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Background: Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD). Currently, 
microalbuminuria is mainly used as a diagnostic indicator of DN, but there are still limitations and lack of 
immune-related diagnostic markers. In this study, we aimed to explore diagnostic biomarkers associated with 
immune infiltration of DN.
Methods: Immune-related differentially expressed genes (DEGs) were derived from those at the 
intersection of the ImmPort database and DEGs identified from 3 datasets, which were based on the Gene 
Expression Omnibus (GEO). Functional enrichment analyses were performed; a protein-protein interaction 
(PPI) network was constructed; and hub genes were identified by Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING). After screening the key genes using least absolute shrinkage and selection 
operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE), a prediction model 
for DN was constructed. The predictive performance of the model was quantified by receiver-operating 
characteristic curve, decision curve analysis, and nomogram. Next, infiltration of 22 types of immune cells 
in DN kidney tissue was evaluated using cell-type identification by estimating relative subsets of RNA 
transcripts (CIBERSORT). Expression of diagnostic markers was analyzed in DN and control patient groups 
to determine the genes with the maximum diagnostic potential. Finally, we explored the correlation between 
diagnostic markers and immune cells. 
Results: Overall, 191 immune-related DEGs were identified, that primarily positively regulated with 
cell adhesion, T cell activation, leukocyte proliferation and migration, urogenital system development, 
lymphocyte differentiation and proliferation, and mononuclear cell proliferation. Gene sets were related to 
the PI3K-Akt, MAPK, Rap1, and WNT signaling pathways. Finally, CCL19, CD1C, and IL33 were identified 
as diagnostic markers of DN and recognized in the 3 datasets [area under the curve (AUC) =0.921]. Immune 
cell infiltration analysis demonstrated that CCL19 was positively correlated with macrophages M1 (R=0.47, 
P<0.001) and macrophages M2 (R=0.75, P<0.001). CD1C was positively correlated with macrophages M1 
(R=0.47, P<0.05), macrophages M2 (R=0.75, P<0.01), and monocytes (R=0.42, P<0.01). IL33 was positively 
correlated with macrophages M1 (R=0.45, P<0.05), macrophages M2 (R=0.74, P<0.01), and monocytes 
(R=0.41, P<0.01). 
Conclusions: Our results provide evidence that CCL19, CD1C, and IL33, which are associated with 
immune infiltration, are the potential diagnostic biomarkers for DN candidates.
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Introduction

Diabetic nephropathy (DN), a microvascular complication 
associated with the progression of diabetes, occurs in 
30–40% in patients with diabetes (1,2). In 2017, there were 
approximately 451 million patients with diabetes globally, 
and this number is anticipated to increase to 693 million 
by 2045 (3). As the prevalence of diabetes continues to 
increase, DN has become the main cause of end-stage 
renal disease (ESRD) in both developed and developing 
countries. Even with costly and long-term therapeutic 
interventions, such as dialysis and kidney transplantation, 
patients with ESRD remain at risk for various complications 
such as  anemia ,  minera l  and bone disorder,  and 
cardiovascular complications. Currently, microalbuminuria, 
serum creatinine level, estimated glomerular filtration 
rate (eGFR), and the urinary microalbumin to creatinine 
ratio (UACR) are used as the diagnostic markers of DN; 
however, comprehensive diagnosis is not yet possible with 
these methods. In addition, DN diagnosis is challenging as 
this condition is non-proteinuric (4). Consequently, there 
is a need to explore from multiple perspectives potential 
biomarkers DN.

Inflammation happens in the kidneys of patients with DN 
and plays a crucial role in its occurrence and development 
(5,6). The levels of circulating tumor necrosis factor 
(TNF)-α, monocyte chemoattractant protein (MCP)-1, 
interleukin (IL)-1, IL-6, and other inflammatory molecules 
are increased in patients with early DN (7). Activated 
monocytes and macrophages infiltrate the kidneys and 
release cytokines. Concomitantly, other cells, such as mast 
cells, can infiltrate the tubule interstitium and release pro-
inflammatory factors and proteolytic enzymes (8). In the past 
few decades, multiple potential diagnostic markers have been 
identified. For example, serum TNF receptor 1 (TNFR1) 
and 2 (TNFR2) were found to be significantly positively 
correlated with some inflammation-related indicators of 
precocious glomerular lesions in DN, such as mesangial 
fractional volume, percentage of global glomerular sclerosis, 
and width of the glomerular basement membrane (9). 
Studies have shown that the activation of TNFR1 by TNFα 
promotes the formation of a complex containing TNFR-
related death domain, Ser/Thr kinase receptor interacting 
protein 1, and TRAF-2, which triggers the activation of 
NF-κB. Signaling pathways, such as those of MAP kinase 
(MAPK) and p38 induce inflammation (10-12). However, 
with the exceptions of eGFR and UACR, other diagnostic 
markers which have been discovered have not been 

effectively applied in clinical practice, and no comprehensive 
analysis of immune cell infiltration in DN has been 
performed. Therefore, an in-depth exploration of immune 
cell infiltration should help to elucidate the molecular 
mechanisms underlying DN pathogenesis, and provide 
insights for the development of novel immunotherapeutic 
targets. 

This study aimed to identify the pivotal genes and 
pathways associated with immune infiltration in patients 
with DN. We constructed and verified the diagnostic and 
prediction model of DN by performing least absolute 
shrinkage and selection operator (LASSO) analysis. Finally, 
to more specifically determine the key immune factors, we 
analyzed and screened the correlation between key genes 
and infiltrating immune cells. These analyses provided more 
accurate prognostic information regarding DN progression. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-1682/rc).

Methods

In this study, we first downloaded three datasets containing 
samples from DN patients from public databases and 
screened them for immune-related differentially expressed 
genes (DEGs), then further confirmed the relevance of 
these genes to immunity by enrichment analysis, followed 
by finding key genes by protein-protein interaction 
networks and building prediction models using these genes 
by LASSO and support vector machine recursive feature 
elimination (SVM-RFE), and finally validated the efficacy 
of the models with receiver-operating characteristic (ROC) 
curve, decision curve analysis (DCA), and nomogram. 
The flow chart of this study is shown in Figure S1. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Data download and pre-processing

We downloaded 3 gene expression datasets [GSE30122 
(13,14), GSE47184 (15), and GSE104948 (16)] were 
downloaded from Gene Expression Omnibus [GEO; 
GPL571 (HG-U133A_2) Affymetrix Human Genome 
U133A 2.0 Array; GPL14663 Affymetrix GeneChip Human 
Genome HG-U133A Custom CDF (Affy_HGU133A_
CDF_ENTREZG_10); and GPL22945 (HG-U133_Plus_2) 
Affymetrix Human Genome U133 Plus 2.0 Array]. From 
these datasets, we obtained data related to kidney tissue and 

https://atm.amegroups.com/article/view/10.21037/atm-22-1682/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-1682/rc
https://cdn.amegroups.cn/static/public/ATM-22-1682-Supplementary.pdf
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analyzed the messenger RNA (mRNA) gene expression 
profile; all analyses included DN and control cases, and the 
species was Homo sapiens. Subsequently, we merged datasets 
into a metadata cohort, corrected the background data, 
and normalized data using the normalizeBetweenArrays 
algorithm in Limma package (17) to obtain a gene 
expression matrix of 118 control and 37 DN kidney samples. 
The results were presented as box plots. 

Analysis of differentially expressed genes (DEGs)

DEGs between the control and DN kidney samples were 
screened by Limma package, using ggplot2 package (18) 
(https://ggplot2.tidyverse.org), and used to plot a heat map 
and volcano plots. All DEGs satisfied P<0.05 and |log2 fold 
change| >0.5. 

Immune-associated DEGs

To obtain immune-related DEGs, the DEGs were 
overlapped with 2,498 immune-related genes, which were 
obtained from the ImmPort database (19) and are presented 
as a Venn diagram (20). 

Gene Ontology (GO)/Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis

GO enrichment analyses, which involved biological 
processes (BP), cellular components (CC), and molecular 
functions (MF), and KEGG pathway analyses (21) were 
used to identify signaling pathways significantly associated 
with the DEGs. These analyses were executed using the 
clusterProfiler package (22). 

Gene set enrichment analysis (GSEA) and gene set 
variation analysis enrichment analysis

To determine the contribution of genes to the phenotype, 
GSEA (23) was performed on the gene expression matrix 
using the clusterProfiler package. The reference gene 
set “c2.cp.kegg.v7.0.symbols.gmt” was derived from the 
Molecular Signatures Database (MSigDB) (24), and the 
top 30 items with P<0.05 (considered to be significantly 
enriched) were visualized. We also performed gene set 
variation analysis (GSVA) (25) of the overall gene expression 
profile matrix between DN and normal controls, with 
“msigdb.v7.0.symbols.gmt” as the background set, to select 
the phenotypic signature gene set.

Protein-protein interaction (PPI) construction

The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database was used to search for known 
proteins and predict protein interactions (26). We used 
the STRING database to select genes with a combined 
score >400 to construct a differentially expressed mRNA-
associated PPI, and then visualized the network model 
using Cytoscape (v3.7.0) (27). A molecular interaction 
network was constructed for these immune-related DEGs. 
Finally, we attained hub genes using Cytoscape’s Molecular 
Complex Detection (MCODE) (28) and CytoHubba (29) 
plug-ins.

Relationship between immune cell infiltration and hub 
genes

An immune cell infiltration expression matrix was obtained 
by filtering the output for samples with P<0.05 using 
CIBERSORT (30). Subsequently, heat maps of the immune 
cell infiltration matrix were drawn to show the allocation 
of 22 immune cell infiltrates in the respective kidney 
specimens using the pheatmap package (https://CRAN.
R-project.org/package=pheatmap). Next, correlation 
heat maps were plotted to visualize correlations of the 22 
immune cell infiltrates using the corrplot package (https://
github.com/taiyun/corrplot), and violin plots were drawn to 
visualize diversity among immune cell infiltrates using the 
ggplot2 package (https://ggplot2.tidyverse.org).

Construction and validation of hub gene diagnostic marker 
prediction model

A hub gene diagnostic marker prediction model was 
initially structured using LASSO logistic regression by 
using the “glmnet” package in R. The LASSO algorithm 
was used to further analyze the prognosis-related hub 
gene for dimensionality reduction analysis and selection 
of features (31). The coefficients obtained from LASSO 
regression were weighted individual normalized gene 
expression values to 

( ) ( )i i
i

Risk score Coefficient hub gene mRNA Expression hub gene= ×∑  [1]

First, to demonstrate the personalized assessment of 
the immune-related hub gene diagnostic marker score to 
identify DN, we examined the correlation between the 
expression of immune-related hub genes in the control 
and DN groups, and the predictive power of the diagnostic 
marker score for the prognosis of patients with different 

https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
https://github.com/taiyun/corrplot
https://github.com/taiyun/corrplot
https://ggplot2.tidyverse.org
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stages of DN. The optimal parameter (λ) in the LASSO 
model was selected by minimal criteria using five-fold cross-
validation. Secondly, we plotted partial likelihood deviation 
curves relative to log(λ). Vertical dashed lines were plotted 
at the optimal values by using the minimum criterion and 
the 1 standard error of the minimum criterion. Finally, the 
coefficient distributions were plotted for the log(λ) series.

Next, we screened for characteristic diagnostic marker 
genes in DN using the SVM-RFE method in “e1071” 
package (32). Ultimately, the intersection of diagnostic 
marker genes predicted by these two methods was obtained.

Diagnostic marker correlation analysis

A column line graph (nomogram) was used to demonstrate 
the efficacy of these predicted diagnostic marker genes for 
the discrimination of DN, and a differential expression heat 
map was generated to identify differences between the DN 
and control groups using LASSO. Calibration curves were 
used to demonstrate the discriminatory efficacy of these 
predicted diagnostic marker genes for diabetic nephropathy 
and to demonstrate the differences between DN and 
controls with gene expression heat maps. Calibration curves 
for non-correlated nomogram predictions in the cohort 
were analyzed and plotted, where the x-axis represents 
predicted diagnostic markers, the y-axis represents actual 
diagnostic nonconformity, the diagonal dashed line 
represents perfect prediction of the ideal model, and the 
solid line represents performance of the nomogram, where 
the dashed line closer to the diagonal represents better 
prediction.

Subsequently, DCA was performed to assess the net 
clinical benefit of the models for predicting DN (33). In the 
DCA curve, the x-axis represents the threshold probability 
and the y-axis represents the net benefit value, and the 
corresponding benefit value is calculated by continuously 
changing the threshold value of the positive probability. 
The horizontal line represents the case where all samples 
are negative and the net benefit is 0. The dotted line 
represents the case where all samples are positive. The 
model of DN has value if the plotted DCA curve is higher 
than these two lines. 

Finally, the diagnostic efficacy of each independent gene 
and the combined index of these genes for DN were verified 
with ROC curves generated using the pROC package in 
R. An AUC >0.7 indicates that the model has moderate 
diagnostic efficacy, and an AUC >0.9 indicates that the 
model has high-level diagnostic efficacy, indicating that the 

screened diagnostic markers were of high diagnostic value.

Statistical analysis

Data were presented as the mean ± standard deviation. 
Data were analyzed using R software (version 4.0.2; The 
R Foundation for Statistical Computing, Vienna, Austria). 
Wilcoxon test or student t-test was used for comparisons 
between two groups. The AUC was calculated to assess 
the accuracy of the diagnostic marker scores in estimating 
prognosis. Results with two-side P<0.05 were considered 
statistically significant. 

Results

Data processing and DEG analysis 

A flow chart illustrating the study design is presented in 
Figure S1. The GSE30122, GSE47184, and GSE104948 
datasets were combined and normalized, and are presented as 
box plots (Figure 1A,1B). After preprocessing, 1,515 DEGs 
between control and DN kidney tissues were extracted using 
R software; these included 759 and 756 genes with up- and 
down-regulated expression, respectively. A heat map and 
volcano map of DEGs are shown in Figure 1C,1D.

Identification of immune-related DEGs and GSVA 
associated with DN

Immune-related DEGs were identified at the junction 
between the DEGs for DN and the gene list from the 
ImmPort database. Next, the intersection of DEGs 
with immune-related genes was visualized using Venn 
diagrams for 191 DEGs (Figure 2A). Additionally, GSVA 
was conducted between groups, including pathway sets 
represented in the heat map (Figure 2B) and phenotypic 
related characteristic gene sets displayed in grouped box 
plots (Figure 2C).

GSEA 

Multiple biological pathways were found to be altered 
between the control and DN kidney tissues using 
GSEA. Enrichment plots (Figure 3A-3C) and heat maps  
(Figure 3D-3F) were generated for MsigDB, GO, and 
KEGG enrichment entries. Modules related to KEGG 
were investigated using UpSetR (Figure 3G). “Th1 and Th2 
cell differentiation, rheumatoid arthritis, and viral protein 

https://cdn.amegroups.cn/static/public/ATM-22-1682-Supplementary.pdf
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interaction with cytokine and cytokine receptor” were 
significantly enriched in Top3 pathway (Figure 3H).

GO and KEGG enrichment analysis

Enrichment analysis of immune-related DEGs was 
performed using GO and KEGG, and visualized using 
bar (Figure 4A,4B) and bubble (Figure 4C,4D) graphs. The 
GO enrichment consequences of immune-related DEGs 
were focused on positive regulation of cell adhesion, T 
cell activation, leukocyte proliferation and migration, 
urogenital system development, lymphocyte differentiation 
and proliferation, and mononuclear cell proliferation. In 
addition, they were enriched in the PI3K-Akt signaling 
pathway, MAPK signaling pathway, Rap1 signaling 
pathway, proteoglycan in cancer, cytokine-cytokine receptor 
interaction, and WNT signaling pathway, among other 

pathways.

PPI network construction and hub gene identification

A PPI for 191 immune-associated DEGs was obtained 
and visualized using Cytoscape (Figure 5A). Subsequently, 
we intersected the most closely linked set of hub genes 
obtained from the MCODE plugin analysis (Figure 5B) with 
genes from the CytoHubba plugin MCC algorithm Top30 
(Figure 5C). The 21 genes common to both algorithms were 
used as hub genes (Figure 5D).

Construction of diagnostic marker prediction models

We used two different algorithms to screen potential 
biomarkers. Immune-related differential hub genes between 
control and DN sample groups were narrowed down by the 

Figure 1 Data preprocessing and screening for DEGs in DN. Before normalization (A) and normalization (B) box plots showing the mRNA 
expression profile matrices of 3 combined datasets. Heat (C) and volcano (D) maps of DEGs between control (n=118) and DN (n=37) kidney 
tissue groups. DEGs, differentially expressed genes; DN, diabetic nephropathy; mRNA, messenger RNA.
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LASSO regression algorithm, and consequently, 7 variables 
for early diagnosis were authenticated. Figure 6A,6B 
present the Lambda and minimum values of the LASSO 
logistic regression algorithm. Next, using the SVM-RFE 
algorithm, we obtained a subcollection of 7 features among 
the DEGs (Figure 6C). Finally, we superposed the 2 subsets 
and obtained 6 overlapping genes (encoding CD86, CCL19, 
CD1C, IL33, CXCR4, and IL7) as the diagnostic marker for 
DN (Figure 6D).

Diagnostic marker efficacy assessment 

A nomogram drawn based on the above 6 genes showed 
the diagnostic efficacy of these predictive diagnostic marker 
genes for DN (Figure 7A), and the gene expression heat map 
showed the differences between DN and the control groups 

(Figure 7B). The calibration curve for the non-correlated 
nomogram prediction revealed that the performance of the 
nomogram was very close to the ideal model, indicating 
that the model has good predictive value (Figure 7C). 
Similarly, in the DCA analysis, the curves were higher than 
the 2 benefit threshold curves, indicating the efficacy of 
the model (Figure 7D). Finally, the diagnostic accuracy of 
the 6 diagnostic marker genes was evaluated by ROC curve 
analysis (Figure 7). The area under the curve (AUC) value, 
reflecting the diagnostic efficacy of each gene, was: 0.378, 
0.445, 0.551, 0.553, 0.425, and 0.51 for CCL19, CD1C, 
CD86, CXCR4, IL33, and IL7, respectively (Figure 7E).  
Although their respective AUC values did not exceed 0.7, 
the model should be considered as a whole, rather than 
as the predictive power of individual genes. The AUC 
obtained by the combination of the 6 genes was 0.921>0.7, 
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suggesting high diagnostic efficiency of the diagnostic 
marker gene model (Figure 7F).

Differential analysis of immune cell infiltration

We derived an immune cell  infiltration matrix by 
deconvolution using the gene expression matrix through 
the CIBERSORT algorithm. The immune cell percentage 
was calculated using the par function, and used to plot a 
stacked histogram (Figure 8A) and a heat map (Figure 8B). A 
correlation heat map was plotted to visualize the relationships 
among 22 immune cell infiltrations (Figure 8C). A violin 

plot was drawn to show differences among 22 immune cell 
infiltrations (Figure 8D), and the data were displayed as a 
series of significant differences between groups for various 
immune cells, including B cells, T cells, natural killer 
(NK) cells, plasma cells, dendritic cells (DC), mast cells, 
eosinophils, and neutrophils.

Differential expression of markers in DN

To confirm the accuracy of the results, the expression levels of 
CD86, CCL19, CD1C, IL33, CXCR4, and IL7 (Figure 9A-9F)  
were verified using the 3 datasets. However, only the 
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expression of CCL19, CD1C, and IL33 (P=4.885e−07, 
P=0.016, P=8.914e−05) was significantly different in DN, 
with CCL19 being lowly expressed (Figure 9A) and IL33 
(Figure 9B) and CD1C (Figure 9C) being highly expressed.

Correlation analysis of diagnostic markers with immune 
cells

By comparing immune cell infiltrates between the three 
diagnostic marker genes, the expression of CCL19, CD1C, 
and IL33 was found to be positively correlated with M1 and 
M2 macrophages and monocytes, and negatively correlated 
with M0 macrophages, memory-activated CD4T cells, and 
naïve CD4 T cells in DN. Notably, CCL19, CD1C, and 
IL33 strongly correlated with M2 macrophage infiltration 

(Figure 10).

Discussion

The pathology of DN involves diabetes-associated chronic 
progressive kidney damage. Globally, there were 135 million  
DN patients and 0.5 million DN-related deaths in 2019, and 
diabetes is considered the primary contributor to new cases 
of chronic kidney disease (CKD) (34). Patients diagnosed 
with ESRD usually require renal replacement therapy, 
including dialysis (hemodialysis and peritoneal dialysis) and 
kidney transplantation. After receiving dialysis, patients may 
still experience anemia, bone disease, cardiovascular disease, 
and other complications. Similarly, after undergoing 
kidney transplantation, patients remain at risk for surgical 

CytoHubbaMCODE

21 910

A B

C D

Figure 5 PPI network construction and hub gene identification. (A) PPI network; (B) the hub genes obtained by MCODE plug-in analysis; 
(C) the hub genes of CytoHubba plug-in MCC algorithm top 30; (D) Venn diagram showing the intersection of the hub gene sets from 
the MCODE and the CytoHubba algorithm; 21 hub genes were obtained. PPI, protein-protein interaction; MCODE, Molecular Complex 
Detection; MCC, Maximal Clique Centrality.
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failure and postoperative anti-rejection therapy. Notably, 
diabetes does not always progress to DN, and early 
treatment can delay disease progression. Therefore, a 
complete understanding of the pathological and molecular 
mechanisms underlying DN is important for early clinical 
diagnosis and treatment, and the identification of molecular 
markers that will help to diagnose DN early in the disease 
course. Microarray and bioinformatics analyses have 
enhanced our understanding of the molecular mechanisms 
underlying disease development and pathogenesis, which 
is essential for studying genetic changes and identifying 
potential diagnostic biomarkers. Here, we performed a 
comprehensive analysis of 3 mRNA microarray data sets 
(GSE30122, GSE47184, and GSE104948) using 118 control 
samples and 37 DN samples. Overall, we identified 191 
immune-related DEGs. Furthermore, 21 immune-related 
DN hub genes were identified to have the highest scores in 

the PPI network. Next, we built and validated a prediction 
model and screened the key genes encoding CD86, CCL19, 
CD1C, IL33, CXCR4, and IL7. In addition, some immune 
cells, such as B cells, T cells, NK cells, eosinophils, and 
neutrophils, were significantly different in DN and the 
control group. Finally, we obtained 3 promising key genes 
(CCL19, CD1C, and IL33) in DN following differential 
expression analysis. Based on the correlation analysis, 
macrophages, T cells, CD4, and monocytes were found to 
be strongly related to the occurrence and development of 
DN. These results indicated that immune reactions exert an 
effect on gene expression in DN. In addition, the predicted 
key genes in these datasets may interact within network(s) 
and co-regulate DN pathogenesis.

The final 3 molecular markers screened were closely 
related to the initiation of inflammatory immune response. 
An immune homeostasis chemokine, CCL19, induces 
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immune tolerance, T cell activation, and inflammatory 
response (35,36). A study has shown that CCL19 can 
promote the progression of DN by inhibiting the viability 
of HK-2 and HMC cells and promoting inflammation 
and fibrosis (37). As an antigen-presenting protein, 

CD1C can combine lipid and glycolipid antigens and 
submit them to T-cell receptors on NK-T cells to further 
activate the immune system (38). While CD1C is rarely 
expressed in normal kidneys, an increase in its expression 
has been significantly associated with renal interstitial 
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immune cell infiltration and fibrosis (39,40). A member 
of the interleukin-1 family, IL33, can bind to IL1RL1/
ST2 receptors to activate the NF-κB and MAPK signaling 
pathways in Th2 cells, and induce the secretion of type 
2-related cytokines in T-helper cells (41). In addition, 
it targets regulatory T cells (Treg), T cells, B cells, and 
macrophages (42). Patients with diabetes, and those with 
DN, demonstrate a decrease in serum IL33 levels (43). 
Overexpression of IL33/ST2 promotes the production of 
TNF-ɑ and IL-6 in DN, and simultaneously promotes 
inflammation and fibrosis (44). Although the expression 
trend of CCL19 in this study was somewhat different 

from that observed in another study, the prediction model 
calculated by us emphasizes the integrity of a model as 
opposed to a single gene (37). 

To ensure accuracy, 21 hub genes were obtained by 
intersecting the gene sets obtained by the two algorithms. In 
the PPI network, 21 DEGs with multiple interactions were 
revealed as the most significant hub genes. Further evaluations 
of these genes may help to elucidate the pathophysiology 
of DN. Moreover, CD1C, CD1D, CD28, CD86, and IL-7 
were ranked as potential central regulatory proteins in 
DN, and are all involved in the activation and proliferation 
of T cells. A previous study demonstrated that 2 single 
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nucleotide polymorphisms, CD28-rs3116494 and CD80-
rs3850890, were associated with DN susceptibility (45).  
In addition, the number of CD4+ IL-17+ T cells was 
proportional to the degradation of eGFR in DN, as well 
as IL-17a, which is the key cytokine produced by this cell 
type (46). The IL-17a inhibitors reportedly improved renal 
dysfunction and disease progression in a murine model of 
DN by recovering the number of podocytes and inhibiting 
NF-κB/pro-inflammatory factors (47). Similarly, CD1C and 

CD1D have also been reported in DN. Thus, the above-
mentioned results indicated that T cell activation and 
proliferation-related factors may be potential biomarkers 
for the early DN diagnosis. Renal fibrosis is the most typical 
manifestation of ESRD. Various pathogenic factors such 
as trauma, inflammation, blood circulation disorder, and 
immune response cause damage to kidney cells. In the late 
stage of DN, excessive collagen deposition and accumulation 
lead to hardening of the renal parenchyma, and ultimately, 
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loss of renal function. Our GO analyses revealed that changes 
in DN were mainly associated with the positive regulation 
of cell adhesion, T cell activation, leukocyte proliferation 
and migration, urogenital system development, lymphocyte 

differentiation and proliferation, and mononuclear cell 
proliferation. 

A study has demonstrated that the expression of vascular 
cell adhesion molecule-1 (VCAM-1) and intercellular 

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

−0.1

0.2

0.1

0.0

0.2

0.1

0.0

0.2

0.1

0.0

0.3

0.2

0.1

0.0

0.3

0.2

0.1

0.0

0.3

0.2

0.1

0.0

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

0.20

0.15

0.10

0.05

0.00

0.20

0.15

0.10

0.05

0.00

0.20

0.15

0.10

0.05

0.00

M
ac

ro
ph

ag
es

 M
2

M
ac

ro
ph

ag
es

 M
2

M
ac

ro
ph

ag
es

 M
2

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
0

M
on

oc
yt

es

M
on

oc
yt

es

T 
ce

lls
 C

D
4 

na
ïv

e

T 
ce

lls
 C

D
4 

na
ïv

e

T 
ce

lls
 C

D
4 

na
ïv

e

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
1

−1 0 1 2 3 −1 0 1 2 3−1 0 1 2 3

−1 0 1 2 3 −1 0 1 2 3 −1 0 1 2 3

−1 0 1 2 3 −1 0 1 2 3 −1 0 1 2 3 −2 −1 0 1 2 3

−2 −1 0 1 2 3 −2 −1 0 1 2 3 −2 −1 0 1 2 3−2 −1 0 1 2 3

−1 0 1 2 3

−1 0 1 2 3

CCL19 expression level CCL19 expression levelCCL19 expression level

R=−0.35, P=7e−06

R=−0.49, P=6.6e−11

R=0.42, P=4.6e−08

R=0.74, P<2.2e−16

R=0.47, P=6.3e−10

R=−0.43, P=2.8e−08

R=−0.41, P=1.6e−07

R=0.41, P=8.2e−08

R=0.75, P<2.2e−16

R=0.45, P=6.3e−09

R=−0.49, P=1.4e−10

R=−0.41, P=8.4e−08

R=−0.42, P=7.4e−08

R=0.75, P<2.2e−16

R=0.45, P=4.8e−09

R=−0.45, P=3.6e−09

CD1C expression level CD1C expression level CD1C expression level

CD1C expression level CD1C expression level CD1C expression level IL33 expression level

IL33 expression level IL33 expression level IL33 expression levelIL33 expression level

CCL19 expression level

CCL19 expression level

A B C D

E F G H

I J K L

M N O P

Figure 10 Correlation analysis between diagnostic markers and different levels of immune cell infiltration. Scatter diagram showing the 
correlation between CCL19 expression and M0 macrophages (A), M1 macrophages (B), M2 macrophages (C), memory-activated CD4 
T cells (D), naïve CD4 T cells (E); scatter diagram showing the correlation between CD1C expression and M0 macrophages (F), M1 
macrophages (G), M2 macrophages (H), monocytes (I), memory activated CD4 T cells (J) and naïve CD4 T cells (K); scatter plots showing 
the correlation between IL33 expression and M1 macrophages (L), M2 macrophages (M), monocytes (N), memory-activated CD4 T cells (O) 
and naïve CD4 T cells (P).
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adhesion molecule-1 (ICAM-1) increase significantly in 
DN (48). As an immunomodulator, ICAM-1 mediates 
contact and adhesion between different leukocyte 
subgroups through ligand interaction, and regulates the 
functional activity and immune response of leukocytes. The 
neutrophil-mediated phagocytosis, antigen recognition and 
T lymphocyte activation, killing of target cells, activation 
and differentiation of T lymphocytes to B lymphocytes, 
antibody formation, and other processes are related to 
ICAM-1 (49). Consistent with our predictions, microarray 
analysis of DN results from the mRNA datasets GSE30122, 
GSE47184, and GSE104948 identified cell adhesion as a 
main factor affecting the regulatory network in DN (50). 
In addition, more than 6 of 30 enriched signaling pathways 
were related to the progression of idiopathic pulmonary 
fibrosis (IPF), including the PI3K-Akt signaling pathway, 
MAPK signaling pathway, Rap1 signaling pathway, 
proteoglycan in cancer, cytokine-cytokine receptor 
interaction, and WNT signaling pathway. Notably, 
activation of PI3K-Akt signaling activates yes-associated 
protein to promote renal interstitial fibrosis (51). Moreover, 
preventing MAPK activation, which inhibits inflammation 
and apoptosis,  can ameliorate renal f ibrosis (52).  
Furthermore, inactivation of the WNT/β-catenin 
signaling pathway can inhibit podocyte apoptosis and DN 
progression (53). Overall, these findings are consistent with 
our data mining results.

We performed GSEA to study the biological function of 
immune-related DEGs associated with DN. Rheumatoid 
arthritis, Th1 and Th2 cell differentiation, and viral protein 
interaction with cytokine and cytokine receptor were the 
top 3 significantly enriched pathways. In this study, we 
found that the results of pathway enrichment were related 
to immune response and inflammation. Studies on murine 
models and patients with DN have demonstrated high levels 
of IL-6, IL-12, IL-4, IL-13, TNF-α, and interferon (IFN)-γ 
in DN (43,54). Similarly, a microarray analysis revealed that 
immune and inflammatory responses play a crucial role in 
the regulatory network of DN (55). Through data mining, 
we confirmed the importance of inflammation in DN 
progression.

While this research has improved our understanding 
of DN and immunity, it had certain limitations. First, 
our results have not been verified though in vivo/vitro 
experiments. Second, there is a lack of clinical data to 
validate our findings. Third, during analysis of multiple 
data sets, we could not mitigate batch-to-batch differences. 
In addition, although the model was validated internally, we 

lacked external data to validate the model. This will be one 
of subjects of our future research.

In conclusion, we comprehensively analyzed 3 data sets 
using bioinformatic tools and discussed the pathogenesis 
and potential molecular targets related to immune 
infiltration in DN. Moreover, we constructed an immune-
related predictive model that facilitates the early diagnosis 
of DN and provides a basis for the assessment of DN 
prognosis. Of course, these should be validated in future 
molecular studies. 
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