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Embedding computation in biochemical environments incompatible with traditional
electronics is expected to have a wide-ranging impact in synthetic biology, medicine,
nanofabrication, and other fields. Natural biochemical systems are typically modeled by
chemical reaction networks (CRNs) which can also be used as a specification language
for synthetic chemical computation. In this paper, we identify a syntactically checkable
class of CRNs called noncompetitive (NC) whose equilibria are absolutely robust to
reaction rates and kinetic rate law, because their behavior is captured solely by their
stoichiometric structure. In spite of the inherently parallel nature of chemistry, the
robustness property allows for programming as if each reaction applies sequentially.
We also present a technique to program NC-CRNs using well-founded deep learning
methods, showing a translation procedure from rectified linear unit (ReLU) neural
networks to NC-CRNs. In the case of binary weight ReLU networks, our translation
procedure is surprisingly tight in the sense that a single bimolecular reaction corresponds
to a single ReLU node and vice versa. This compactness argues that neural networks
may be a fitting paradigm for programming rate-independent chemical computation.
As proof of principle, we demonstrate our scheme with numerical simulations of CRNs
translated from neural networks trained on traditional machine learning datasets, as well
as tasks better aligned with potential biological applications including virus detection
and spatial pattern formation.

chemical computation | neural networks | molecular programming

Compared to our remarkable capacity to build complex electronic circuits, we lack in our
ability to engineer sophisticated reaction networks like the regulatory networks prevalent
in biology. Molecular programming aims to engineer synthetic chemical information
processors of increasing complexity from first principles. This approach yields control
modules compatible with the chemical environments within natural or synthetic cells,
bioreactors, and in-the-field diagnostics. Such computation could, for example, recognize
a disease state based on chemical inputs and actuate drug delivery to the affected cell.

Chemical reaction networks (CRNs) are key objects of molecular programming. CRNs
formally model chemical concentrations changing due to coupled chemical reactions in
a well-mixed solution. Biological CRNs are often hard to analyze because, in general,
they require working with systems of coupled nonlinear differential equations capable of
highly complex dynamical systems behavior such as multistability, oscillation, and chaos
(1). However, in engineering, we may aim at specific classes of CRNs that are easier to
reason about. One such class has recently emerged in which information processing occurs
solely due to the stoichiometric exchange of the reactants for products rather than the
reaction rate (2, 3). An example of such computation is the single irreversible reaction
A+ B → C which computes the minimum function in the sense that the concentration
of C converges to the minimum of the initial concentrations of A and B. By coupling
multiple reactions, more-complex functions can be computed. Although stoichiometric
computation is effectively limited to continuous piecewise linear (affine) functions, these
functions are computationally powerful, as evidenced by their ability to approximate
arbitrary functions and their widespread use in machine learning (e.g., neural networks
with the rectified linear unit [ReLU] activation function; see below).

Besides ease of analysis, such stoichiometrically computing CRNs are absolutely robust
to variations in kinetics (rate independence). Computation carried out by stoichiometry
alone is correct whether the system obeys standard mass-action kinetics, Hill function, or
Michaelis–Menten kinetics, or any other kinetic laws, and does not err if the system is not
well mixed. Engineering may also be aided by the fact that, unlike factors contributing
to reaction rates, the stoichiometry of reactants and products is inherently digital and
can be set exactly by the nature of the reaction. For example, if realized with DNA
strand displacement cascades, the identity and stoichiometry of reactants and products
can be programmed by synthesizing DNA strands with specific parts that are identical or
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complementary (4–6). Note that such reactions can be made
effectively irreversible, as they are strongly driven by the forma-
tion of new base pairs. Although we are motivated mostly by
engineering concerns, some biological CRNs may exhibit similar
stoichiometric, rate-independent behavior as identified in searches
of the Biomodels repository (7).

In the first part of the paper, we develop a new technique
for proving that a class of CRNs stoichiometrically computes the
desired function. We identify the noncompetitive property, which
means that a species is consumed in, at most, one reaction (see later
for a formal definition). We show that, for noncompetitive CRNs,
rate independence can be verified and the function computed
can be determined by simple reasoning analogous to sequential
programming: Although all reactions occur simultaneously with
continuously varying rates, we can imagine, counterfactually, that
reactions happen sequentially in a series of straight line segments.
Noncompetition is easy to check, and, further, fully captures
the computational power of stoichiometric computation. Thus,
noncompetitive CRNs are a powerful class of CRNs for rationally
programming chemical behavior. All subsequent constructions in
this paper are noncompetitive, and their correctness is proven via
the above technique.

In the second part of this paper, motivated by the widespread
use of neural networks to generate behavior that is not easily
specified programmatically, we show a natural way to specify rate-
independent chemical input–output behavior through training.
Specifically, we show how (feed-forward) ReLU neural networks
can be directly implemented by noncompetitive CRNs. ReLU
neural networks are one of the most successful types of neural
networks for deep learning, prevalent in all areas of machine
learning. Thus we provide a powerful paradigm for creating chem-
ical systems with complex computational functionality not easily
obtained by other means.

The key elements of our general (rational weight) ReLU neural
network implementation are the ReLU and the weight multiplica-
tion modules. Our ReLU module consists of a single unimolecular
and a single bimolecular reaction. Our weight multiplication
module uses a number of unimolecular and bimolecular reactions
that is proportional to the number of bits of precision in the
weight. (Although weight multiplication can be performed with
two high-order reactions, such reactions cannot easily be imple-
mented and are slow.)

To simplify the construction even further, we consider restrict-
ing the class of ReLU neural networks to have {−1, 0, 1} weights.
Despite the restriction on the values of the weights, such binary
weight ReLU (BReLU) neural networks are known to be powerful
in solving machine learning tasks and are well researched in the
deep learning community (8). Applying an optimized version
of our construction to BReLU networks yields a surprisingly
compact CRN with only a single bimolecular reaction per ReLU
node (plus additional unimolecular reactions at the input layer of
the network).

Showing how two models of computing can simulate each
other elucidates the computational power of one model in terms
of the other. In the case of stoichiometrically computing CRNs
and ReLU neural networks, they are both capable of computing
arbitrary continuous piecewise linear (affine) functions. However,
since the size of the CRN depends on the digits of precision
of the weights, making a quantitative connection between the
computational power of the two models (e.g., comparing the
number of reactions versus number of ReLU nodes to achieve
the same functionality) is difficult. Nonetheless, in the case of
BReLU networks, we can make a tight connection to the subclass
of noncompetitive CRNs (named CheLU) in which a reaction

involves any species at most once and with unit stoichiometry.
We show that such CheLU CRNs and BReLU networks can be
considered to be equivalent models of computing, as they can
simulate each other with the number of ReLU nodes equaling the
number of bimolecular reactions.

In the last part of the paper, we demonstrate, through exam-
ples, our procedure of using BReLU neural networks to embed
functionality in CRNs. For each of the following datasets, we
trained the neural network classifier, generated the resulting CRN,
and numerically simulated the CRN under the usual mass-action
kinetics. The kinetic simulations confirm convergence to the
expected output and provide additional information about con-
vergence time. The first datasets, Iris and MNIST (Modified Na-
tional Institute of Standards and Technology), are widely used in
machine learning. The next dataset, motivated by the envisioned
application of molecular computation in medical diagnostics,
differentiates between viral infections, using chemical information
as input (gene expression levels). Finally, an important direction of
chemical computation in synthetic biology lies in spatial pattern
formation with applications in tissue and organ engineering (9).
As an example of spatial pattern formation, we used a neural net-
work to generate a two-dimensional (2D) pattern (heart shape).

CRNs and Nondeterministic Kinetics

CRNs formally model the time evolution of molecules in a
solution undergoing chemical interactions. Besides the use of
CRNs to capture the behavior of naturally existing chemical
systems, synthetic biologists and molecular programmers often
use CRNs as a programming language for rationally designed
synthetic chemical networks such as DNA strand displacement
cascades (5, 6) and DNA–enzyme networks (10). Related models
of distributed computation include population protocols (11),
Petri nets (12), and vector addition systems (13).

A CRN consists of a set of species Λ and a set of reactions.
Reactions are written generally in the following form:

r1R1 + · · ·+ rnRn−→p1P1 + · · ·+ pmPm ,

where Ri ,Pj ∈ Λ are the reactant and product species, respec-
tively, and the ri , pj ∈ N are stoichiometric coefficients quantify-
ing how much of each species is produced and how much is con-
sumed. The reactions written this way are irreversible—the prod-
ucts cannot react to form the reactants—and any reverse reaction
must be explicitly included (e.g., R1 + R2−→P and P−→R1 +
R2). While reactions always have some degree of reversibility,
synthetic chemical reactions, such as DNA strand displacement
cascades, can be made highly irreversible. While the results of
Programming CRN Computation by Stoichiometry apply to reac-
tions with arbitrarily many reactants, the constructions in Rational
Weight ReLU Neural Networks and Binary Weight ReLU Neural
Networks consist of reactions with, at most, two reactants. Re-
actions with more than two reactants are slow, in practice, as
they require the colocalization of more than two molecules before
reactions can occur. Further, while simulation of high-order reac-
tions by bimolecular ones is possible, the typical method disturbs
kinetics and does not fit in the noncompetitive class (defined later)
we are focusing on.*

A state of a CRN is an assignment of nonnegative real-valued
concentrations (amount per volume) to each species. It helps to
pick an arbitrary ordering on the species so that we can view states

*The typical method for simulating, for example, the reaction 3X−→Y is to use the
reactions X + X −⇀↽− X1 and X + X1−→Y .

2 of 11 https://doi.org/10.1073/pnas.2111552119 pnas.org

https://doi.org/10.1073/pnas.2111552119


Fig. 1. Representations of CRNs. The law of mass action induces the differ-
ential equations describing the CRN’s change in concentrations over time,
where, for example, a represents the concentration of species A. The stoi-
chiometry matrix captures the net change in species by each reaction, where
entry i, j corresponds to the change in species i by applying reaction j.

as column vectors from RΛ
≥0 for compatibility with linear algebra

techniques used later. We use a(S ) to denote the concentration
of species S in state a. We write column vectors as row vectors for
notational convenience.

The state of a CRN changes over time as prescribed by a rate
law. For example, the most commonly applicable rate law is the
mass-action kinetics model (example in Fig. 1) which prescribes
differential equations from reaction rates proportional to the
product of the reactants’ concentrations. While we do show that
our results hold for mass-action kinetics, we further prove them
for any rate laws which satisfy basic fairness (allowing reactions
to eventually happen if reactants are present) and stoichiometric
constraints. We give this class of reasonable rate laws a formal
definition at the end of this section, after providing a useful
formalization of stoichiometric constraints.

Next, we present a nondeterministic kinetic model, first pro-
posed by Chen et al. (2), designed to isolate the effect of stoi-
chiometry from the effect of rates. This model does not intend
to capture real-world chemical kinetics directly. Instead, it is a
simplified model that aids analysis of CRNs: As we show, for
the class of CRNs of interest, convergence in this simplified
model implies convergence under mass-action kinetics or any
other reasonable rate law. Intuitively, the model explores the set of
states reachable by the CRN assuming nothing about the kinetics
besides that stoichiometry is obeyed.

To capture the stoichiometry of a CRN, we focus on the
stoichiometry matrix M (example in Fig. 1). Each column corre-
sponds to a reaction, and each row corresponds to a species: Mij

corresponds to the net increase/decrease of species i by applying
reaction j.

In a state a, we say a reaction is applicable if all of its reac-
tants have positive concentration. Flux vectors, which are column
vectors u ∈ RΛ

≥0, describe arbitrary, simultaneous applications of
reactions, which, when multiplied by the stoichiometry matrix
M, yield the change in concentrations caused by applying those
reactions. Since u is a vector whose positive entries describe which
reactions apply, we say u is (initially) applicable at a state a if
all species which are reactants of reactions with positive entries
in u have positive concentration in a; formally, flux vector u is
applicable at state a if, for all reactions R, u(R)> 0 implies that
all reactants S of reaction R have a(S )> 0.

For states a and b, we say a→1
u b if there is a flux vector

u applicable at a such that b=Mu+ a; this is straight-line
reachability.† Given a→1

u b, we say reaction R is being applied
if u(R)> 0. We say a→ b if there is a finite length sequence
a→1 · · · →1 b, that is, → is the transitive reflexive closure

†Removing the applicability constraint would trivialize finding the set of reachable states
of the CRN but would lead to erroneous analysis. For example, given the CRN X1 +

X2−→Y + Z, Z−→X2, given the ordering on species X1, X2, Y , Z and an initial state
a = [10, 0, 0, 0], state b = [0, 0, 10, 0], and flux vector u = [10, 10], we would have that
b = Mu + a, although, from a, no reactions should be applicable, because there is initially
zero concentration of X2 and Z.

of →1; this is called line segment reachability. If no flux vectors u
besides the zero vector are applicable at state b, then we call b a
static state. In other words, in a static state, at least one reactant
of every reaction has zero concentration.

Intuitively, the nondeterministic model and the reachability re-
lation → describe what could happen in any (reasonable) rate law.
Or, put another way, if a �→ b, then this trajectory is prevented by
stoichiometry.

For our proofs, the most practical general characterization of
rate laws is a function mapping time to the total flux through each
reaction. Formally, given a CRN with r reactions and an initial
state a, any rate law induces a continuous, monotonic function
Fa : R≥0 → Rr

≥0 such that Fa(0) = 0 (the zero vector). Using
this function Fa and the stoichiometry matrix M, the state b
of the CRN at time t is given by b=MFa(t) + a. We say a
converges to b under the rate law if limt→∞ Fa(t) is finite and
M limt→∞ Fa(t) + a= b.

Using this formalization of rate law, we can define the general
class of reasonable rate laws for which our main Theorem holds, as
follows:

Definition 1: Reasonable rate law. A rate law is reasonable if it
satisfies the fairness and stoichiometric constraints below.

Definition 2: Fairness constraint. If limt→∞ Fa(t) exists and
is finite, then b=M limt→∞ Fa(t) + a must be a static state
(i.e., the rate law cannot imply a limit state which stops applying
reactions but has applicable reactions).

Definition 3: Stoichiometric constraint. For times t1, t2 with
t1 < t2, if b=MFa(t1) + a and c=MFa(t2) + a, then
it must be that b→1

u1
· · · →1

un
c with total flux

∑n
i=1 ui

= Fa(t2)−Fa(t1).
If Definition 2 were not satisfied, a rate law could induce an

F that simply applies no reactions at all. Definition 3 ensures
that the rate law is consistent with the nondeterministic model.
In particular, we avoid rate laws in which reactions happen when
some of their reactants are absent.‡

Chen et al. (2) proved that mass-action kinetics is reasonable.
One only needs to prove that a relevant kinetic model is reasonable
in order to apply our main Theorem.

Programming CRN Computation by
Stoichiometry

The computational power of CRNs typically arises from both
kinetics and stoichiometry. However, the equilibrium of certain
CRNs can be understood entirely by the stoichiometric exchange
of reactants for products (Fig. 2). Such systems have been used
as an alternate paradigm for programming complex chemical
behavior (2, 3, 14), inspired by similar notions in distributed
computing (11). We call such CRNs stoichiometrically defined.§

To view CRNs as a method of computation (or a programming
language), given a function f : Rn

≥0 → Rm
≥0, we assign some

species to be input species and others to be output species. The
input species X1, . . . ,Xn and an initial concentration assignment
to each represents an input vector x. For a fixed rate law, for ex-
ample, mass-action kinetics with particular rate constants, we say

‡Note that requiring that dFa(t)(R)/dt > 0 if reaction R is applicable in MFa(t) + a is
not enough: Consider the CRN with only one reaction R : X −→ 2X and a rate law which
induces F0(t)(R) = t2. We have dF0(0)(R)/dt = 0, and the reaction is not applicable at
0, but this rate law is pathological—the reaction makes a positive amount of X from zero
but has X as a reactant. Such pathological examples exist even if one enforces the rate of
change of F to depend solely on the concentrations of the reactant species (3; footnote 8).
§Previous work calls this notion stable computation. We use the term stoichiometrically
defined to avoid confusion with other notions of stability in chemistry.
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Fig. 2. Two rate-dependent CRNs and one stoichiometrically defined CRN
computing y = x/2. For certain choices of rate laws, each CRN converges
to a state with concentration of Y equal to half the initial concentration
of X, but Left and Middle CRNs require strong assumptions about the rate
law. Left CRN converges correctly under mass-action kinetics with equal rate
constants on both reactions. Middle CRN converges correctly if the second
reaction happens at twice the rate of the first, but, interestingly, cannot
converge correctly under mass-action kinetics for any rate constants. Right
CRN converges correctly with only a mild assumption that the rate is not zero
while X has a positive concentration. Intuitively, the correctness of Right CRN
is solely due to the stoichiometry of two reactants to one product.

the CRN computes f if the concentrations of the output species
Y1, . . . ,Ym as time goes to infinity are the output vector y
such that f (x) = y. For our computation to be stoichiometrically
defined, we want to prove that a CRN computes f with respect
to any rate law, which is achieved by the Theorem below. Note
that a dynamic equilibrium results from the precise balance in
rates between conflicting reactions; therefore, stoichiometrically
defined CRNs must reach static equilibria where no reactions are
applicable.

A small example is the reaction X1 + X2−→Y which com-
putes f (x1, x2) = min(x1, x2), since the reaction converges to
a state where either X1 or X2, whichever has initially lower
concentration, is depleted. Another example appears in Fig. 3
which computes f (x ) = (2/3)x . More examples and discussion
of stoichiometrically defined CRN computation can be found in
SI Appendix, section E.

Noncompetitive CRNs. Here we identify a class of CRNs which
we will show are easy to analyze and yet do not lose any compu-
tational power if we are interested in stoichiometrically defined,
rate-independent computation. Consider the following CRN:

X −→Y1

X −→Y2.

Fig. 3. Example application of the Theorem on the noncompetitive CRN
X + X−→R + Y , R + R−→X with initial state a = [10, 0, 0]. The shaded region
shows all line segment reachable states from a, that is, all states d such
that a → d. Solid lines are straight-line reachable paths (specifically, a →1 c
and c →1 b), and dashed lines are mass-action trajectories (assuming both
reactions have rate constant one, although the theorem applies to any rate
constants). Since there is a path a → b and b is static, the Theorem implies
that a also converges to b under mass action or any other reasonable rate
law. Further, as shown by the state a′, any state line segment reachable from
a will also converge to b under mass action or any other reasonable rate law,
showing that the convergence is robust to any initial perturbations that do not
leave the line segment reachable space of states. Letting the concentration
of X in a be a variable x(0), generalizing the shown path gives a → b with
b = [0, 0, (2/3)x(0)].

Intuitively, the two reactions compete for the species X. The faster
reaction will yield more output than the other, so the output state
depends on the rates of the reactions. Formalizing this intuition
yields the following definition:

Definition 4: Noncompetitive CRNs. A CRN is noncompet-
itive if every species which is decreased in a reaction is a reactant
in only that reaction.

Note that, by the definition above, a reactant may appear in any
number of reactions if it is not decreased (e.g., if it acts as a cata-
lyst). Also note that noncompetition is not necessary to compute
rate independently (see an example in SI Appendix, section G).

In SI Appendix, section C, we prove the following about non-
competitive CRNs:

Theorem. For noncompetitive CRNs, if a→ b and b is a static
state, then, for any state a′ such that a→ a′, a′ converges to b under
any reasonable rate law.

Fig. 3 illustrates a small application of this theorem. The
precondition of this theorem, that a→ bwithb static, is the same
as providing a line segment path from the input state to a static
state with the correct output. Thus, this theorem greatly simplifies
the analysis of equilibrium for noncompetitive CRNs. Further,
the theorem states that any state that is line segment reachable
from the initial state still converges correctly under any reasonable
rate law. The path a→ a′ captures a wide class of perturbations,
allowing any adversarial conditions to be applied to the system
initially, such as non–well mixedness or withholding of certain
reactions, as long as stoichiometry is still obeyed. Then, as long
as any reasonable rate laws are allowed to take over, the system
converges to the output state b. (Note that a′ can be equal to a,
since a→ a, meaning that this theorem also implies convergence
from the initial state.)

Composition and Dual-Rail Logic. To translate ReLU neural net-
works to CRNs, and generally to construct scalable computation,
we desire networks that are composable, meaning a network
computing g(x ) should be straightforwardly concatenated to a
network computing f (x ) to compute g(f (x )). It turns out that
this is equivalent to the following condition (15): We say that
a CRN is composable if its output species Y1, . . . ,Yn do not
appear as reactants in the network. (See SI Appendix, section E.1
for more details on composability.)

There is a tight connection between composability and non-
competition. Note that, if a CRN is not composable according to
the above definition, then one reaction has an output species Y as
a reactant. Then, attempting to compose a downstream CRN adds
another reaction with Y as a reactant, resulting in a competitive
network.

The composability constraint weakens computational power
unless the dual-rail representation is used. (See SI Appendix,
section E for more details.) The dual-rail representation utilizes
two species, for example, X+ and X−, to represent one real-
valued signal x, where x = x+ − x−, that is, the difference
between concentrations of species X+ and X−. Note that dual
rail allows representation of negative values by concentrations
which must be nonnegative. We use the dual-rail representation
in our ReLU network constructions.

Computational Power. Dual-rail stoichiometrically defined
CRNs compute exactly the continuous piecewise rational affine
functions (SI Appendix, section E; see Fig. S5, Right for an
example). Importantly, restricting to the noncompetitive subclass
does not limit this computational power; this argument is made
in SI Appendix, section E. The expressiveness of continuous
piecewise affine functions is underwritten by the empirical power
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of ReLU neural networks, which compute exactly the same
functions. Thus we motivate the connection between CRNs and
ReLU neural networks, and explore this connection in more detail
in Rational Weight ReLU Neural Networks and Binary Weight ReLU
Neural Networks.

Rational Weight ReLU Neural Networks

In this and the subsequent section, we develop constructions
for implementing ReLU neural networks with noncompetitive
CRNs. We start with broadly allowing arbitrary rational weights
in this section, and focus on binary weights in Binary Weight ReLU
Neural Networks.

Rational weight ReLU neural networks (RReLU) are
neural networks with rational weights and ReLU activation
function. Fig. 4A shows an example RReLU neural network,
consisting of an input layer, a single hidden layer, and
an output layer. The output of the network is defined by
y = ReLU (W2 · ReLU (W1 · x+ r1) + r2), where x ∈ R2 is
an input vector, W1 ∈Q2×2 is a weight matrix into the hidden
layer, r1 ∈ R2 is a vector of bias terms, W2 ∈Q1×2 is a weight
vector into the output layer with r2 as the corresponding bias
term, and y ∈ R is the output. In our example, r1 = [−3/2, 1/2]
(column vector), W2 = [4, 4] (row vector), and

W1 =

[
1 1

−1/2 −1/2

]
.

Fig. 4C shows an implementation of such RReLU networks
with composable, noncompetitive CRN modules (fan out,
weighted sum, and ReLU). For each module separately, we
describe a line segment path to a static state with the correct
output, and thus, by the Theorem, each module performs the
desired computation. We finish this section by discussing how
the modules are composed to realize the entire RReLU network.
The paths described below assume zero initial concentration of all
species other than the inputs. To implement bias terms, we set the
initial concentrations of the corresponding species to the dual-rail
value of the bias terms.

The fan-out module passes a single value to n downstream neu-
rons. Applying the two reactions of the module until completion
results in a static state with the dual-rail value yi = y+

i − y−
i =

x+(0)− x−(0) = x (0) for every i. The weighted sum module
combines the outputs of multiple predecessor neurons by multi-
plying them with a weight (rational number) and summing up the
values. Applying reactions qjX+

j −→pjY
+ and qjX

−
j −→pjY

−

until completion changes the dual-rail value y of the output by
(pj/qj )(x

+
j (0)− x−

j (0)) = (pj /qj )xj (0). Similar reactions are
included for the other input species of the weighted sum (note that
positive and negative species are flipped in the case of a negative-
signed weight). Thus, after applying all the reactions, we reach
a static state where the total dual-rail value of y is equal to the
weighted sum of the inputs.

While rational weight multiplication is easily computable
through stoichiometry as above (e.g., qX−→pY computes y =
(p/q)x ), the use of many reactants is undesirable, as discussed
in CRNs and Nondeterministic Kinetics. We can use the scheme
shown in Fig. 5 for rational weight multiplication using only
noncompetitive unimolecular and bimolecular reactions. Using
reactions of the form L0−→L1 + L1 and R0 + R0−→R1, we
can double and halve the concentration of a species, respectively.
In this way, a set of reactions may mimic the binary expansion
of a given rational p

q , generating an output species Y for each
one bit in the binary representation. If the rational number has an
infinitely repeating portion in its binary expansion, our CRN uses
a final reaction which “loops” back to a previous reaction. Fig. 5C
shows a concrete example of this. A detailed proof of correctness
for this construction may be found in SI Appendix, section F. The
proof shows a path from a state with concentration x of the input
species to a state at static equilibrium with concentration (p/q)x
of the output species. By the Theorem (and the fact that this CRN
is noncompetitive), this is sufficient to show that the construction
computes (p/q)x . To satisfy the dual-rail representation, the
construction is repeated for both the positive X+ and negative
X− species. Since this CRN is composable, it may be used for
the weighted sum by creating similar reaction chains for all input
species.

B

CA

Fig. 4. CRN implementation of RReLU neural networks. (A) An example RReLU network. (Although the inputs and outputs are real-valued quantities, this
network can also be thought to compute the XNOR function: y = x1 ⊕ x2 if zero and one values represent logical false and true.) (B) Decomposition of a neuron
into weighted summation and nonlinearity. (C) CRN implementation for each RReLU network component.
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A B

C

Fig. 5. Noncompetitive bimolecular rational multiplication. (A) Binary repre-
sentation of rational p/q, where a, b, and c are binary strings. Strings a and
b are lengths i and j, respectively, while c is an infinitely repeated string of
length k. (B) A scheme for constructing a noncompetitive bimolecular CRN
for rational multiplication. The reaction chain uses i + j + k + 1 reactions to
“implement” the binary expansion. The last reaction creates a “loop” in the
reaction chain which corresponds to string c. The number of times each
reaction will be applied (before looping) is some multiple of the initial count
of X, as indicated by the multiplier column. An output species Y will appear as
a product for each reaction where a “1” appears in the binary expansion. (C)
An example CRN which computes y = (19/6)x. Note that, to achieve a dual-
rail representation, we can repeat this construction twice, for both positive
(X+, Y+) and negative (X−, Y−) input and output species.

ReLU is implemented with two reactions shown in Fig. 4.¶
Consider the following line segment path. Apply the first reaction
(X+−→M + Y +) to completion. This results in y+ =m
= x+(0). Then apply the second reaction (M + X−−→Y −)
until completion, resulting in y− = min(m, x−(0)) = min(x+

(0), x−(0)). In that state, y = y+ − y− = x+(0)− min(x+(0),
x−(0)) = max(x+(0)−x−(0), 0)= ReLU(x (0)). Also, x+ = 0
and either m or x− is zero. Since at least one reactant of both
reactions is zero, the state is static, and the Theorem applies.

We concatenate the above CRN modules into a single CRN by
appropriately renaming species to make the outputs of upstream
modules be inputs to the downstream modules (and avoid any
other overlap in species). Since each module is noncompetitive
and composable, the entire network is noncompetitive. Therefore,
applying the line segment paths as described above module by
module, layer by layer gives a straightforward path in the nonde-
terministic kinetic model from the initial state to a static state with
the output equal to the output of the neural network. The Theo-
rem then argues that the CRN converges correctly under mass-
action kinetics or any reasonable rate law. We show an example
RReLU neural network and its complete CRN implementation
in SI Appendix, section A.

Note that, in the dual-rail representation, cancellation reac-
tions, like X+ + X−−→waste, can be added to decrease the
concentrations of X+ and X− without changing the represented
value of x. Such reactions may help to keep concentrations in
check, which may otherwise become exponentially large in the
number of layers (17), and may achieve faster convergence. In
SI Appendix, section I, we prove that adding cancellation does not
affect the dual-rail values of the outputs of noncompetitive CRNs.

Binary Weight ReLU Neural Networks

BReLU neural networks are neural networks with binary weights
(±1) and ReLU activation function. Since they are a subclass of

¶Enumeration of small CRNs shows that this is the simplest stoichiometrically defined,
composable CRN computing ReLU in the sense that ReLU cannot be computed in this
manner with fewer than two reactions or five species (16).

RReLU networks, the same translation procedure as illustrated
for RReLU applies. BReLU networks were popularized in the
machine learning community due to the computational speedups
they bring (they eliminate the need for a large portion of multi-
pliers which are the most space- and power-hungry components
of specialized deep learning hardware), while, at the same time,
preserving the performance (8). From the angle of CRNs, com-
puting rational weights (p/q)x in dual rail requires either two
reactions with many reactants or many reactions with at most two
reactants, neither of which is desirable. Thus, BReLU networks
are a better-suited class of neural networks for CRNs than RReLU,
producing CRNs that are easier to implement in a wet lab. In sum,
the restriction to binary weights simplifies the implementation
of neural networks in both silicon and chemical hardware while
maintaining performance.

Note that the fan-out and weighted sum can be merged into
a single step, since BReLU networks have ±1 weights. Thus, by
default, the fan-out and weighted sum of BReLU networks is
implemented using a reaction set similar to the fan-out module in
Fig. 4, with the difference that the ± signs of the output species
are flipped in the case of negative weight.

Translation Optimization. We find that unimolecular reactions
of noncompetitive CRNs, such as the first reactions of ReLU
modules, can be eliminated from the CRN, reducing the total
number of reactions. This is achieved by altering the bimolecular
reactions and the initial concentrations of the CRN species,
a process which we describe next. Unimolecular reactions are
those with exactly one reactant like A−→B + C . Whenever A
is produced in another reaction, we can replace it with B + C .
For example, if there is another reaction X−→A+ B , we replace
the reaction with X−→2B + C . Further, we adjust the initial
concentrations of the product species (B and C ) by increasing
them by the initial concentrations of the reactant (A). Importantly,
this transformation works only if A is not a reactant in any other
reaction; for example, if there were another reaction like X +
A−→Y , it is not clear what to replace instances of A with, and,
indeed, it is not possible to remove the unimolecular reaction in
that case. Luckily, our constructions are noncompetitive, and we
are able to show that, for noncompetitive CRNs, the optimization
does not affect the state of convergence (SI Appendix, section D).
The optimization procedure is illustrated in Fig. 6.

RReLU networks allow for the optimization of fan-out mod-
ules and partial optimization of ReLU modules (only the uni-
molecular reactions). Weighted sum modules may be optimized
only in case of integer weights. Note that the unimolecular
reactions corresponding to the input species are not optimized,
in order not to alter the input to the system. Following the above
optimization procedure for BReLU networks results in a CRN
which consists of 1) a single bimolecular reaction per RReLU
node and 2) two unimolecular reactions per input of the neural
network.

Optimization of some adversarial ReLU networks results in
reactions whose products have stoichiometric coefficients expo-
nential in the depth of the network. An example is given in
SI Appendix, section L. Understanding the scaling of the number
of products is an important avenue for future work to ensure
feasible CRNs.

BReLU Networks Simulate CRNs. Noncompetitive CRNs can
compute any function computed by a BReLU network where each
reaction (except for the input layer reactions) corresponds to one
BReLU node. One interpretation of this is that CRNs efficiently
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Fig. 6. CRN optimization procedure. (Left) Neural network and its corresponding CRN before the optimization. (Right) Neural network and its corresponding
CRN after the optimization.

simulate BReLU networks. A natural question is the converse: Can
any CRN be efficiently simulated by a BReLU network?

In this subsection, we show that BReLU networks and a
subclass of noncompetitive CRNs we call CheLU are effectively
equivalent and can simulate each other with one node per bi-
molecular reaction and vice versa.

To define CheLU networks, we note the restricted form of the
CRNs produced by our translation, and the limitations of BReLU
networks. The first restriction is that reactions have, at most, two
reactants, because reactions with three or more reactants are slow
and hard to implement, and reactions with one reactant can be
removed via our optimization procedure. The second restriction
is that the CRN is feed forward. This can be formalized by saying
that there is a total ordering on reactions such that products
of a reaction cannot be reactants of a reaction earlier in the
ordering. Previous work (3) shows that feed-forward CRNs, and
thus CheLU networks, converge to a static equilibrium under
mass-action kinetics. The question of the connection between
feedback BReLU networks and feedback CRNs remains open.
The third restriction is that every species appears, at most, once per
reaction. Intuitively, this restriction is placed because a reaction
like X + X → . . . essentially halves the signal of X, which has
no analog in binary weight neural networks. Lastly, we restrict the
CRNs to be noncompetitive.

We next define what is meant by simulation of CheLU net-
works by BReLU networks. Of course, BReLU networks have
no sense of kinetics or dynamics. For this reason, we disregard
kinetics and instead focus on initial and equilibrium states of the
CheLU network, and mapping those states to inputs and outputs
of a BReLU network. Formally, we say a BReLU neural network
simulates a CheLU CRN if, for all initial states a, the equilibrium
state b given a is equal to the output vector of the BReLU neural
network given a as input.

We give a small, composable BReLU network (Fig. 7) which
simulates a single CheLU reaction. Composing this small net-
work to simulate larger CheLU networks is straightforward, since
we restrict CheLU networks to be feed forward. The BReLU
network uses one ReLU node and two summation nodes per
reaction, although the summation nodes can be removed with
the clever addition of more edges to achieve one ReLU node per
reaction.

Thus, BReLU networks and CheLU networks simulate each
other, one node per reaction and vice versa, and so efficient

networks in one model transfer to the other. Note that the
CheLU conditions are sufficient but possibly not necessary for
simulation by BReLU. Although CheLU networks, at first, seem
restricted, the empirical power shown of BReLU networks implies
that CheLU networks are a rich and powerful class of CRNs,
whose restrictions make them easy targets for implementation by
synthetic means.

Simulations

In this section, we showcase several examples of BReLU networks
and show the simulation of their chemical counterparts. Our
simulations empirically confirm the correctness of our construc-
tion, as well as providing information regarding the kinetics of
convergence to correct output.

Datasets. We trained BReLU networks on Iris (18, 19), MNIST
(20), virus infection (21), and spatial pattern formation (heart)
datasets. These datasets are briefly summarized below; for more
information on the training procedure and datasets used, see
SI Appendix, section J. We treated every dataset as a multiclass
classification problem, with an output unit for every class. The
networks were trained to maximize the output unit corresponding
to the correct class, and minimize the others. Following our
compilation technique for BReLU networks (Binary Weight ReLU
Neural Networks), we translated the trained neural networks to
CRNs, and simulated the resulting reactions under mass-action
kinetics using an ordinary differential equation simulator (22). As
expected, in all cases, the outputs of the original neural network

Fig. 7. A composable BReLU network simulating a chemical reaction
A + B−→C. Given any vector x of initial concentrations of species A, B, and
C, the equilibrium state b of the reaction A + B−→C has b(A) = a(A) − min
(a(A), a(B)), b(B) = a(B) − min(a(A), a(B)), and b(C) = min(a(A), a(B)).
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and the constructed CRN matched exactly. The numerical exper-
iments are visualized in Fig. 8.

The first two datasets, Iris and MNIST, are popular in the
machine learning literature. The Iris dataset classifies flowers
into three classes (Setosa, Versicolor, or Virginica) based on four
continuous features (petal and sepal length and width). The
MNIST dataset classifies gray-scale images as handwritten digits
zero to nine. The full MNIST network is the largest network
we implemented, with 64 ReLU units; however, a much smaller
network of 4 ReLU units, which is potentially more realistic for a
CRN implementation, can be used to effectively distinguish be-
tween digits zero and one (see SI Appendix, section J for additional
information).

The last two datasets were chosen to take chemically avail-
able information as input. We implemented the virus infection
dataset where microarray data capturing human gene expression
profiles (we used the 10 most relevant genes as inputs) identify
four viral infections: H1N1, H3N2, respiratory syncytial virus,
and human rhinovirus. Finally, to demonstrate spatial pattern
formation, we trained a neural network to generate a target 2D
shape (heart) shown in Fig. 8, 4A. The input features were the pixel
coordinates (x1 and x2); in a chemical system, such a coordinate
system could be potentially established via a spatial gradient of
different species in the vertical and horizontal directions. The
output was the pixel color at that coordinate (black or white).
Note that, if raw biological signals are taken as inputs, they are

Fig. 8. Neural network architecture, input/output encoding, and CRN simulations for different datasets. Subfigures 1A and 1B show Iris neural network
architecture and the kinetic trajectory of the corresponding CRN for an example input. The classification is “versicolor” because it is the highest (dual-rail) output
value. Subfigure 2A shows an example MNIST input image and its input/output encoding. Each image from the MNIST dataset is unrolled into a vector, and the
output label is represented as a 10D vector. Subfigures 2B and 2C show MNIST neural network architecture and the kinetic trajectory of the corresponding CRN
for the input shown in 2A, which the network correctly classifies as a zero. Subfigures 3A and 3B show virus infection neural network architecture and the kinetic
trajectory of the corresponding CRN for an example input. Subfigures 4A through 4D show a pattern formation (heart) neural network: 4A shows the image used
to construct the dataset; 4B shows input and output encoding for a position (pixel) in the input image. An input is encoded using 2D coordinates: (x1) symmetric
horizontal coordinates (starting in the image center) and (x2) vertical coordinates starting from the top left edge of the image. An output, which can be either
black or white pixel, is encoded as a 2D vector as shown in the figure. Subfigure 4C shows neural network architecture. Subfigure 4D shows an image learned
by the neural network, and the kinetic trajectories of the corresponding CRN for two different input values (positions) corresponding to white and black pixels.
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not expected to be dual rail, and one species from each dual-
rail pair could be omitted (corresponding reactions removed). In
our simulations, however, we used standardized dual-rail signals as
inputs to our neural networks which could be positive or negative
(SI Appendix, section J).

Convergence Time Analysis. Chemical implementation of neu-
ral networks presents an additional dimension in the form of the
kinetics of converging to the output. We focus on two aspects of
the kinetics: how computation time changes from input to input,
and how it varies with the depth of the network.

For a classifier neural network, the logical output of the corre-
sponding CRN at any given time is the output with the highest
(dual-rail) value. As the computation proceeds, the logical output
can change over time until eventually stabilizing to the output of
the original network. The time to stabilization (stabilization time)
captures how soon the readout output is correct.

For the pattern formation (heart) neural network, we found
that the stabilization time varied from 0 to 12 units of time
across different inputs (x1,x2 coordinates). (Since the bias weights
established “black” as the default output, stabilization time can be
zero.) Intriguingly, the inputs at the border of the generated shape
had higher stabilization time than inputs farther inside or outside
the shape (Fig. 9, Left). The greater stabilization time could be
due to the integration of multiple conflicting signals of similar
magnitude at the output nodes, whereas, farther away from the
border, one or the other signal dominated.

Across different datasets and neural networks, we observed
a correlation between stabilization time and the classifier confi-
dence. The confidence (23) is a measure of how “convinced” the
classifier is of its prediction; see SI Appendix, section K. However,
the fact that the correlation was only moderate suggests that more
work is needed to expound the factors contributing to the speed
of our CRNs on different inputs.

It is known that the speed of signal propagation in chemical
networks can be qualitatively different than in their electronic
counterparts. For example, Seelig and Soloveichik (24) analyzed
a chemical implementation of a tree of AND gates, finding that
the time to reach 90% completion scales quadratically with the
depth of the tree. This scaling contrasts with the usual electronic
time complexity, which is linear in the depth.

To better understand the speed of signal propagation in BReLU
CRNs, we trained two neural networks, each with five hidden
layers, on the heart dataset. We observed that, in each network,
the time to produce 90% of the output signal for each layer
scaled linearly with the depth of the layer (Fig. 9, Right). We
further trained 10 independent networks on the heart dataset

with a varying number of hidden layers (one to five). We sim-
ilarly observed that the time to produce 90% of the output
species in the last layer scaled linearly with the number of layers
(SI Appendix, Fig. S6, Left).

While the time to produce species to 90% of their equilib-
rium value exhibited linear scaling with the number of layers,
we did observe that stabilization time increased superlinearly
(SI Appendix, Fig. S6, Right). The delay in converging to the cor-
rect logical output may be due to overall closer signal values
in deeper networks that required more time to approach their
respective ranked order.

Related Work

A brief conference version of this work focused on the BReLU
network implementation (25). In this full version, we introduce
the machinery of noncompetitive CRNs allowing for proofs of
correctness, the general construction for RReLU networks, and
the inverse construction showing simulation of CRNs by ReLU
networks.

Prior work has studied a number of properties of CRNs that
arise from stoichiometry alone and are independent of rates (26,
27). In the context of using CRNs to perform computation,
computation by stoichiometry (2) was directly motivated by the
notion of stable computation in population protocols (11). Other
notions of nearly rate-independent computation involved a coarse
separation into fast and slow reactions (28).

Recent work took a different but related approach to formal-
izing and verifying rate independence (7). It considered a broad
class of rate laws and identified three easy-to-check conditions that
force convergence to the same point under any rate law in this
class. Specifically, it showed that it is sufficient for the CRN to be
synthesis-free, loop-free, and fork-free. The first condition means
that every reaction decreases some species, the second condition
is equivalent to our feed-forward condition, and the last is a more
restricted version of noncompetition. Notably, the Theorem does
not require the loop-free condition, allowing us to prove rate-
independent convergence of CRNs with cycles such as our rational
multiplication CRN shown in Fig. 5. Similarly, the convergence of
our rational multiplication CRN construction cannot be proven
using the technique of Chen et al. (3), since it does not satisfy their
feed-forward definition.

The connection between CRNs and neural networks has a
long history. It has been observed that biological regulatory net-
works may behave in a manner analogous to neural networks.
For example, both phosphorylation protein–protein interactions

12
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Fig. 9. Time analysis for the pattern formation (heart) dataset. (Left) Stabilization time for each position in the input pattern for the one-layer neural network
(heart) shown in Fig. 8 (subfigures 4A through 4D). (Right) Time to 90% production of output species of hidden layers (1 through 5) and the output layer (6) of
two different neural networks trained on the heart dataset (cyan and blue). The circles represent mean values, while the lower and upper bars represent 10th
and 90th percentiles over all inputs and output nodes.
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(29, 30) and transcriptional networks (31) can be viewed as
performing neural network computation. Hjelmfelt et al. (32)
proposed a binary-valued chemical neuron, whose switch-like
behavior relies on competition between excitation and inhibition.
More recently, Moorman et al. (33) proposed an implementation
of ReLU units based on a fast bimolecular sequestration reaction
which competes with unimolecular production and degradation
reactions. Anderson et al. (34) developed a different mass-action
CRN for computing the ReLU and smoothed ReLU function.
Recently, Linder et al. (17) proposed a rate-independent CRN
implementation of digital binarized neural networks, in which
both signals and weights are binary. Further from our work, Poole
et al. (35) recently showed a connection between discrete CRNs
operating under stochastic kinetics and feedback stochastic neural
networks (Boltzmann machines), and simulated their method on
the MNIST dataset.

In contrast to prior work on chemical analog neural networks,
our implementation relies solely on the stoichiometric exchange
of reactants for products, and is thus completely independent of
the reaction rates. Our CRN is also significantly more compact,
using only a single bimolecular reaction per neuron for BReLU
networks, with two species per every connection (without addi-
tional species for the neuron itself ).

We use neural networks as a way to program chemistry. The
programming is done offline in the sense that neural networks are
trained in silico. However, there is a body of work on creating
chemical systems that are capable of learning in chemistry (36,
37). Although these constructions are much more complex than
ours, and arguably difficult to realize, they demonstrate the proof
of principle that chemical interactions such as those within a single
cell are capable of brain-like behavior.

Besides the above-mentioned theoretical work on chemical
neural networks, wet-lab demonstration of synthetic chemical
neural computation argues that the theory is not vapid and that
neural networks could be realized in chemistry. A chemical linear
classifier reading gene expression levels could perform basic disease
diagnostics (38). Larger systems based on strand displacement
cascades were used to implement Hopfield associative memory
(39), and winner-take-all units were used to distinguish digits “6”
and “7” in the MNIST dataset (40). Interestingly, the direct strand
displacement implementation of a neuron by our construction
is significantly simpler (in terms of the number of components
needed) than the previous laboratory implementations, arguing
for its feasibility.

Conclusion

While computation in CRNs typically depends on reaction rates,
rate-independent information processing occurs in the stoichio-
metric transformation of reactions for products. In order to better
program such computation, we advance noncompetition as a
useful property, allowing us to analyze an infinite continuum of
possible, highly parallel trajectories via a simple sequential anal-
ysis. We further demonstrate embedding complex information

processing in such rate-independent CRNs by mimicking neural
network computation. For binary weight neural networks, our
construction is surprisingly compact in the sense that we use
exactly one reaction per ReLU node. This compactness argues that
neural networks may be a fitting paradigm for programming rate-
independent chemical computation.

As proof of principle, we demonstrate our scheme with nu-
merical simulations of traditional machine learning tasks (Iris and
MNIST), as well as tasks better aligned with potential biological
applications (virus identification and pattern formation). The last
two examples rely on chemically available information for input,
and thus argue for the potential biological and medical utility of
programming chemical computation via a translation from neural
networks.

Neural networks can be evaluated on the speed of the corre-
sponding chemical kinetics, in addition to the typical measures of
size and accuracy. How does the speed of chemical convergence
vary with the structure of the neural network, and could speed be
explicitly optimized in neural network training? Does the speed
of convergence of the chemical kinetics relate to nonchemical
measures of neural network performance such as confidence or the
degree of overfitting? Conversely, it might provide a new measure
that might itself be useful for analysis of neural networks outside
of chemistry. Future work is needed to better understand the time
dimension empirically or theoretically.

Although, in principle, arbitrary CRNs can be implemented
using DNA strand displacement reactions, current laboratory
demonstrations have been limited to small systems (6), and many
challenges remain in constructing large CRNs in the laboratory.
Rate-independent CRNs possibly offer an attractive implementa-
tion target, due to their absolute robustness to reaction rates.

Only three kinds of computing hardware are currently
widespread: electronic computers, living brains, and chemical
regulatory networks, the last occurring within every cell in every
living organism. Given the society-changing success of electronic
computers and the recent neural networks revolution inspired
by computation in the brain, it may be argued that chemical
computation is the least understood of the three. Upon the
refinement of theoretical principles and experimental methods,
the impact of chemical computation could be felt in far-reaching
ways in synthetic biology, medicine, and other fields. Chemical
computation by stoichiometry, and methods of programming and
training such computation developed here, provide a distinct ap-
proach toward bottom-up engineering of molecular information
processing.

Data Availability. Data have been deposited in GitHub (https://github.com/
marko-vasic/dmp).
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