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Several important and fundamental aspects of disease genetics models have yet to

be described. One such property is the relationship of disease association statistics

at a marker site closely linked to a disease causing site. A complete description of

this two-locus system is of particular importance to experimental efforts to fine map

association signals for complex diseases. Here, we present a simple relationship between

disease association statistics and the decline of linkage disequilibrium from a causal site.

Specifically, the ratio of Chi-square disease association statistics at a marker site and

causal site is equivalent to the standard measure of pairwise linkage disequilibrium, r2. A

complete derivation of this relationship from a general disease model is shown. Quite

interestingly, this relationship holds across all modes of inheritance. Extensive Monte

Carlo simulations using a disease genetics model applied to chromosomes subjected

to a standard model of recombination are employed to better understand the variation

around this fine mapping theorem due to sampling effects. We also use this relationship

to provide a framework for estimating properties of a non-interrogated causal site using

data at closely linked markers. Lastly, we apply this way of examining association data

from high-density genotyping in a large, publicly-available data set investigating extreme

BMI. We anticipate that understanding the patterns of disease association decay with

declining linkage disequilibrium from a causal site will enable more powerful fine mapping

methods and provide new avenues for identifying causal sites/genes from fine-mapping

studies.

Keywords: fine-mapping, linkage disequilibrium, statistical genetics/genomics, two-site model, disease genetics,

theoretical genetics, disease association, mode of inheritance

INTRODUCTION

Genetic markers closely linked to disease-causing sites will exhibit association with disease through
linkage disequilibrium (Lai et al., 1994; Weiss and Clark, 2002; Morton, 2005; Slatkin, 2008). This is
the central idea behind population-based association mapping of disease genes using high density
SNP arrays (McVean et al., 2005; Balding, 2006). However, the decay of disease association with
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declining linkage disequilibrium from a disease-predisposing,
functional site has not yet been completely described even though
this is a fundamental property of disease genetics. Doing so
will provide much needed information concerning the properties
of disease genetics and greatly aid experimental designs and
statistical methods for identifying functional variants in regions
that exhibit disease association.

Although many have argued that genome-wide association
studies have been largely unsuccessful in that they have not
revealed a large proportion of the heritability frommost complex
diseases (Latham, 2011), it is certainly clear that numerous loci
with impressive statistical evidence for correlation with a wide
variety of complex diseases have been identified and replicated
(Welter et al., 2014). In a number of instances, these results have
provided much needed insight into the biochemical pathways
and cellular mechanisms responsible for increasing disease risk
(Klein et al., 2005; Cargill et al., 2007; Xavier et al., 2008; Visscher
et al., 2012). However, the functional variants underlying the
majority of these disease-associated regions have yet to be
identified and described (McClellan and King, 2010). The dearth
of information concerning functional variants obviously presents
a sizable impediment to further dissection of complex disease
etiologies and subsequent utility in impacting clinical practice.
If genetic and statistical methods can aid in generating either
supporting or opposing evidence for the role of functional motifs
within a region of disease association, then the progression of
human genetics studies can be made much more efficient and
potent.

When designing fine mapping genotyping experiments, it is
important to select genetic variants and subregions such that
the design is well-powered to discover functional variants under
two important types of disease models: The first class of model
that should be covered by such efforts encompasses models of
a causal variant driving a portion, or perhaps all of the disease
association within a region. Under this model, varying levels
of association signal at different sites are explained by different
levels of linkage disequilibrium with causal variants. Hence,
given allele frequencies and linkage disequilibrium patterns,
one can, in principle, back-calculate the properties of putative
functional variants that could be driving an initially observed
disease association within the region of interest. Known variants,
including those that were not initially interrogated, fulfilling these
calculated allele frequency and linkage disequilibrium properties
with the initial markers should then be included in a fine-
mapping panel. The second model that should be covered by
a fine-mapping panel of markers is one of allelic heterogeneity
at a functional motif (e.g., a gene) that was originally found
to exhibit a disease association signal. Empirical data tends to
strongly favor this type of model over an individual variant
serving as the sole driving allele within a region (Raychaudhuri
et al., 2011; Rivas et al., 2011; Nelson et al., 2012; Kim-Howard
et al., 2013; Seddon et al., 2013). Indeed, it is quite typical
for studies aiming to fine map regions harboring a GWAS-
significant SNP to reveal multiple disease-correlated variants
within the same gene. This is not terribly surprising as the site
frequency spectrum is expected to contain vast numbers of rare
variants in outbred populations, which is accentuated in rapidly

expanding demographics (Wright, 1931; Coventry et al., 2010;
Keinan and Clark, 2012). Even if there is a small likelihood
of any one of these rare variants to exhibit pathogenic effects,
the sheer number of variants segregating at a gene trends to
produce multiple functional alleles in a sizable population. To
cover this class of disease models, one would want to reliably
identify the functional motifs tagged by an initial association
signal and proceed by exhaustively interrogating variants within
those functional motifs. Ultimately, in vitro or in vivo functional
studies will serve to confirm that specific, very rare variants have
pathogenic effects. In practice, this two-model approach guiding
fine mapping was successfully employed to identify alleles
segregating at the TRAF1-C5 region conferring susceptibility to
rheumatoid arthritis (Schrodi et al., 2007a; Chang et al., 2008)
and to fine map the IL23R region in psoriasis (Garcia et al., 2008).

Here, building upon previous work (Kruglyak, 1999; Pritchard
and Przeworski, 2001; Zaykin et al., 2006; Schrodi et al.,
2007b, 2009), we prove a simple, analytic relationship between
case/control association statistics at two closely-linked sites
and the linkage disequilibrium between the two sites under a
generalized disease genetics model. The result holds treating the
parameters as being fixed. Interestingly, the result is invariant
with mode of inheritance parameters. Further, we posit that
concurrently considering the patterns of disease-association
and the genetic architecture within a region of interest may
strengthen the ability to assess the likelihood that a particular
variant is indeed causal with regard to inflating the risk of disease.
By doing so, one may be better able to prioritize variants for
functional follow-up studies. For finite sample sizes, dispersion
around this relationship is expected if the parameters are replaced
with random variables and we therefore explore this variation in
the result through the use of aMonte Carlo simulation. Lastly, we
investigate these patterns in experimental data around the FTO
locus in a large GWAS of extreme BMI.

RESULTS

Approximation
Several groups have described the relationship of statistical
power at a marker site in linkage disequilibrium with a causal
site. In 1999, using the coalescent process to investigate the
density of markers necessary for adequate coverage across
the genome to detect disease-associated regions, Kruglyak
presented the outline of an argument that the sample size
necessary to detect association at a marker locus in linkage
disequilibrium with a causal site is approximately S/d2, where
S is the number of samples required to detect disease
association at the causal site with a given level of power and

d2 =
[

q
(

1− q
)

p−1
(

1− p
)−1

]

r2, such that r2 is the standard

measure of linkage disequilibrium between the causal site and the
marker site and q and p are the allele frequencies at the marker
and causal sites, respectively (Kruglyak, 1999). Later, Pritchard
and Pzreworski performed a derivation showing a similar result,
also with regard to power (Pritchard and Przeworski, 2001).
Under the Pritchard- Przeworski derivation, the power to detect
disease association at a causal site and marker site were found
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to be approximately the same if the sample size at a marker site

is increased by a factor of
(

r2
)−1

over that used in interrogating
the causal site.While certainly an intriguing relationship between
sample sizes, as it is, the finding may not always have utility in
fine mapping applications as most association studies use the
same number samples at all sites interrogated. That said, this
relationship can be used to motivate related and illuminating
properties regarding how fast the disease association signal
can be expected to decay as a function of declining linkage
disequilibrium from a causal site. Equating the power at the
disease-predisposing site to that at the marker site, it follows that,

8

(

ZD
√
r2 − Z1−α/2

)

≈ 8
(

ZM − Z1−α/2

)

; (1)

where ZD and ZM are the normally-distributed Z-scores for
testing disease-association at the causal site and marker site,
respectively; and α is the significance level. Taking the inverse
functions and squaring yields the provocative approximation,

χ2
M ≈ r2χ2

D; (2)

where χ2
D and χ2

M are the Chi-Square statistics for disease
association at the disease and marker sites, respectively. An
interesting parallel was described by Luo, Thompson, and
Wooliams in the context of marker-assisted selection of
quantitative traits where the authors showed that the proportion
of the additive variance of a trait due to a marker in linkage
disequilibrium with a causal quantitative trait locus, σ 2

M/σ 2
A, is

equal to r2 ( Luo et al., 1997).
Plotting the Equation (2) approximation with the χ2 disease-

association statistic on the ordinate and 1− r2 on the abscissa is a
simple method of displaying the expected linear decay in the χ2 -
values as the linkage disequilibrium with a causal site declines
at different marker sites. Figure 1 shows this relationship. This
decay pattern was first used empirically in 2007–2008 to fine
map the TRAF1 region in rheumatoid arthritis (Schrodi et al.,
2007a) and the IL23R region in psoriasis (Garcia et al., 2008)
and has, in an analogous form, subsequently been used in other
applications (Farh et al., 2015). Although this approximation is
very useful in understanding the decay of disease association
with declining linkage disequilibrium from a causal site, several
simplifying assumptions were made in the original Pritchard-
Przeworski derivation. While the impact of these assumptions
have been explored to some extent in previous work (Hu et al.,
2004), it is not known how violations of the original assumptions
might produce departures from Equation (2) nor what the effect
of sampling haplotypes does to the relationship. Hence, an exact
relationship between disease association statistics and r2 -values
with a causal site would aid in clarifying this relationship and
motivate statistical approaches to harnessing this pattern for the
purpose of fine-mapping functional alleles. Further, Monte Carlo
simulations can be used to explore the how treating haplotype
counts as random variables generates stochastic variation around
this central relationship.

Full Derivation
In this section, we will show the algebraic relationship between
the Chi-Square-test statistics at a causal site and marker site,

without any assumptions regarding the probabilistic properties
(or whether they are fixed parameters) of the allele frequencies
or haplotype frequencies of which the statistics are composed.
Note that in the Monte Carlo Simulations Section we will treat
the haplotype counts as random variables; and hence the Chi-
Squared statistics and r2 will each carry stochastic properties and
we investigate these properties in that section.

Defining the Chi-Square-test statistics for a disease-causing
site (χ2

D) and a marker closely linked to the disease site (χ2
M)

following the Pritchard-Przeworski derivation,

χ2
D =

[

pD − pC
]2
[

2n
(

nD
nD+nC

) (

nC
nD+nC

)]

p
(

1− p
) , (3)

χ2
M =

[

qD − qC
]2
[

2n
(

nD
nD+nC

) (

nC
nD+nC

)]

q
(

1− q
) ; (4)

where a two-site model is considered (site A segregating
alleles A1 and A2, and site B segregating alleles B1 and
B2), p, pD, and pC are the frequencies of the A1 allele in
the combined population, disease-affected population, and the
control population, respectively, and where q, qD, and qC are the
frequencies of the B1 allele in the combined population, disease-
affected population, and the control population, respectively.
nD and nC are the sample sizes for diploid cases and controls,
respectively, and n = nD + nC. For this work, haplotype and
allele probabilities conditional on disease status (i.e., within cases
or within controls) are derived. For the haplotype and allele
probabilities in the general population, we weighted the disease
status conditional probabilities by the probability of disease or
healthy control attributable to the causal site, in accordance with
the law of total probability. Note, that the form of these Chi-
Square statistics in Equations (3) and (4) is twice the value of
traditionally-defined Chi-Square statistic. However, this scalar
inflation factor cancels out in the subsequent derivation.

χ2
M

χ2
D

=
p
(

1− p
) (

qD − qC
)2

q
(

1− q
) (

pD − pC
)2
. (5)

Noting that

p = pDK + pC (1− K) and q = qDK + qC (1− K) ,

where K is the P(Case) attributable to the causal site, we can
substitute pC = p−KpD

1−K and qC = q−KqD
1−K into Equation (5),

resulting in

χ2
M

χ2
D

=
p
(

1− p
) (

q− qD
)2

q
(

1− q
) (

p− pD
)2
. (6)

This treatment of the allele frequencies using the law of total
probability holds for all populations in which each individual
is either a case or control (e.g., cohort studies or case/control
study designs). The next aim in the derivation is to substitute
quantities for the allele frequencies in the affected population
at both sites in terms of penetrances, disease prevalence, and
general population allele frequencies. The allele frequencies at
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FIGURE 1 | The expected decay of disease association with declining linkage disequilibrium for four modes of inheritance. The standard recursive

haplotype frequencies under recombination were used to generate a series of haplotype combinations. The disease-predisposing allele at the causal site was set at a

general population frequency of 0.01. The penetrance f22 was set to 0.001 and the remaining two penetrances varied according to the modes of inheritance

examined and the relative risks (R) cited in the Figures. Sample sizes were set at nD = 2000 and nC = 2000. (A) displays the results for an additive model, such that

f12 is the arithmetic mean of f22 and f11. (B) shows the results under a multiplicative model. (C) shows the results under a general recessive model. (D) shows the

results under a general dominant model.

both the causal and marker sites have been previously described
for two-locus systems under general disease models (Schrodi
et al., 2007b):

pD = p

K

[

f11p+ f12
(

1− p
)]

, (7)

qD = P11

K

[

f11p+ f12
(

1− p
)]

+ P21

K

[

f12p+ f22
(

1− p
)]

;(8)

where f11, f12, and f22 are the prevalences of the
A1A1, A1A2, and A2A2 genotypes, respectively, such
that fij = P

(

Case|AiAj

)

; which, under this monogenic
model and assuming Hardy-Weinberg Equilibrium
in the general population and using the law of total
probability we can express the disease prevalence as,

K = f11p
2 + 2f12p

(

1− p
)

+ f22
(

1− p
)2
; and haplotype

frequencies P11 = P (A1B1), and P21 = P (A2B1). Applied
to complex diseases, it may be useful to think of this disease
model as the subset of individuals with a common disease that is
primarily driven by a particular locus. With the substitution into
Equation (6),

χ2
M

χ2
D

=
p
(

1− p
)

{

q− P11
K

[

f11p+ f12
(

1− p
)]

−P21
K

[

f12p+ f22
(

1− p
)]

}2

q
(

1− q
) {

p− p
K

[

f11p+ f12
(

1− p
)]}2

. (9)

In Equation (9), the R.H.S. numerator can be simplified to

p
(

1− p
)

(

1

K2

)

{

P11
[

f11p+ f12
(

1− p
)]

+ P21
[

f12p+ f22
(

1− p
)]

− Kq
}2

.
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Noting that P21 = q−P11 and substituting f11p
2+2f12p

(

1− p
)

+
f22
(

1− p
)2 = K, the numerator becomes

p
(

1− p
)

(

1

K2

)

(

P11 − pq
)2[

f11p+ f12
(

1− 2p
)

− f22
(

1− p
)]2

,

whereas, the denominator in Equation (9) can be simplified to

q
(

1− q
)

(

1

K2

)

p2
[

K − f11p− f12
(

1− p
)]2

.

Hence, Equation (9) can be written as

χ2
M

χ2
D

=
D2
(

1− p
)

pq
(

1− q
)

[

f11p+ f12
(

1− 2p
)

− f22
(

1− p
)]2

[

K − f11p− f12
(

1− p
)]2

; (10)

where D = P11P22 − P12P21 = P11 − pq.

Again substituting K = f11p
2 + 2f12p

(

1− p
)

+ f22
(

1− p
)2
,

χ2
M

χ2
D

=
D2
(

1− p
)

pq
(

1− q
)

[

f11p+ f12
(

1− 2p
)

− f22
(

1− p
)]2

[(

1− p
) (

−f11p− f12
(

1− 2p
)

+ f22
(

1− p
))]2

= D2

pq
(

1− p
) (

1− q
)

[

f11p+ f12
(

1− 2p
)

− f22
(

1− p
)

f11p+ f12
(

1− 2p
)

− f22
(

1− p
)

]2

(11)

= D2

pq
(

1− p
) (

1− q
)

= r2. (12)

Therefore, we have shown the exact relationship under our
model,

χ2
M = r2χ2

D. (13)

Not only is this relationship an exact result under the model
employed, but it is universal in that there is no dependence on
the penetrances. Thus, we may expect that from a true disease-
susceptibility site, that there should be a linear decay in the
Chi-square statistics for disease association with declining r2 -
values with the causal site. Figure 1 shows the expected disease
association decay with declining linkage disequilibrium from the
causal site for additive, multiplicative, recessive, and dominant
sets of models. The patterns arising from various relative risks are
presented. Similarly, Figure 2 presents the patterns expected as a
function of sample sizes. Aside from Equation (13) illuminating a
central aspect of disease genetics, we suspect that it carries utility
in fine mapping applications—we hypothesize that identifying
this type of pattern in fine mapping data will better enable the
pinpointing of truly causal sites through harnessing correlated
data.

Corollary
Consider the situation where there is a disease-susceptibility
site and other sites in differing levels of linkage disequilibrium
with the disease-susceptibility site. From large-scale genotyping
or sequencing studies, we often know the matrix of pairwise
r2 -values, and allele frequencies at each site in the general

FIGURE 2 | Effect of sample size on the expected decay of disease

association with declining linkage disequilibrium. This figure shows how

the fine mapping theorem behaves under different sample sizes. The

case/control sample sizes in the two-site model are varied from 500 to 10,000.

population, broadly defined. An interesting question arises: If
one has genotyped a marker site in a case/control sample set
and calculated χ2

M testing for disease association, can we infer
the expected effect size at a non-interrogated causal site? Using
Equation (13), and substituting allele frequencies at the causal
site,

χ2
M

r2
=

ne
(

pD − pC
)2

2p
(

1− p
) ; (14)

where ne = 4nDnC
nD+nC

, the effective total number of independent
diploid samples. Defining a traditional allelic odds ratio, R,
calculated at the causal site as

R = pD
(

1− pC
) [

pC
(

1− pD
)]−1

,

the allele frequency in the cases can be solved: pD = RpC
1−pC+RpC

.

Therefore,

(

RpC

1− pC + RpC
− pC

)2

= 2p
(

1− p
) χ2

M

ner2
. (15)

To simplify the derivation, we will assume that the disease studied
is not very common such that the allele frequency in controls
is well-approximated by the allele frequency in the general
population, pC ∼= p. This is also true if samples drawn from the
general population are serving as the controls. Hence,

Rp

1− p+ Rp
= p+

(

ZM

r

)

√

2p
(

1− p
)

ne
. (16)
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Solving for R,

R =
(

1− p

p

)









p+
√

2p(1−p)χ2
M

ner2

1− p−
√

2p(1−p)χ2
M

ner2









. (17)

To illustrate the use and implications of Equation (17), suppose
that we have genotyped a site in 500 diploid cases and 500 diploid
controls and calculated the test statistic χ2 = 20, corresponding
to p= 1.57E-03 (recall that half the Pritchard-Przeworski statistic
is Chi-Square distributed with one degree of freedom). Further
assume that this region has previously been subjected to next-
generation sequencing in individuals derived from the same
source population as the cases and controls which has yielded
the discovery of numerous additional variants closely linked to
the genotyped site, allele frequencies at those variants, and an
array of pairwise linkage disequilibrium values across the region
of interest. Under that scenario, one would typically have access
to good estimates of the general population allele frequencies and
r2 -values at sites neighboring the genotyped site that produced
the original finding. Suppose that one of these adjacent sites has
a general population allele frequency p = 0.03 and a linkage
disequilibrium value with the genotyped site of r2 = 0.2. Under
the two-site model, we would therefore estimate the odds ratio at
the putative, non-genotyped, causal site to be 5.17. Put another
way, the putative causal site, having the general population allele
frequency and linkage disequilibrium values above, would have
to have an odds ratio of 5.17 in order to generate twice a standard
Chi-Square statistic value at the genotyped site of 20 given
500 cases and 500 controls. Indirect inference of the properties
of non-interrogated causal sites can be helpful in subsequent
experimental efforts to identify disease-predisposing sites in a
fine-mapped region. Figure 3 displays the relationship between
the inferred odds ratio at the causal site from disease association
data at the marker site as a function of linkage disequilibrium
between the two sites. Graphs for various p-values at marker
site are shown. Additional work under a stochastic model would
enable the calculation of the posterior probabilities of properties
of non-interrogated causal sites given genetic data at linked
markers.

The results detailed in Equations (1–17) do not treat any of the
parameters, such as haplotype frequencies, as random variables.
Clearly, haplotype counts in cases and controls should be treated
with sampling processes from a larger population. To address this
issue, we have constructed a Monte Carlo simulation program
to generate haplotypes under a probabilistic model. Under this
program we are able to explore the variation around Equation
(13) generated by sampling haplotypes and to observe effects that
may be produced by different sets of parameters.

Monte Carlo Simulations
In an effort to understand the variation in the patterns of disease
association decay as a function of linkage disequilibrium with a
causative site, we constructed a Monte Carlo simulation using
a generalized disease model (penetrances for each of the three
genotypes at the causal site are parameterized) and treating the

haplotype counts in cases and controls as random variables.
Recombinationwas introduced between a causal site and a closely
linked marker as a realistic method of generating different sets
of 2-site haplotypes for the general population (Hartl and Clark,
1989). For a rate of recombination, c, and generation time t,
we used the following set of recursions (Haldane model of
recombination):

P11,t = P11,t−1 (1− c) + cpq, (18)

P12,t = P12,t−1 (1− c) + cp
(

1− q
)

, (19)

P21,t = P21,t−1 (1− c) + c
(

1− p
)

q, (20)

P22,t = P22,t−1 (1− c) + c
(

1− p
) (

1− q
)

. (21)

Hence, for the general population, we can express r2 as a function
of generation time using the recursions in Equations (18–21):

r2t =
(1− c)2

(

P11,t−1P22,t−1 − P12,t−1P21,t−1

)2

(

P11,t−1 + P12,t−1

) (

P21,t−1 + P22,t−1

)

(

P12,t−1 + P22,t−1

) (

P11,t−1 + P21,t−1

)

. (22)

Assuming Hardy-Weinberg equilibrium in the general
population at both sites, the proportion of individuals affected
by the disease attributable to this locus, is calculated through
the previously-described formula for disease prevalence. To
calculate the expected haplotype frequencies in cases, we used
Bayes theorem. Hence, the expected frequency of the A1B1
haplotype in cases is

V11 =
P11

K

[

f11p1 + f12
(

1− p1
)]

. (23)

In an analogous manner, the remaining haplotype frequencies in
cases, where the subscript indicates the haplotype, are

V12 = P12

K

[

f11p1 + f12
(

1− p1
)]

, (24)

V21 = P21

K

[

f12p1 + f22
(

1− p1
)]

, (25)

V22 = P22

K

[

f12p1 + f22
(

1− p1
)]

. (26)

The haplotype frequencies in controls are simply

U11 = (P11 − V11K)

1− K
, (27)

U12 = (P12 − V12K)

1− K
, (28)

U21 = (P21 − V21K)

1− K
, (29)

U22 = (P22 − V22K)

1− K
. (30)

Sampling of the case and control haplotypes from the
expected frequencies is accomplished through two independent
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FIGURE 3 | Inferred odds ratio. The relationship between the inferred odds ratio at a causal site and the level of linkage disequilibrium with an interrogated marker is

presented in (A,B). Equation (17) is used for the calculations. The seven curves show the patterns of expected odds ratios for disease association at the causal site

under different observed p-values calculated at the marker site. Sample size was set at ne = 5000. (A) shows results assuming that the disease-predisposing allele at

the causal site has frequency of 0.10 in the general population, whereas (B) sets that frequency at 0.01.

multinomial variates such that the joint densities are given by

P (X11 = x11,X12 = x12,X21 = x21,X22 = x22)

= nD!

(

Vx11
11,tV

x12
12,tV

x21
21,tV

x22
22,t

x11!x12!x21!x22!

)

, (31)

P
(

Y11 = y11,Y12 = y12,Y21 = y21,Y22 = y22
)

= nC!

(

U
y11
11,tU

y12
12,tU

y21
21,tU

y22
22,t

y11!y12!y21!y22!

)

. (32)

Hence, the sample frequency of the causal allele in cases and
controls, respectively, are

p̂D = (nD)−1 (x11 + x12) , (33)

and

p̂C = (nC)−1
(

y11 + y12
)

. (34)

We employed an additive model for the penetrances at the causal
site and a design using 10,000 cases and 40,000 controls. As the
time parameter is increased, the number of recombination events
between the casual site and the marker site increases and there is
a corresponding reduction in the linkage disequilibrium between
the two sites. Figure 4 shows the distribution of the association
statistic at the marker site (Equation 4) plotted against the
product of the association statistic at the causal site (Equation 3)
and the r2t -value between the two sites. Four different time points
were evaluated in the simulation, each with 10,000 replicates
generated. The patterns show the general linear trend of how
the association statistics scale with linkage disequilibrium and the

variation around this pattern. For fixed properties at a causal site,
Figure 5 displays the mean value and 95% confidence interval
of the association statistic at the marker site as the r2t -value
declines.

Application to Experimental Data
All indicated earlier, there are several uses of the theorem
presented here. The pattern of linear decay of association
(as measured by the test statistic) with declining linkage
disequilibrium can be used to support various markers as causal
sites. Conversely, significant departure from the expected pattern
can indicate multiple causal sites segregating at the disease locus.
And additionally, understanding this fine mapping theorem can
be used to infer properties of non-interrogated causal sites. To
illustrate the application of the relationship described in Equation
(13) to experimental data, we used GWAS data around the well-
established obesity locus, FTO, generated by a recent large study
of extreme BMI (Berndt et al., 2013). The FTO gene encodes
for an alpha-ketoglutarate-dependent dioxygenase (Gerken et al.,
2007), playing a role in growth and development (Boissel et al.,
2009; Daoud et al., 2016), and has been reliably associated with
the related conditions of type 2 diabetes, BMI, adiposity and
other obesity-related traits (Scott et al., 2007; Zeggini et al., 2007;
Lindgren et al., 2009; Thorleifsson et al., 2009; Fox et al., 2012;
DIAGRAM Consortium et al., 2014; Wood et al., 2016). Within
the FTO gene region, the study found that rs11075990 exhibited
the strongest association with extreme BMI with a reported
p-value of 9.3E-33. From this study, we identified 752 SNPs
residing within a∼1Mb region surrounding FTO, having linkage
disequilibrium data from the 1000 Genomes project (The 1000
Genomes Project Consortium et al., 2015). Figure 6 displays the
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FIGURE 4 | Monte Carlo results under the 2-site model with recombination. The Chi-Square statistic as measured at the marker site is plotted against the

product of r2 and the Chi-Square Statistic at the disease site for 10,000 replications of the simulation. 10,000 disease cases and 40,000 controls were assumed in the

calculations. The initial frequencies of the four haplotypes were 0.70 for the parental, non-causal haplotype, 0.28 for the parental haplotype carrying the causal variant,

and 0.01 for each of the recombinant haplotypes. As time (t) increases, these frequencies varied according to the recursions specified in Equations (18–21). An

additive model was assumed as the mode of inheritance model with penetrances of 0.01, 0.03, and 0.05 for the three genotypes at the causal site.

positional association of these data, showing a substantial peak
localized on chr16q over the FTO gene. Plotting these association
results as a function of pairwise linkage disequilibrium (as
measured by r2) with rs11075990, there is a general decay of
the Chi-Square association statistics with declining r2 -values
(Figure 7). Pearson’s correlation is 0.979 and the p-value for this
relationship (testing Spearman’s rho under the null model of
no correlation) is 2.87E-29. For this example, there are some
immediate findings by visual inspection. The general pattern
following the theorem is present. In addition, there appear to
be some SNPs with extreme BMI associations that substantially
exceed the level of association expected to be driven through
linkage disequilibrium with rs11075990. That is, the theoretical
model of one causal site (rs11075990) driving the extreme BMI
association patterns in the FTO gene region may not explain
the association statistics at some SNPs, such as rs2058908, where

the theory only predicts a Chi-Square-value of 12.36 (r2 with
rs11075990 is 0.087) and yet the observed Chi-Square statistic
is 73.98. Hence, the genetic information at rs2058908 may be
driven by a causal signal independent of rs11075990 (rs2058908
is denoted with a green circle in Figure 7). A test of conditional
association could be used to verify these types of hypotheses.
Since the residuals obtains from the fitted line (the line that
passes through the origin and the Chi-Square value associated
to the causal site) and the observed Chi-Square-values are
not normally-distributed, we used a resampling approach to
obtain a 95% confidence band (dashed lines in Figure 7). In
this approach, we treat the fitted Chi-Square-values to be the
expected response for the bootstrap samples, and by resampling
the original residuals, we obtain bootstrap replicates for the fixed
covariate (r2) (Fox and Weisberg, 2012). Here, we resampled the
original residuals 100,000 times in the R programming language
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FIGURE 5 | Mean and 95% Confidence Interval for the Chi-Square

Statistic at the Marker Site as a Function of Linkage Disequilibrium.

Results from the Monte Carlo simulation showing the mean and 95%

confidence interval for the Chi-Square statistic at the marker site, plotted as a

function of r2 with the causal site. The two-site model with recombination and

additive mode of inheritance described previously were used.

(R Core Team, 2014) and used the 0.025 and 0.975 quantiles
of the resampled fits to achieve the 95% confidence band in
Figure 7.

DISCUSSION

One of the most fundamental patterns in disease genetics is the
nature of the decay of disease association with declining linkage
disequilibrium from a causal site. Motivated by the Kruglyak and
Pritchard-Przeworski derivations for the approximate increase
in sample size to attain the equivalent statistical power at a
marker site in linkage disequilibrium with a causal site, we
first showed how this result could be used to produce an
approximation showing a linear relationship in the Chi-Square
association statistics testing disease association at a marker and
a causal site and that the ratio of the two was approximately
r2 (Equation 2). Next, using a general two-site model with
penetrances, we showed that this is indeed an exact result and
invariant to the mode of inheritance model (Equation 13). In
this derivation, we treated the variables as fixed parameters.
To treat the situation where the haplotype frequencies have
sampling properties (i.e., are treated as random variables), we
wrote a Monte Carlo simulation of this system for finite sample
sizes and used a standard model of recombination between the
causal and marker sites. The results characterized the stochastic
variability around the initial result. Lastly, we applied this work

FIGURE 6 | Positional association plot of SNPs around the FTO gene

region. Association data from the Berndt et al. study of extreme BMI were

used for this positional plot. SNPs (n = 752) within 500 kb of the FTO gene,

having linkage disequilibrium information from the 1000 genomes study were

used in the plot showing strong localization of the association signal around

the FTO gene.

to experimental data from a large GWAS on extreme BMI and
showed reasonably good correspondence with this fine mapping
theory.

Aside from being a theorem in disease genetics for
dichotomous traits, we hope that this fine mapping theorem
can serve as an aid in identifying casual variants segregating
in a region associated with disease. Recently, substantial effort
has driven the field of fine-mapping forward. To address the
statistical aspects of prioritizing potentially causal variants within
a fine-mapped region, several methods have been developed
including a useful Bayesian method created by Maller et al.
(The Wellcome Trust Case Control Consortium et al., 2012),
which uses Bayes Factor for each variant in the region and
calculates the proportion of the total sum of Bayes Factors in the
region that is attributable to that variant, producing a relative
ranking of the strength of evidence for each variant within the
disease-associated region being causal. These calculations allow
for the determination of a credible set of highest ranked variants
that explains the large majority of the statistical evidence of
disease association within the region of interest. The Maller et al.
method has been applied to fine mapping data for complex
diseases, such as type 1 diabetes (Onengut-Gumuscu et al., 2015).
Other important developments in fine mapping approaches
include: Bim-Bam (Servin and Stephens, 2007), another Bayesian
approach which determines subsets of variants that likely contain
causal sites, CAVIAR (Hormozdiari et al., 2014) and CAVIARBF
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FIGURE 7 | Decay of association from rs11075990. Association from the

Berndt et al. study of extreme BMI was plotted against the pairwise linkage

disequilibrium (r2) values of each SNP and rs11075990—the most significant

finding in the region. rs2058908 is denoted with the green circle. Ninety-five

percent of confidence intervals are determined through the resampling

scheme presented in the text.

(Chen et al., 2015), coalescent-based methods (Graham, 1998;
Morris et al., 2002; Zöllner and Pritchard, 2005), and PAINTOR
(Kichaev et al., 2014), which incorporates functional annotation
data in a probabilistic manner. Several different extensions of
the work presented here could substantially aid fine mapping
efforts for complex diseases: (1) Statistical approaches that
harness the pattern of association decay with declining linkage
disequilibrium will leverage the genetic data at a fine-mapped
region to better support or reject the hypothesis that a particular
site is indeed causal. Screening each site for a goodness-of-
fit with the expected decay pattern from a causal site would
better enable the detection of causal sites; (2) Future work
focusing on imputing additional properties of a non-interrogated

causal variant within a disease-associated region using the
linkage disequilibrium patterns and disease association statistics
would provide valuable insights into design and interpretation
of fine mapping studies. For example, if one imputed a low-
frequency, high effect size variant, then experimental designs and
genetic techniques, such as sequencing, that have high power
to detect such variants can be utilized; and (3) It is becoming
increasingly clear that the large majority of regions associated
with complex disease susceptibility have multiple predisposing
alleles segregating in the populations examined. Methods that
extend the simple two-site model explored here to include
multiple causal sites will be invaluable for the identification of
these functional variants.
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