cumulative and individual HAP exposures and adverse birth outcomes in Portland, 
OR, a region that has exceeded HAP air quality guidelines for decades.
Methods: We used vital statistics records in the Portland Metropolitan Region from 2000 to 2014 (n = 279,051 births). Prenatal 
exposure to 19 HAPs was assessed using a dispersion model applied to maternal residential address at delivery. We used linear 
and logistic multivariate regression models to assess associations between individual and cumulative HAP exposures and preterm 
term (PTB), term birth weight (TBW), and small for gestational age (SGA), adjusting for several potential individual and neighborhood 
confounding factors.
Results: We observed no associations for composite HAP exposure metrics and adverse birth outcomes. Associations were 
observed in fully adjusted models comparing the highest to lowest quintiles of exposure for certain HAPs including chromium VI and 
TBW (−12.70; 95% confidence interval [CI]: −23.10, −2.31); 1,3-butadiene and TBW (−16.86; 95% CI: −29.66, −4.06) and SGA 
(1.18; 95% CI: 1.07, 1.30); and cadmium and TBW (−31.37; 95% CI: −56.20, −.54). For some HAP metrics, we observed higher 
HAP exposures for minority groups and large unadjusted associations between other HAPs and adverse birth outcomes, but most 
associations were attenuated in adjusted models.
Conclusions: Adverse birth outcomes were not consistently associated with most HAP exposures in Portland, OR, although some 
specific air toxic exposures warrant further attention.
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In this study, we examine associations between 19 HAP 
exposures and adverse birth outcomes (term birth weight, pre-
term birth, and small for gestational age) for 279,051 births 
in the Portland Metropolitan Region from 2000 to 2014. 
Portland, OR, has consistently exceeded hazardous air pol-
lutant (HAP) regulations for decades. Although some studies 
have addressed community health concerns regarding these 
emissions,4,23 the potential negative impacts on adverse birth 
outcomes is a major concern that has yet to be addressed. This 
analysis builds on a previous study to assess HAP concentra-
tions in Portland and links these HAPs models to birth out-
comes using a vital statistics cohort.24 The results of this study 
will inform the potential impacts of different air toxics and 
mixtures to adverse birth outcomes, address community con-
cerns, and highlight future research needs.

Methods

Birth cohort

We obtained vital statistics information from the Oregon 
Health Authority Center for Health Statistics for all births in 
the Portland Metropolitan Region with corresponding mothers 
residential addresses from 2000 to 2014 (n = 314,988 births). 
Sociodemographic characteristics for each mother, father, and 
infant were captured from birth certificate records. This analysis 
was restricted to births with a maternal residence within the city 
limits of Portland, OR (n = 289,651). We removed implausible 
observations based on maternal ages (<10 and >65 years old; 
n = 13), gestational ages (<12 and >45 weeks; n = 125), and 
birth weights (<100 and >6,500 g; n = 34). In addition, after 
considering our previous criteria, we removed stillbirths (n = 
384) and multiple births (n = 10,044). Our final sample consists 
of 279,051 live singleton births in the Portland Metropolitan 
Region.

Air toxics exposure data

The Oregon Department of Environmental Quality (DEQ) cre-
ated the Portland Air Toxics Solutions (PATS) dispersion model 
to better understand air toxic sources and concentrations in 
Portland. DEQ selected the 2005 inventory year as the base year 
for this project because it has the most air toxics monitoring 
data and good emissions inventory data.4 The 2005 inventory 
estimates emissions based on the amount of specific air toxic 
generating activity occurring and the air toxics emission rate 
for that activity. The main emission inventory components in-
cluded emission factors, activity data, and spatial allocation. 
Categories of emissions include nonpoint (area) sources, mo-
bile road sources, mobile nonroad sources, and permitted point 
sources. A full description of the emission inventories has previ-
ously been published.4

Briefly, all emissions were spatially allocated within the 
PATS region for input into a CALPUFF dispersion model. 
Background concentrations were added to all modeled values 
to account for transport of regional emissions from outside 
the PATS study area as well as natural and unidentified emis-
sion sources. These background estimates were developed by 
EPA for the 2002 National-scale Air Toxics Assessment. A 
2017 forecast was produced by applying growth factors to 
the 2005 emissions and then subtracting any emissions con-
trolled by federal and state air toxics regulations. DEQ refined 
and improved emissions data between the 2005 and 2017 
estimates and we use the updated estimates as our primary 
exposure measures. The locations used to estimate toxic con-
centrations in the PATS project are the geographic centers, or 
centroids, of the year 2000 census block groups in the study 
area. The PATS model yields a single projected estimate of ex-
posure that is spatially varying, but not temporally varying, 
across the Portland Metropolitan Region.

The PATS dispersion model estimates 19 specific pollutants: 
1,3-butadiene, 1,4-para-dichlorobenzene, polycyclic aromatic 
hydrocarbon (PAH) composite estimate, acetaldehyde, acrolein, 
arsenic, benzene, cadmium, chromium VI, DPM, ethylbenzene, 
formaldehyde, lead, manganese, methylene chloride, naphtha-
lene, nickel, perchloroethylene, and trichloroethylene.4 The PAH 
composite estimate takes into account 15 of the 16 PAHs iden-
tified by EPA for Toxic Release Inventory estimates excluding 
naphthalene, which is separate in the PATS model. For each 
maternal residence in our study we assign the corresponding 
PATS estimate for each of these pollutants as a log continuous 
estimate standardized by dividing the estimate by the interquar-
tile range and as a categorical estimate by taking the geometric 
interval quintiles. The categorical estimates are derived from 
the spatial distribution of the PATS estimates across Portland, 
which allows us to examine specific hotspots of concern within 
the city that would otherwise be obscured.

In addition to examining each air toxic separately, we exam-
ined cumulative HAP  exposures. We examined different cu-
mulative metrics, including summing each air toxic, summing 
cancer potency factor weighted concentrations, as well as sum-
ming the highest exposure quintiles of each HAP. This set of 
composite metrics allows us to examine simultaneously spatial 
colocations of various HAPs. Because some areas of Portland 
have modeled concentrations that are statistical outliers, we lev-
erage these multiple metrics to ensure that these hotspots and 
their potential health effects are not obscured in our models. We 
hypothesize that these composite metrics are a better represen-
tation of how HAPs exposure may affect infant health, so these 
composite exposures are the primary focus of our analysis.

Neighborhood socioeconomic status data

Neighborhood contextual characteristics were calculated for 
census tracts from the 2000 and 2010 census (whichever was 
closest to the infant’s birth year), including percent of house-
holds below the poverty line; percent of population that is 
nonwhite; race; and median household income. We did not in-
clude other measures of air pollution exposures (e.g., distance 
to major roads, known industrial point sources) as these were 
included in the PATS dispersion model.

Outcome assessment

We used information in the vital statistics database to determine 
the outcome for each infant using birth weight and gestational 
age fields. For term birth weight, we excluded all births with a 
gestational age less than 37 weeks and evaluated this outcome as 
a continuous variable. For preterm birth, we included all births 
with a gestational age less than 37 weeks and examined this out-
come as a binary variable. For SGA, we calculated the 10th per-
centile for birth weight by gestational age and infant sex across 
our sample and assessed this outcome as a binary variable.

Analysis methods

We examined associations between cumulative and individual 
PATS exposure measures with term birth weight, preterm birth, and 
SGA using linear and logistic models. For each exposure metric, 
we ran models with the exposure as a log continuous variable 
standardized by the IQR (to account for the skewed distributions 
of HAP levels) and as a categorical quintile metric by geometric 
intervals, comparing the highest to lowest quintiles. Fully adjusted 
models included infant sex, birth month, birth year, maternal and 
paternal age, maternal and paternal race, maternal and paternal 
education, insurance status, parity, maternal smoking and alcohol 
use during pregnancy, gestational and chronic hypertension, ges-
tational and chronic diabetes, maternal weight gain during preg-
nancy, and Women, Infants, and Children (WIC) service eligibility.  
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The neighborhood socioeconomic measures described above 
were also included in the fully adjusted models. We coded miss-
ing covariates in as a separate category for categorical variables 
and excluded missing data for continuous variables. Exploratory 
stratified analyses were conducted to examine potentially im-
portant modifying variables, including maternal education, ma-
ternal race, maternal ethnicity, delivery payment mechanism 
(i.e., insurance status), and neighborhood poverty levels.

Results

Demographic characteristics

Table 1 summarizes the demographic characteristics of all births 
within the Portland city boundary by cumulative air toxics 
(lowest and highest quintiles of the sum of individual air toxics 
weighted by toxicity). Compared with babies born in the low-
est quintile of cumulative air toxics, babies in the highest quin-
tile experienced lower mean birth weights, higher percentage of 
SGA, lower maternal education at birth; were more likely to be 
non-white, Hispanic, and use Medicaid or the Oregon Health 
Plan; were less likely to be exposed to maternal tobacco smoke 
in utero, be eligible for WIC, and have gestational diabetes and 
hypertension; and had lower median household incomes in their 
neighborhood, higher percentage of people below the poverty 
line, and higher percentage of nonwhite population in their 
neighborhood.

Hazardous air pollution exposures

Figure  1 shows the spatial distribution of the composite risk 
metric as well as individual patterns for select HAP exposures 
in Portland, OR. Other HAP spatial patterns are included in 
eFigure 1 (http://links.lww.com/EE/A25). Individual HAPs dem-
onstrate substantial spatial heterogeneity due to differences in 
major source contributions (e.g., traffic, industry, home heat-
ing). eTable 1 (http://links.lww.com/EE/A25) demonstrates the 
distribution of the individual HAP exposures.

We first examined multiple metrics of cumulative HAPs that 
were derived from the PATS models (Table 2). These metrics in-
clude sum of the HAPs concentrations, sum of HAPs risk weight 
by cancer toxicity, and sum of the HAPs exposure quintiles, all 
of which we examined in log continuous and quintile frame-
works. Across all metrics, we found unadjusted results that 
demonstrate an increased risk of adverse birth outcomes, but 
these risks are fully attenuated after we adjust our models for 
confounding sociodemographic characteristics. For example, in 
the composite sum of the HAPs concentrations metric, we find 
a 36.99 (95% CI: −42.66, −31.32) decrease in unadjusted mod-
els, but this association trends toward null in adjusted models 
(−4.14; 95% CI: −9.64, 1.37). Similar attenuation was observed 
for the other composite metrics and birth outcomes.

Next, we investigated associations between each of the 19 
hazardous air pollutants and birth outcomes. Table 3 summa-
rizes fully adjusted models for the log of an IQR increase and 
the highest versus the lowest exposure quintiles. In unadjusted 
models, we observed elevated risks of all three adverse preg-
nancy outcomes (eTable 2; http://links.lww.com/EE/A25), but 
most of these associations were attenuated in the fully adjusted 
models (Table 3), similar to our cumulative HAP measures. In 
our adjusted models comparing the highest to the lowest quin-
tile of exposures, we observed elevated risks for term birth 
weight and 1,3-butadiene (−16.86; 95% CI: −29.66, −4.06), 
cadmium (−31.37; 95% CI: −56.20, −6.54), and chromium VI 
(−12.70; 95% CI: −23.10, −2.31); and SGA and 1,3-butadiene 
(1.18; 95% CI: 1.07, 1.30). In our fully adjusted log IQR mod-
els, we observed elevated risks for term birth weight and manga-
nese (−4.51; 95% CI: −6.88, −2.13), methylene chloride (−1.99; 
95% CI: −3.93, −0.05), and trichloroethylene (−4.24; 95%  

CI: −8.02, −0.45); preterm birth and methylene chloride (1.02; 
95% CI: 1.00, 1.04); and SGA and ethylbenzene (1.03; 95% CI: 
1.00, 1.06). We also observed some protective associations for 
specific HAPs, including for PAH and term birth weight as well 
as acetaldehyde, benzene, diesel particulate matter, and ethyl-
benzene and preterm birth.

To explore what covariates may be influencing the strong risk 
attenuations in our models, we implemented incremental mod-
els and note that the main decreases in point estimates are from 
adding socioeconomic, behavioral, clinical, and neighborhood 
covariates (Table  4). Covariate selection for the incremental 
models followed a logical progression of covariates determined 
a priori that we hypothesize would influence the results from 
most to least. We also considered what covariates have been 
commonly used in the existing literature on environmental 
exposures and birth outcomes.

Stratified analyses

Exploratory stratified models were conducted to determine if 
associations between HAP exposures and adverse birth out-
comes were similar across sociodemographic and neighborhood 
characteristics using the log sum of continuous HAP concen-
trations. Within racial and ethnic groups, we observed some 

Table 1

Descriptive statistics of birth cohort

 All births

Composite air 
toxicsa (lowest 

quintile)

Composite air 
toxicsa (highest 

quintile)

Births 279,051 55,870 55,792
Birth weight, mean 3,410 3,426 3,404
Preterm (<37 weeks), (%) 6.0 5.9 6.0
SGA, (%) 10.6 9.8 11.0
Female sex, (%) 48.7 48.9 48.9
Nulliparous, (%) 34.1 33.6 34.7
Maternal age, mean 28.7 29.1 28.1
Maternal education (%)    
        ≤8th grade 5.8 4.2 7.9
        9th grade to high school 33.0 31.5 35.4
        College (<4 years) 22.7 23.2 22.8
        College (≥4 years) 37.4 40.0 33.1
Maternal race (%)    
        White non-Hispanic 82.4 86.2 83.2
        African American 4.3 2.5 3.1
        Asian and Pacific Islander 9.5 7.8 10.2
        American Indian 0.9 0.8 0.8
        Other 0.6 0.6 0.6
Maternal Hispanic (%) 19.03 15.6 26.5
Payment for delivery (%)    
        Medicaid/Oregon Health Planb 33.6 30.1 37.1
        Private insurance 62.7 66.2 59.3
        Self-pay 2.5 2.6 1.1
Mothers smoking during pregnancy (%) 8.4 8.6 7.3
Mothers drinking during pregnancy (%) 1.2 1.4 0.7
WIC (%) 32.3 29.0 36.0
Gestational diabetes (%) 5.6 5.2 6.0
Chronic diabetes (%) 0.6 0.6 0.7
Gestational hypertension (%) 5.2 4.9 5.6
Chronic hypertension (%) 1.1 1.1 1.2
Neighborhood characteristicsc    
        Median household income (USD) 55,803 58,174 52,994
        Below poverty line (%) 13.5 12.0 14.0
        Non-white (%) 22.4 16.5 25.6

aComposite risk quintiles are derived based on the entire population using the PATS composite 
cancer potency factor toxicity estimates.
bOregon Health Plan is the state’s Medicaid program.
cDerived from US Census data. For each birth before 2005, characteristics from the 2000 Census 
were used. For each birth including and after 2005, characteristics from the 2010 census were 
used.

http://links.lww.com/EE/A25
http://links.lww.com/EE/A25
http://links.lww.com/EE/A25
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large differences for minority populations in terms of HAPs 
exposures (eTable 3; http://links.lww.com/EE/A25). For ex-
ample, black mothers are exposed to more methylene chloride 
than other groups and infants born to Hispanic mothers appear 
to have higher exposures to 1,3-butadiene, acetaldehyde, ben-
zene, DPM, ethylbenzene, formaldehyde, and methylene chlo-
ride. However, in our stratified models (eTable 4; http://links.
lww.com/EE/A25), we observed no consistent pattern of associ-
ations between our cumulative HAP metrics and adverse birth 
outcomes for specific populations.

Discussion
The Environmental Protection Agency (EPA) National Air 
Toxics Assessment (NATA) shows that Portland’s air exceeds 
regulatory levels of at least 66 HAPs, 49 of which are known car-
cinogens.3 There is tremendous community concern regarding 
past and current air toxic exposure levels and their potential 
health impacts, especially since a 2016 study using tree moss 
identified previously unknown hot spots of metals in Portland.25 
We examined associations between HAP concentrations and ad-
verse birth outcomes using a population-based birth cohort in 
Portland, OR, between 2000 and 2014. To accomplish this anal-
ysis, we took advantage of a unique city-wide HAP dispersion 
model that allows us to estimate multiple HAP exposures. Our 

results show that composite HAPs exposures, and most indi-
vidual HAP exposures, were not associated with adverse birth 
outcomes. However, some specific air toxic exposures warrant 
further research, including 1,3-butadiene, cadmium, and chro-
mium VI.

We did not observe associations between our metrics of com-
bined HAP exposures and adverse birth outcomes, but we note 
that many of our estimates lack sufficient precision to rule out 
a small yet meaningful impact of infant health. We used three 
different methods to capture potential HAP mixtures, including 
summing individual HAP concentrations, summing cancer tox-
icity weighted measures, and summing the quintiles of each 
HAP concentration. Each toxicity metric allows us to capture 
different aspects of exposure mixtures that may be affecting per-
inatal health. By summing the individual HAP concentrations, 
we examined whether the total amount of HAP is a driving 
pathway toward adverse pregnancy outcomes. In our cancer 
toxicity-weighted measures, we included the differing toxico-
logical impacts of each HAP (we did not use a developmental 
toxicity weighting as several of the HAPs do not have weights 
established22). Finally, the sum of each HAP quintile focused 
on capturing spatial hot-spots for each HAP, rather than abso-
lute concentrations. For all three measures, we did not observe 
consistent associations with adverse pregnancy outcomes in 
fully adjusted models. Within our composite toxicity measures, 

Figure 1. Portland Air Toxic CALPUFF model outputs for specific hazardous air pollutants by geometric intervals.

http://links.lww.com/EE/A25
http://links.lww.com/EE/A25
http://links.lww.com/EE/A25
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we examined what industry may be driving the highest expo-
sures via the Toxic Release Inventory and observed a very high 
number of emission sources located in a small area emitting a 
wide range of pollutants, including chromium, lead, naphtha-
lene, nickel, toluene, xylene, and zinc (eFigure 1; http://links.
lww.com/EE/A25).26 To fully understand the health impacts of 
local industrial emissions, future studies may need to incorpo-
rate mixture modeling techniques such as structural equation 
models to assess the distinct impacts of simultaneous exposure 
to multiple HAPs during pregnancy.

We observe some positive associations for individual HAP 
exposures, but the majority of our models indicate no associa-
tions. We present a graphical version of our results in Figure 2, 
where we demonstrate the relationships between our point 
estimates and their two-sided P values. Labeled HAPs reflect 
exposures that are statistically significant for at least one out-
come. Although we find many point estimates suggestive of an 
association between HAP exposure and adverse infant health 
outcomes, Figure 2 shows that many of these associations do 

not demonstrate statistical significance and no clear pattern be-
tween HAP exposures and adverse birth outcomes emerge.

There is little existing literature for direct comparison to our 
results, however, some of our specific HAPs have been exam-
ined in other studies. One previous study27 shows that increases 
in maternal blood manganese were associated with decreased 
birth weight, which was also observed in our study (4.51 g 
[95% CI: −6.88, −2.13] decrease per log IQR increase in man-
ganese exposure). Another study shows that each μg/m3 unit in-
crease in maternal benzene exposure is associated with a birth 
weight decrease of 16.5 g (95% CI: 17.6, 15.4).28 Although we 
did not find associations among benzene and birth weight, we 
do note an elevated risk of SGA among mothers with higher 
benzene exposure. In addition, a meta-analysis of traffic-re-
lated air pollution studies, using NO2 as a surrogate marker, 
observed a decrease in term birth weight of 28.1 g (95% CI: 
−44.8, −11.5) per 20 ppb increase in nitrogen dioxide (NO2).

5 
We did not observe associations with DPM, although the res-
olution of the PATS model does not capture fine-scale spatial 

Table 2

Unadjusted and fully adjusted models for composite toxicity metrics of regional air toxics for term birth weight, preterm birth, and 
small for gestational age

Composite hazardous air 
pollutant measures

 

na

Term birth weight β (95% CI) Preterm birth β (95% CI) SGA β (95% CI)

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

Sum HAPb        
        Log continuous 279,051 −36.99 (−42.66, −31.32) −4.14 (−9.64, 1.37) 1.13 (1.07, 1.18) 1.02 (0.97, 1.08) 1.17 (1.13, 1.22) 0.99 (0.95, 1.04)
        Quintiles (Q5 vs. Q1) 55,797 −35.97 (−41.58, −30.36) −3.36 (−8.81, 2.09) 1.13 (1.08, 1.19) 1.03 (0.97, 1.09) 1.17 (1.12, 1.21) 0.98 (0.94, 1.02)
Composite riskc        
        Log continuous 279,051 −31.40 (−39.33, −23.47) 0.48 (−6.94, 7.90) 1.03 (0.96, 1.11) 0.94 (0.87, 1.01) 1.20 (1.14, 1.27) 1.04 (0.98, 1.10)
        Population quintiles (Q5 vs. Q1)d 55,792 −22.36 (−27.96, −16.75) 0.76 (−4.46, 5.98) 1.01 (0.96, 1.06) 0.95 (0.90, 1.00) 1.14 (1.09, 1.18) 1.02 (0.98, 1.07)
Sum of quintilese        
        Log continuous 279,051 −19.02 (−24.66, −13.38) 3.30 (−1.93, 8.53) 1.04 (0.99, 1.09) 0.97 (0.92, 1.03) 1.13 (1.08, 1.17) 1.01 (0.97, 1.05)
        Quintiles (Q5 vs. Q1) 55,797 −31.56 (−37.62, −25.50) −1.94 (−7.72, 3.83) 1.06 (1.00, 1.12) 0.97 (0.91, 1.02) 1.19 (1.15, 1.24) 1.01 (0.97, 1.06)

aFor continuous metrics, n is the entire sample for preterm birth and small-for-gestational age models. For quintile metrics, n is the number of births in the top quintile of exposure for preterm birth and 
small-for-gestational age models.
bDerived from summing the concentrations of each individual HAP.
cDerived from the PATS composite risk estimate using cancer potency factors.
dDerived from geometric intervals of the distribution of pollutant exposure among the population.
eDerived from summing the spatial quintile of exposure for each residential location.

Table 3

Adjusted models for individual air toxics for term birth weight, preterm birth, and small for gestational age

Hazardous air pollutant measures

Term birth weight β (95% CI) Preterm birth β (95% CI) SGA β (95% CI)

Q5 versus Q1 Log IQR Q5 versus Q1 Log IQR Q5 versus Q1 Log IQR

1,3-butadiene −16.86 (−29.66, −4.06) 2.31 (−2.21, 6.83) 0.93 (0.81, 1.06) 0.95 (0.91, 1.00) 1.18 (1.07, 1.30) 1.02 (0.99, 1.06)
1,4-para-dichlorobenzene 4.56 (−3.02, 12.14) 2.41 (−2.34, 7.16) 0.96 (0.89, 1.03) 0.95 (0.91, 1.00) 1.00 (0.94, 1.06) 1.01 (0.98, 1.05)
15-polycyclic aromatic hydrocarbon 10.46 (2.30, 18.62) 6.44 (2.46, 10.43) 0.94 (0.86, 1.02) 0.96 (0.92, 1.00) 1.01 (0.95, 1.08) 1.02 (0.99, 1.05)
Acetaldehyde 2.20 (−7.68, 12.08) 5.91 (−26.72, 38.53) 0.87 (0.79, 0.96) 0.68 (0.49, 0.94) 1.05 (0.97, 1.13) 1.26 (0.98, 1.62)
Acrolein −0.93 (−7.04, 5.19) −2.58 (−8.08, 2.93) 1.04 (0.97, 1.10) 1.06 (1.00, 1.12) 0.98 (0.93, 1.03) 0.97 (0.93, 1.01)
Arsenic −8.08 (−18.22, 2.05) −3.32 (−10.16, 3.53) 0.99 (0.89, 1.09) 0.95 (0.88, 1.01) 1.03 (0.95, 1.11) 1.04 (0.99, 1.10)
Benzene −1.38 (−6.91, 4.16) −2.06 (−8.47, 4.35) 0.96 (0.90, 1.01) 0.93 (0.87, 0.99) 1.03 (0.99, 1.08) 1.05 (1.00, 1.10)
Cadmium −31.37 (−56.20, −6.54) −3.03 (−7.03, 0.96) 1.05 (0.81, 1.37) 0.98 (0.94, 1.02) 1.06 (0.87, 1.30) 1.01 (0.98, 1.04)
Chromium VI −12.70 (−23.10, −2.31) −2.99 (−9.02, 3.04) 1.00 (0.90, 1.11) 0.96 (0.90, 1.02) 1.06 (0.99, 1.15) 1.04 (1.00, 1.09)
Diesel particulate matter 4.16 (−3.89, 12.21) −0.30 (−4.21, 3.62) 0.92 (0.84, 0.99) 0.96 (0.92, 1.00) 1.01 (0.95, 1.08) 1.02 (0.99, 1.05)
Ethylbenzene 4.55 (−2.37, 11.47) −0.47 (−4.19, 3.24) 0.92 (0.86, 0.98) 0.95 (0.92, 0.99) 0.99 (0.94, 1.05) 1.03 (1.00, 1.06)
Formaldehyde 2.11 (−16.47, 20.70) −1.12 (−23.70, 21.47) 0.93 (0.78, 1.12) 0.83 (0.66, 1.04) 0.95 (0.82, 1.09) 1.15 (0.97, 1.37)
Lead −0.20 (−11.22, 10.83) −0.10 (−4.05, 3.85) 0.98 (0.87, 1.09) 1.02 (0.98, 1.06) 0.98 (0.90, 1.07) 0.97 (0.94, 1.00)
Manganese −12.63 (−45.82, 20.57) −4.51 (−6.88, −2.13) 0.98 (0.69, 1.40) 1.01 (0.98, 1.03) 0.95 (0.72, 1.25) 1.00 (0.99, 1.02)
Methylene chloride −4.27 (−9.69, 1.15) −1.99 (−3.93, −0.05) 1.04 (0.98, 1.10) 1.02 (1.00, 1.04) 0.98 (0.94, 1.02) 0.99 (0.97, 1.00)
Naphthalene −13.92 (−47.53, 19.70) −1.65 (−5.73, 2.44) 0.94 (0.65, 1.34) 0.98 (0.94, 1.03) 0.94 (0.71, 1.24) 1.00 (0.97, 1.04)
Nickel −18.63 (−51.32, 14.05) −2.48 (−5.40, 0.44) 0.94 (0.66, 1.34) 1.01 (0.98, 1.04) 0.94 (0.72, 1.23) 1.01 (0.98, 1.03)
Perchloroethylene 7.37 (−2.55, 17.28) 2.38 (−1.89, 6.66) 0.92 (0.83, 1.02) 0.97 (0.93, 1.01) 0.99 (0.92, 1.07) 1.01 (0.98, 1.04)
Trichloroethylene 0.30 (−6.71, 7.31) −4.24 (−8.02, −0.45) 0.95 (0.88, 1.02) 0.98 (0.94, 1.01) 0.99 (0.94, 1.05) 1.00 (0.98, 1.03)

Continuous air toxics measures are standardized via the log of the IQR. Term birth weight models exclude infants with gestational ages under 37 weeks. Adjustment covariates include birth year, birth 
month, infant sex, maternal and paternal race, maternal and paternal ethnicity, maternal and paternal education, payment mechanism, maternal alcohol and tobacco use during pregnancy, gestational or 
chronic diabetes, gestational or chronic hypertension, WIC status, maternal weight gain, census tract median household income, census tract percent population below poverty line, census tract percent 
racial minority, and PATS pollutants, and gestational age (birth weight only).

http://links.lww.com/EE/A25
http://links.lww.com/EE/A25
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variability of air toxics associated with the highest roadway 
gradients. We also observed protective associations with com-
posite PAH exposure, which has been shown in a previous 
study.29 We do not know what biological explanation may exist 
for these inverse results, though both results could be due to 
residual confounding.

For most HAPs, we observed consistently higher HAP expo-
sures for lower socioeconomic and minority groups, and large 
unadjusted associations between HAPs and adverse birth out-
comes, but no consistent increases in adverse birth outcomes in 
fully adjusted models. This attenuation was due primarily to the 
inclusion of clinical and neighborhood characteristics, as shown 
in the incremental models illustrated in Table 4. The large dis-
parities in HAP exposures between ethnicity status highlight 
the well-recognized patterns of higher air toxic exposures for 
minority populations, but the distribution of HAPs appears 
to be less unequal than in other urban populations (eTable 3; 
http://links.lww.com/EE/A25).2,30,31 In models restricted to these 
populations, we did not observe consistent adverse impacts of 
HAP exposures on adverse birth outcomes. Some of the atten-
uation observed in our adjusted models may also be due to 
the rapid gentrification of the Portland Metropolitan Region, 
which has been extensively documented.32–35 Since 2000, 25.4% 
of census tracts in Portland have met criteria for undergoing 
gentrification.36 These swift sociodemographic neighborhood 
changes may be altering longer-term exposure patterns as well 
as how traditional risk factors are affecting adverse pregnancy 
outcomes.

Several limitations of our study should be considered when 
interpreting our results. First, we rely on surrogate measures 
of HAP exposure during pregnancy that are based on models 

applied to mother’s residential address at time of delivery. The 
PATS CALPUFF dispersion model is based on available emis-
sions data in 2005 (and subsequently updated) and model accu-
racy is driven by the quality of these emissions data. In fact, the 
PATS estimates do not account for some previously unknown 
emissions sources, such as two artisan glass factories.37 The PATS 
model also represents a snapshot of HAP in Portland and does 
not produce monthly or yearly estimates to match pregnancy 
periods. In addition, the PATS model does not capture fine-scale 
pollution gradients (e.g., 100s of meters around roadways or 
industrial sources) that may be important for HAP exposures. 
Nevertheless, the PATS model represents a unique resource to 
simultaneously examine multiple HAP exposures from different 
sources, with many of these sources being spatially stable over 
time. Second, we only had maternal address at time of delivery, 
and we do not necessarily know where the mother resided during 
pregnancy if they moved. Third, because we are exploring broad 
categories of HAPs and adverse birth outcomes, we ran over 200 
models in our analyses, which puts us at a high probability of 
some results being due to chance instead of a true association. We 
interpret our models with caution due to a multiple comparisons 
issue, but we note that our conclusions are drawn from overall 
patterns of results and not individual associations. Fourth, many 
of our risk estimates yield wide confidence intervals that lack 
precision, thus we cannot dismiss the notion that some of our 
maternal exposures may have a meaningful, albeit small, impact 
on infant health. Fifth, residual confounding from unmeasured 
confounding factors cannot be ruled out in this analysis, similar 
to other birth cohort studies. However, we included a wide range 
of individual and geographic covariates to account for as much 
unmeasured variation as possible. We also control for secular 

Table 4

Full results of incremental models of composite hazardous air pollution exposure concentrations and term birth weight, preterm 
birth, and small for gestational age

Covariate additions

Term birth weight β (95% CI) Preterm birth β (95% CI) SGA β (95% CI)

Q5 versus Q1 Log IQR Q5 versus Q1 Log IQR Q5 versus Q1 Log IQR

Base model       
        Unadjusted −35.97 (−41.58, −30.36) −36.99 (−42.66, −31.32) 1.13 (1.08, 1.19) 1.13 (1.07, 1.18) 1.17 (1.12, 1.21) 1.17 (1.13, 1.22)
        Gestational age −35.97 (−41.58, −30.36) −34.34 (−39.66, −29.01) - - - -
        Birth year −33.09 (−38.35, −27.82) −33.69 (−39.01, −28.37) 1.13 (1.08, 1.19) 1.13 (1.08, 1.19) 1.17 (1.12, 1.21) 1.17 (1.13, 1.22)
        Birth month −32.98 (−38.25, −27.72) −33.59 (−38.91, −28.27) 1.13 (1.08, 1.19) 1.13 (1.08, 1.19) 1.17 (1.12, 1.21) 1.17 (1.13, 1.22)
Demographics       
        Infant sex −32.48 (−37.68, −27.27) −33.17 (−38.44, −27.91) 1.13 (1.08, 1.19) 1.13 (1.09, 1.19) 1.17 (1.12, 1.21) 1.17 (1.13, 1.22)
        Maternal age −25.89 (−31.07, −20.70) −25.18 (−30.43, −19.93) 1.13 (1.08, 1.19) 1.13 (1.07, 1.19) 1.14 (1.10, 1.19) 1.14 (1.10, 1.19)
        Maternal race −16.78 (−21.95, −11.61) −18.03 (−23.26, −12.81) 1.10 (1.04, 1.15) 1.10 (1.04, 1.15) 1.08 (1.04, 1.12) 1.09 (1.050, 1.14)
        Paternal race −15.70 (−20.86, −10.54) −17.38 (−22.60, −12.16) 1.09 (1.03, 1.14) 1.08 (1.03, 1.14) 1.07 (1.03, 1.11) 1.09 (1.04, 1.13)
        Maternal ethnicity −12.76 (−17.93, −7.589) −13.90 (−19.13, −8.68) 1.08 (1.02, 1.13) 1.07 (1.02, 1.13) 1.06 (1.02, 1.10) 1.07 (1.03, 1.11)
        Paternal ethnicity −12.05 (−17.22, −6.881) −13.05 (−18.28, −7.83) 1.07 (1.02, 1.13) 1.07 (1.02, 1.13) 1.05 (1.01, 1.10) 1.07 (1.03, 1.11)
Socioeconomic status
        Maternal education −11.42 (−16.59, −6.24) −12.46 (−17.70, −7.23) 1.06 (1.01, 1.11) 1.05 (1.00, 1.11) 1.05 (1.01, 1.09) 1.06 (1.02, 1.10)
        Paternal education −10.96 (−16.14, −5.79) −12.00 (−17.24, −6.77) 1.05 (1.00, 1.10) 1.04 (0.99, 1.10) 1.04 (1.00, 1.08) 1.06 (1.02, 1.10)
        Payment mechanism −10.39 (−15.57, −5.21) −11.35 (−16.59, −6.11) 1.05 (1.00, 1.10) 1.04 (0.99, 1.10) 1.04 (1.00, 1.08) 1.05 (1.01, 1.09)
        WIC eligibility −10.77 (−15.95, −5.59) −11.79 (−17.03, −6.54) 1.05 (1.00, 1.11) 1.05 (1.00, 1.10) 1.04 (1.00, 1.08) 1.05 (1.01, 1.10)
Behavioral       
        Maternal tobacco use −10.00 (−15.16, −4.83) −10.84 (−16.07, −5.62) 1.05 (1.00, 1.10) 1.04 (0.99, 1.10) 1.04 (1.00, 1.07) 1.05 (1.01, 1.09)
        Maternal alcohol use −9.90 (−15.07, −4.74) −10.78 (−16.01, −5.55) 1.05 (1.00, 1.10) 1.04 (0.99, 1.10) 1.03 (0.99, 1.08) 1.05 (1.01, 1.09)
Clinical       
        Maternal weight gain −7.79 (−12.90, −2.68) −8.57 (−13.74, −3.40) 1.04 (0.99, 1.09) 1.03 (0.98, 1.08) 1.02 (0.99, 1.07) 1.04 (1.00, 1.08)
        Parity −4.07 (−9.13, 1.00) −4.31 (−9.44, 0.82) 1.03 (0.98, 1.08) 1.02 (0.97, 1.08) 1.01 (0.97, 1.05) 1.02 (0.98, 1.06)
        Gestational diabetes −3.24 (−8.30, 1.82) −3.30 (−8.42, 1.82) 1.03 (0.98, 1.09) 1.03 (0.98, 1.08) 1.01 (0.97, 1.05) 1.02 (0.98, 1.06)
        Prepregnancy diabetes −3.46 (−8.51, 1.60) −3.58 (−8.69, 1.54) 1.03 (0.98, 1.08) 1.02 (0.97, 1.08) 1.01 (0.97, 1.05) 1.02 (0.98, 1.06)
        Gestational hypertension −3.45 (−8.50, 1.60) −3.66 (−8.78, 1.45) 1.03 (0.98, 1.08) 1.02 (0.97, 1.08) 1.01 (0.97, 1.05) 1.02 (0.98, 1.06)
        Prepregnancy hypertension −3.44 (−8.49, 1.61) −3.64 (−8.75, 1.48) 1.03 (0.98, 1.08) 1.02 (0.97, 1.08) 1.01 (0.97, 1.05) 1.02 (0.98, 1.06)
Neighborhood       
        Neighborhood minority −2.61 (−7.98, 2.77) −2.84 (−8.23, 2.55) 1.03 (0.97, 1.09) 1.02 (0.97, 1.08) 0.98 (0.94, 1.02) 0.99 (0.95, 1.04)
        Neighborhood income −3.85 (−9.28, 1.59) −4.60 (−10.09, 0.88) 1.03 (0.97, 1.08) 1.02 (0.97, 1.08) 0.98 (0.94, 1.02) 0.99 (0.95, 1.04)
        Neighborhood poverty −3.36 (−8.81, 2.09) −4.14 (−9.64, 1.37) 1.03 (0.97, 1.09) 1.02 0.97, 1.08) 0.98 (0.94, 1.02) 0.99 (0.95, 1.04)

Term birth weight models exclude infants with gestational ages under 37 weeks.

http://links.lww.com/EE/A25
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trends in birth outcomes via birth year and month covariates in 
all models.

Conclusions
Our analysis provides a broad examination of 19 HAPs and ad-
verse birth outcomes in a large population-based birth cohort in 
Portland, OR, a city with consistently high HAP concentrations 
that result from a diverse set of emission sources. Our results 
show that cumulative HAPs exposures, and most individuals 
HAP exposures, were not associated with adverse birth out-
comes, while some specific air toxic exposures warrant further 
research, including 1,3-butadiene, cadmium, and chromium VI.
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