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Assessment of minimally invasive surgical skills is a non-trivial task, usually requiring the
presence and time of expert observers, including subjectivity and requiring special and
expensive equipment and software. Although there are virtual simulators that provide self-
assessment features, they are limited as the trainee loses the immediate feedback from
realistic physical interaction. The physical training boxes, on the other hand, preserve the
immediate physical feedback, but lack the automated self-assessment facilities. This study
develops an algorithm for real-time tracking of laparoscopy instruments in the video cues of
a standard physical laparoscopy training box with a single fisheye camera. The developed
visual tracking algorithm recovers the 3D positions of the laparoscopic instrument tips, to
which simple colored tapes (markers) are attached. With such system, the extracted
instrument trajectories can be digitally processed, and automated self-assessment
feedback can be provided. In this way, both the physical interaction feedback would
be preserved and the need for the observance of an expert would be overcome. Real-time
instrument tracking with a suitable assessment criterion would constitute a significant step
towards provision of real-time (immediate) feedback to correct trainee actions and show
them how the action should be performed. This study is a step towards achieving this with
a low cost, automated, and widely applicable laparoscopy training and assessment
system using a standard physical training box equipped with a fisheye camera.

Keywords: real-time motion tracking, cartesian position estimation, single view camera, skill metric, laparacospy,
laparoscopy training

INTRODUCTION

Laparoscopy is a minimal invasive surgery performed in the abdominal cavity with the most
important advantage of fast recovery of patients, compared to conventional open surgery procedures.
Using only small incisions, the surgeon can perform an operation such as removing parts on organs
or retrieving tissue samples for further analysis, without fully opening the abdomen (Eyvazzadeh and
Kavic, 2011). However, this method brings new challenges to the surgeon as it is more difficult to
perform than a conventional open surgery. The main challenges are a reduced field of view due to the
use of a single camera, loss of depth perception, less sensitive force perception, and inverted motions
due to a rotation around the insertion point (fulcrum effect) (Xina et al., 2006; Levy and Mobasheri,
2017). Exemplary camera views of a suturing training from the inside of the training box used in this
study are seen in Figure 1, as adapted from our previous work (Gautier et al., 2019). To adapt to those
challenges a surgeon must carry out an intensive training, which is difficult to be objectively assessed
due to the lack of consistent quantitative measures (Chang et al., 2016).
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Laparoscopy training aims at motor learning (Dankelman
et al., 2005; Halsband and Lange, 2006) for manipulation skills
with the laparoscopic instruments. Long training periods and
expensive resources are required for training and evaluation of
novice surgeons (Gutt et al., 2002; Vassiliou et al., 2005; Berg
et al., 2007). Suturing is considered to be one of the procedures
that require high degree of manipulations skills in laparoscopy
(Judkins et al., 2006; Wang et al., 2010). A major concern in
laparoscopy training is about evaluating the degree of skill of
surgeons. Mostly offline evaluation techniques are used
(Aggarwal et al., 2004; Chmarra et al., 2007), with criteria
such as the number of movements of the tool coded by
acceleration and deceleration thresholds, the path length
covered by the tool-tip, the time taken to bring the tool-tip
from one point to another (Datta et al., 2001; Moorthy et al.,
2003; Chmarra et al., 2008), and the frequency content of time
frames (Megali et al., 2006). These criteria make use of the
translational tool-tip trajectory.

For training and assessment of laparoscopy skills there are
physical box trainers (Aggarwal et al., 2004; Schreuder et al., 2011;
Kunert et al., 2020; Ulrich et al., 2020), visual simulators (Ahlborg
et al., 2013; Strandbygaard et al., 2013), and recently also
augmented reality systems (Lahanas et al., 2015). The pros and
cons of these systems have been discussed in literature (Lahanas
et al., 2015). While box trainers provide physically realistic
interaction, they require supervision by an expert for training
and assessment. Virtual simulator, on the other hand, are limited
in physical realism (von Websky et al., 2013; Greco et al., 2010),
but allow collection of digital data that can be processed to
perform quantified assessment without the need for a
supervisor. Augmented reality systems as in (Lahanas et al.,
2015) constitute an attempt to bring together the advantages
of the two: physical realism of a training box and digital
computation of registered data. However, currently such

systems (Lahanas et al., 2015) yet come with extra sensors and
function with a virtual setup, though with physical instruments.

A promising approach that has been appearing in the recent
years is to equip physical training boxes with machine vision and
intelligence to assess the physical performance of the trainee
(Sánchez-Margallo et al., 2011; Alonso-Silverio et al., 2018).
However, the emergent systems such as in (Alonso-Silverio
et al., 2018), yet provide assessment/feedback only after the
task is completed; in other words, they process the
performance offline. With similar spirit, we developed in an
earlier study an off-line trajectory tracking algorithm of
laparoscopy tool tips in a laparoscopy training box and
provided novel assessment methods using the extracted
trajectories (Gautier et al., 2019). In the current paper, we
present a substantially improved version of our tracking
algorithm, which is capable of real-time tracking of the 3D
position of instruments with a single camera, and we assess
the real-time tracking performance with a Robotic Surgery
Trainer setup. Our motivation is that the real-time extracted
instrument trajectories can be digitally processed, and automated
self-assessment feedback can be provided to the trainee in real-
time. In this way both the physical interaction feedback would be
preserved and the need for the observance of an expert would be
overcome by provision of instant feedback when the trainee
makes a mistake or deviates from the optimal way of
performing the task.

In this study, we apply our algorithm to the videos of training
sessions for intra-corporeal wound suturing, which is considered
to be one of the most difficult procedures in laparoscopy training
(De Paolis et al., 2014; Hudgens and Pasic, 2015; Chang et al.,
2016). For that purpose, we have recorded videos from six
professional surgeons and ten novice subjects. Ethical approval
was acquired from the Ethics Committee of School of
Engineering and Physical Sciences at Heriot-Watt University

FIGURE 1 | (A) Instrument detection, (B) convex Hull area when the rope is crossing the blue marker, (C) convex Hull area when the instrument is crossing the blue
marker and obscuring the marker, (D) out of the field of view, when Kalman filter prediction is used (Gautier et al., 2019).
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with Ethics Approval number 18/EA/MSE/1 and all participants
provided their Informed Consent prior to data collection. Our
real-time tracking algorithm in this paper is successful to extract
the same trajectories from these recorded videos as the off-line
algorithm we presented in our previous work (Gautier et al.,
2019). Therefore, the conventional assessment criteria we used in
(Gautier et al., 2019) from the literature (Kroeze et al., 2009;
Ahmmad et al., 2011; Retrosi et al., 2015; Chang et al., 2016;
Estrada et al., 2016) and the novel one we proposed in (Gautier
et al., 2019) are all applicable also to the real-time extracted
trajectories in the current study, highlighting the usefulness of the
trajectories to distinguish between novice and professional
performances. We do not repeat the explanation and
application of these criteria in this paper and refer the reader
to (Gautier et al., 2019).

Tracking methods for objects in known environments are
well known in the literature and have already been used in
several studies on laparoscopy, such as 2D tooltip location
tracking in laparoscopy training videos for eye-hand
coordination analysis (Jiang et al., 2014), 3D laparoscopy
instrument detection using the vanishing point of the edges
of the instrument’s image (Allen et al., 2011), stereo-imaging
with two webcams and markers (Pérez-Escamirosa et al.,
2018), monochrome image processing (Zhang and
Payandeh, 2002), making use of the position of the
insertion points of the instruments (Doignon et al., 2006;
Voros et al., 2006), optical flow information in video frames
(Sánchez-Margallo et al., 2011), and instrument tracking for
calibration purposes for robotic surgery (Zhang et al., 2020).
Among these, the ones that target training mostly use colored
markers on the tips of the instruments to be tracked. This is
justified for training setups as it is easily applicable to any
training laparoscopy instrument and it does not impact the
performance of the subject. However, a major challenge with
marker-based instrument tracking is that the markers might be
obscured or they might get out of the field of camera view (Lin
et al., 2016), as illustrated in Figure 1. In this paper we also
develop a marker based tracking system; but in comparison to
the other methods, 1) we address the problem of occlusion and
disappearance from the scene by adopting a Kalman filter to
estimate the position only in such instances of disappearance
from the scene, and 2) we do the tracking for 3D positioning of
two instrument tips in real-time with a speed of 25 frames per
second by using the geometric features of the markers. We
achieve real-time tracking purely based on a single camera
image processing from a standard laparoscopy training box. As
our system does not add any extra equipment to a standard
laparoscopy training box, we consider it to be low-cost and
widely applicable as it can easily be applied to any training box.

The rest of the paper is organized as follows. Our
implementation of the real-time tracking in 2D images using
color-based markers is presented in Marker Corner Detection in
2D Images. In Tool Tip Position Tracking In 3D, we explain the
method used for 3D Cartesian position estimation in real-time. In
Testing And Verification, we compare the performance of
trajectory extraction with respect to the ground truth
trajectories generated by a Robotic Surgery Trainer setup

incorporating two UR3 universal Robots. Conclusion concludes
the paper.

MARKER CORNER DETECTION IN 2D
IMAGES

Instrument detection is realized by tracking the colored tapes
attached to the end of the two instruments as in Figure 1 and
Figure 2. The colors of the tapes are chosen to be easily separable
from the background (usually a pink colored suturing pad) and
each other in a Hue Saturation Value (HSV) space. The tracking
problem in this setting can be described as subject to a close-to-
invariant light exposure (closed environment and short time
recording). The image processing techniques used in this study
are individually well known in literature; therefore, we will only
mention them briefly without detailed explanations. We note
that, what we have performed in this study is adapting these
techniques and integrating them effectively to solve the specific
detection challenges in the context of a laparoscopy training
practice. For example, and specifically, the method we have
developed allows detection of the corners of a markers even
when some parts of the marker are separated from each other in
the image, which can happen in two different cases: when the
rope is wrapped around the instrument over the tracked marker
as in Figure 1B, and when one of the instruments obscures part of
the tracked marker on the other instrument as in Figure 1C. The
real-time tracking process is realized using a two steps method, a
detection step where the four corners of a colored tape on each
instrument are found in the current 2D image frame (explained in
the following sub-sections) and a tracking step where a 3D
position of the instrument tips are generated using the
detected corners (explained in TOOL TIP POSITION
TRACKING IN 3D).

Preprocessing
Using the recorded video retrieved from our experiments, an
HSV color database is constructed for the range of the pink
background pad and for the range of the colors of the tapes on the

FIGURE 2 | Practical workspace for both instruments based on the
collected data.
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instruments, across 20 videos recorded from six professional and
10 novice subjects. The HSV range for the tapes is identified by
isolating 50 × 50 square regions containing each tape. The mean
HSV values are then extracted and used to create the database to
be compared to new inputs (Riaz et al., 2009; Abter and Abdullah,
2017). The current database comprises three different
illumination setting across the 20 videos: a natural light
recording setup, and two artificial light recording
environment, one in our laboratory and one in the medical
facilities. When a new pad is used in any lighting condition,
its detected color is compared to the dataset using a minimum
distance formula, and the closest corresponding HSV range is
selected for each instrument for the detection.

The second part of the preprocessing is a full frame detection.
Using color space conversion (cvtColor in OpenCV) on the full
image is time consuming; therefore, it is performed only on the first
two video frames. The marker positions in the image are retrieved
and the center of gravity of each detected contour around the
marker is used to estimate the position of the contour in the next
frame using the motion gradient. Finally, the extrinsic parameters
of the camera are retrieved using the perspective transformation
matrix based on the pink pad background corners in the very first
frame. Then the Euler angles representing the camera orientation
are extracted, as the camera height being adjustable and hence
might change across the use of the system in different times. In our
setup this initialization is applied automatically every time the
system is turned on.

Our detection process follows a general framework for HSV
object detection (Cucchiara et al., 2001; Hamuda et al., 2017) with
a real-time adjustable detection window for time efficiency. The
embedded camera has a 25 frames-per-second (fps) reading rate
thus the full process needs to be designed to have a minimum of
50-Hz response to generate the position of two instrument tips in
each frame cycle. In order to obtain the Cartesian information at a
rate of minimum 50 Hz, the detection process is only applied on a
windowed section of the frame centered around the estimated
position of the instruments. The center of gravity of the marker
tapes (cg) in the next image frame is estimated using the gradient
of motion found in the region of interest (ROI) in the previous
frames. ROI is defined as a square window where we estimate the
marker to be inside in each frame (Figure 3). Using the estimate

of the gradient of motion in the previous frame, a new ROI is
generated in each frame and the search for the tip position is
performed only in this ROI, rather than the whole image. The size
of the single edge of the ROI window, ω, which is adjusted in each
step, is computed as follows:

ω � [aprev × (ωmax − ωmin

amax
) + ωmin] × [∣∣∣∣∣∣∣∣∇cg∣∣∣∣∣∣∣∣

cg,vmax
+ 1] (1)

where aprev is the area of the detected marker in the previous
image, amax is the empirically identified maximum area of a
marker in an image when the marker is closest to the camera
(18,000 pixels), ωmax is the maximum edge size of ROI set to 400
pixels, ωmin is the minimum edge size of ROI set to 100 pixels, and
cg,vmax is an empirically chosen value for the maximum speed of
the tool tip across frames set to 30 pixels per frame. The factor on
the left hand side of the equation handles the size of the window
of ROI based on the prior knowledge of the instrument size and
the factor on the right hand side adjusts the size of the ROI based
on the velocity of the instrument computed on the previous
frames. The estimation of the cg and adjustment of the size of the
search window (ROI) for each frame are the keys to achieving a
fast-enough detection allowing real-time tracking.

In order to apply a region of interest with the dynamic size
detection process, some specific cases must be defined and
handled properly to avoid wrong detection and thus losing the
instruments. The specific cases are identified as follows:

• The area is not consistent with the previous detection.
• The velocity of the instrument is not realistic.
• The detection algorithm could not find a set of four corners
in the previous ROI.

If any of these special cases is detected, the next position
estimation is rendered incorrect and the ROI cannot be
computed, thus a search of the instrument is applied on a
larger part of the image. This detection also is not made on

FIGURE 3 | Sample ROI squares around the markers.

FIGURE 4 | (A) Distance between instruments; (B) crossing between
instruments.
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the full image. A notion of dead space is identified based on the
recorded dataset which leads to identification of a “practical
workspace” for the instruments as in Figure 2 and the search
is conducted only in this workspace.

One of the challenges with two instrument detection is the
crossing event when one of the instruments is obscured or
partially obscured by the other (Figure 1C, Figure 4). To deal
with such crossing, the separated parts of the overall contour of
the obscured marker are detected using Canny detection and then
a convex hull is created using the detected parts. This method
allows a regrouping of the separated parts to deal with the

situation illustrated in Stage 3 of the crossing (Figure 4B).
Furthermore, it allows to simplify the representation of the
geometry of the contour and thus speeds up the process of
finding the corners using Hough transform.

Another advantage of using a convex hull representation is the
following. In order to speed up the detection process, we are
directly using the raw (non-flattened) fisheye camera output, thus
the shape retrieved before application of the convex hull does not
have straight lines. This would result in having a large set of
candidate points for corner selection after the Hough transform.
This is avoided and the number of the candidate points for the
corners is narrowed down by adapting a convex hull. Using the
raw feed also results that we cannot directly identify the correct
set of four points in the Hough transform output. To overcome
this, we flatten the output points from the Hough transform. In
this way, we apply flattening only to about 40 points at the end of
the detection, instead of approximately 2 million initially in the
frame. For flattening, we use the intrinsic parameters of the
camera (distortion, focal lengths and focal points) retrieved in
advance from a chessboard calibration.

For the corner selection we use the knowledge on the contour
pose in the image and the properties of the trapezoidal shape
when the cylinders (markers) are viewed from top (Figure 5)
where the detected line segments C and B in Figure 6A must
remain parallel. This method allows to find the best candidates for
the corner points from the list output in the previous steps. The
full detection process with image processing can be summarized
with the block diagram in Figure 7.

Estimation for Missing Corners
In the previously mentioned specific cases, a correct corner
detection is not possible with the image processing as
explained up to this point. In these cases, a Kalman filter is
used to estimate the position of the instruments. The Kalman
filter implementation is a standard one where the estimation of
the next position of the instrument is based on a corrector and
predictor equation (Nguyen and Smeulders, 2004; Chen, 2012).
The corrector uses the previous measurement to update the
model and the predictor estimates the next position using the
error covariance of the model. In our application, we use the
Kalman filter estimation only when marker corners cannot be
found through previously explained image processing

FIGURE 5 | Representation of the trapezoidal shapes after flattening the
view of the cylinders and the angle of the instruments regarding the camera.

FIGURE 6 | (A) Estimated α angle, rotation around Z of the instrument
around the Center of Rotation and parameters of the trapezoidal detection; (B)
parameters of the real instruments; (C) estimated β angle, rotation around X.

FIGURE 7 | Diagram of the detection process with image processing.
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procedures. Deciding on the fly when to switch between the actual
detection and Kalman filter prediction is not a trivial task. Usually
the algorithms that detect occlusions use the geometric properties
of the object and therefore are computationally expensive. In this
study a different approach is developed using the specificities of
the laparoscopy training environment and specifically the
distance between the two instruments. The markers can be
missing in the laparoscopy training context in two cases, first,
some corners being occluded by the crossing of the instruments
(Figure 4B) and second, the instrument being outside the field of
view (Figure 2D). For the first case, our method relies on the
detection of the two instruments being close enough to each other
for one of them being occluded by the other. For that purpose, we
compute the minimal distance between a detected segment and
the line formed by the other segment or the tip of the other
instrument, using the following formulas:

sign(dSj|Li) � sign(ai .xmj − ymj + bi					
1 + a2

√ ) (2)

sign(dSj|Si) � sign⎛⎝ 																							(xmj − xmi)2 + (ymj − ymi)2√ ⎞⎠ (3)

where ai and bi are the parameters of the line Lii�1,..,4 and (xmj, ymj)
is the middle point of a given segment sj as described in
Figure 4A, and d stands for distance The sign of the
computed distances between the edge lines in the above
formulas can be used to detect the occlusions. When an
occlusion is detected as such, the Kalman filter estimation is
used. Furthermore, in order to reduce the use of the Kalman filter
prediction, it is possible to detect the instances when recovery of
the actual corners of the markers is possible during the occlusion
of the marker body. In Figure 4B, we can see that during Stage 3,
the corners of the markers can be completely recovered.

The second situation that requires the Kalman filter
estimation is when one of the instruments goes out of the
video frame which can simply be estimated and detected
using the minimal distance between the previously
detected location of the instrument and the borders of the
image frame. For such cases, the Kalman filter estimation is
directly used. Finally, the four corners of both instruments
estimated by the Kalman Filter are flattened similarly as in the
previous sub-section.

Overall Procedure of Detection of Marker
Corners
The following are the overall steps of procedure applied for
detection of the marker corners in the 2D images as explained
in this section:

1. Check whether any of the “specific cases” applies (such as the
detection could not find four corners in the previous ROI); if
so, perform Pre-processing in the practical workspace
(Figure 2); otherwise continue with Step 2.

2. Identify the new ROI (Eq. 1).
3. Apply HSV decomposition in the ROI.

4. Apply Canny edge detection
5. Apply Convex Hull regrouping to obtain a connected

contour representing the marker.
6. Apply Hough transform for line detection.
7. Identify the candidate corners and apply flattening at these

corner points.
8. Identify the four corners of the marker using the information

of geometric relations.
9. Check if any marker is occluded (Equation 2 and Eq. 3) or

out of view; if, yes, use Kalman Filter output to estimate the
location of the occluded corners and apply flattening at the
estimated corners; otherwise stay with the identified corners
in Step 9.

10. Output the corner coordinates for depth estimation.

TOOL TIP POSITION TRACKING IN 3D

In order to track the full 3D position of the tip of the instruments,
we first reconstruct the 2D position information from the 2D
Camera view following the methods explained in Marker Corner
Detection In 2D Images. Afterwards, we estimate the depth using
the difference between the computed circumference of the
detected marker polygon as seen in the image and the actual
circumference of the polygon.

Real-Time 3D Tracking
As seen in Figure 2, there are two instrument tips, each with four
degrees of freedom actively controlled by the subject. However, in
this study we track only the three degrees of freedom, the
translational movements of each instrument, and ignore the
rotational movement around the shaft axis. This is because,
almost all criteria of performance that apply to instrument
movements in laparoscopy training (Aggarwal et al., 2004)-
(Megali et al., 2006) make use of the 3D position of the
instrument tips, but not the orientation of the tip. The tip
point trajectories without the orientation provide a rich
enough information for assessment purposes in laparoscopy
training exercises.

The three degrees of freedom translational movement of the
tip point can be represented by (or translated into) other
movement parameters, possibly some of them defined as
rotations around specific axes, such as rotation of the
instrument shaft around an axis through the insertion point.
In this study, we consider successive elementary transformations
with respect to the “current reference frame” constructed after
each transformation (Craig., 2005): specifically, a rotation of the
instrument shaft at the insertion point with an angle α around the
z axis of the ground frame, rotation with an angle β around the x
axis of the intermediary frame, and a translation of the tip point
along the instrument shaft in y axis of the successive intermediary
frame, as shown in Figure 6. These three motion parameters can
easily be translated into the tip point translation parameters along
the three Cartesian axes of a global reference frame through
straightforward geometric relations. Let R0 be the orthogonal
global reference frame with x and y axes parallel to the ground
and its origin at the instrument center of rotation (COR) (the
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insertion point) andRF be the reference frame located at the tip of
the instrument (RFi−1 and RFi for each instrument, respectively),
as illustrated in Figure 8. A homogeneous transformation matrix,
0TF, can be computed in between the R0 and RF reference frames
in terms of the mentioned elementary rotation and translation
matrices as.

0TF � Rot(z, α).Rot(x, β).Trans(y, y0) (4)

to transform the representation of a point in R0 to that in RF as.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x0

y0

z0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0TF

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
xF

yF

zF
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (5)

Tracking the tip point of an instrument corresponds to
identifying the α, β, and y0 parameters in the above
transformation matrix, which can then be used to find the
Cartesian position of the tip of the instrument with respect to
the global reference frame R0. Our approach is first to identify the
α and β angles, using the computed depth difference between the
front (C edge in Figure 6A) and rear (B edge in Figure 6A)
segments of the marker along with the geometric relations as
shown in Figure 6. The depth estimation, d, is based on the ratio
of the perimeter of the detected marker in the 2D image to the
actual perimeter of the marker as in Equation (6),

d � pTool|real
pTool|img

(6)

where pTool|real represents the actual perimeter of the marker and
pTool|img represents the computed perimeter from the image. First,
we consider the front segment, the edge C in Figure 6A and use
this as the image correspondence of the actual length Ĉ of the
marker. We already know the ratio between Â and Ĉ segments of
the actual ma rker in Figure 6B and using this ratio we can
compute a length AC as the image correspondence of the actual

edge, Âi. Using these, the perimeter of the rectangle in the image
at the location of C can be computed as 2(C + AC). We can then
compute the depth of the rectangle parallel to the ground as
located at C (Figure 6C). Following the same procedure, we can
also compute the depth of the rectangle parallel to the ground as
located at B. The difference between these two depth values
provide us with the depth difference due to inclination, Dtape

value, indicated in Figure 6C. Knowing the actual width, Â and
the depth difference we can compute the β angle. For α, the angle
between the line connecting the centers ofC and B edges and the y
axis of the global reference frame is computed (Figure 6A). Once
β is known, the actual length of the instrument can be computed
considering the visible length in the image and the inclination
angle β, along with the ratio between the actual length and the
visible length in the image when the instrument is straightly
aligned parallel to the ground (perpendicular to the camera view).

Testing for Real-Time Processing
In this section we present our analysis of the speed of processing
of the overall algorithm in terms of frames-per-second (FPS),
with respect to the compression rate we use in streaming the
video to the computer and considering the success rate of
detection of the corner points of the marker at an instrument-tip.

In order to achieve a fast processing, we use a streaming
communication (TCP/IP) between the camera and the computer
housing the image processing software. For that purpose, we
apply a compression process on the video feed (on the slave side)
to ensure fast and smooth streaming prior to tracking (on the
master side). The rate of compression for the streaming is a major
factor that impacts the overall speed and performance of
detection. We use a JPEG compression and Figure 9 presents
the results depicting the speed and performance of detection with
varying compression rate. As it is observed in this figure, below
60% compression, the speed of processing increases whereas the
performance for correct detection decreases monotonically. In
this graph, 15% compression seems to be an optimal choice to
achieve a sufficiently fast speed (above 50 Hz) and a high rate of
correct detection (very close to 100%); therefore, we applied 15%

FIGURE 8 | Reference frames at the center of rotation and tool tip
(Gautier et al., 2019).

FIGURE 9 | The average speed of image processing to detect the
corners of a marker on a single instrument in terms of frames-per-second
(upper figure) and the rate of correct detection (lower figure) with respect to
varying compression rate of video frames transmitted from the camera to
the computer.
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compression throughout the tests presented in the following
section.

TESTING AND VERIFICATION

In our previous study (Gautier et al., 2019) we had tested our off-
line tracking algorithm with human subject experiments, where a
subject manually manipulated one of the instruments to make its
tip to follow the edges of a rectangular object with known
dimensions, and where we used the shape and dimensions of

the object as a reference for measurement. That method did not
distinguish between the actual measurement error of the image
processing algorithm and the deviation of the trajectory from the
edges of the box due to human hand tremor. Therefore, in the
current study we make the measurements with a robotic
manipulation setup, the Robotic Surgery Trainer system in our
lab incorporating two UR3 universal Robots to manipulate the
laparoscopy instruments (Figure 10). With this setup we can
accurately record the ground truth positions of the tip of the
instruments through the position data provided by the encoders
of the robots.

In order to compare the instrument tip trajectory recorded by
the robot to that estimated by the real-time tracking algorithm,
we first transform the trajectory retrieved from the video tracking
into the robot base frame. We then synchronize the two datasets
as the robot recording frequency is 125 Hz, giving us a larger
number of points in the robot trajectory compared to the tracked
trajectory on the video. We eliminate the Euclidian distance
between the numeric values of robot recorded and tracked
trajectories considering the initial and final points of the
trajectories, in order to align them as closely as possible. We
then apply a zero-padding in frequency domain to equate the
sample size of the position data in the two trajectories. Finally, we
apply a norm distance measure between the data of every
corresponding couple in the two trajectory data sets to find
out the maximal distance between the two trajectories.

For this measurement, we again considered the boxes we
had used in the previous study (Gautier et al., 2019)
(Figure 11A), but this time instead of tracing the actual
edges of the physical boxes, we made the robots generate

FIGURE 10 | Robotic Surgery Trainer setup used in this study to test the
position accuracy of the real-time tracking algorithm.

FIGURE 11 | (A) Two sample boxes used to generate the trajectories. (B) The trajectories generated by the robot (red) and tracked by the real-time image
processing algorithm (blue) (units: m).
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the motions to follow the edges of hypothetical boxes with the
tip of the instrument, without the physical presence of the box.
In this way all six edges were reachable by the instrument as in
Figure 11B. In this figure the red lines show the trajectory
followed by the tip of the instrument as recorded by the robot
and blue lines show the estimated trajectory as tracked in real-
time by the image processing algorithm presented in this
paper. We used four different rectangular boxes: a small
box occupying half of the screen, a thin box occupying half
of the screen, a large box occupying a large space in the screen,
and a large and thin box occupying a large space in the screen.
Those experiments were realized using both left-hand and
right-hand instruments.

The maximum error between the estimated trajectories
compared to the robot recorded trajectories through all the
experiments was computed to be 1.5 mm in x, 4 mm in y, and
3 mm in z coordinates along the edges of the boxes as in
Figure 11B. This performance is sufficient for our purposes to
assess skill level with typical criteria as we applied in (Gautier
et al., 2019).

CONCLUSION

In this paper a real time 3D instrument trajectory tracking is
developed for single camera laparoscopy training boxes.
Trajectories extracted in real-time would be useful to perform
real-time skill assessment and to provide real-time feedback,
immediately as the subject performs unskilled motions. The
work here is a first step towards achieving that goal, as it
provides the facility for real-time trajectory extraction. The
next step to build on this work would be to develop the
assessment criteria that would function in real-time and that
would be in such a characteristic to provide immediate feedback
to the trainee. The criteria that would serve that purpose are yet to be
developed and tested. In our previous work (Gautier et al., 2019), we
demonstrated a novel criterion based on the detection of the spatial
distribution of the tip positions of the right-hand and left-hand
instruments, which functioned significantly superior to existing
conventional criteria in literature to distinguish between
professional and novice performances we had recorded. The
criterion is mainly based on spatial positions of the tips and

FIGURE 12 | Sample laparoscopy instrument tip-point trajectories (units: cm) as successfully discriminated to belong (A) to a professional and (B) to a novice by
our novel assessment criterion based on Linear Discriminant Analysis (LDA) presented in (Gautier et al., 2019). The right-hand instrument (the driver) trajectory is in red
and the left-hand instrument (the receiver) trajectory is in blue. The LDA line in green shows the best direction to distinguish the right-hand and left-hand instruments
according to their spatial distribution and as expected it is almost the same in each case in this specific suturing exercise; reflecting that the orientation of the
suturing line is the same and perpendicular to the axis that separates right and left hand tools.
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checks whether the right-hand instrument tip is in its required region
in the right-hand side section in the box, and does the same for the
left-hand instrument (Figure 12). As this criterion does not rely on
history of the positions, we consider it to be promising to be adapted
with the presented real-time tracking algorithm to instantly check the
performance and generate useful real-time feed-back to the trainee.
The real-time tracking algorithm developed in the present study and a
potential adaptation of the assessment criterion presented in (Gautier
et al., 2019), or similar others yet to be developed, together would be a
significant step towards a self-training systemwith real-time feedback,
which would eliminate the need for an expert human trainer, would
be low-cost, and would be widely applicable with standard and single
camera laparoscopy training boxes. Our future work will progress in
this direction.
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