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Abstract
Great progress has been made in improving survival in multiple myeloma (MM) patients over the last 30 years. 
New drugs have been introduced and complete responses are frequently seen. However, the majority of MM 
patients do experience a relapse at a variable time after treatment, and ultimately the disease becomes drug-
resistant following therapies. Recently, minimal residual disease (MRD) detection has been introduced in clinical 
trials utilizing novel therapeutic agents to measure the depth of response. MRD can be considered as a surrogate 
for both progression-free and overall survival. In this perspective, the persistence of a residual therapy-resistant 
myeloma plasma cell clone can be associated with inferior survivals. The present review gives an overview of drug 
resistance in MM, i.e., mutation of β5 subunit of the proteasome; upregulation of pumps of efflux; heat shock 
protein induction for proteasome inhibitors; downregulation of CRBN expression; deregulation of IRF4 expression; 
mutation of CRBN, IKZF1, and IKZF3 for immunomodulatory drugs and decreased target expression; complement 
protein increase; sBCMA increase; and BCMA down expression for monoclonal antibodies. Multicolor flow 
cytometry, or next-generation flow, and next-generation sequencing are currently the techniques available to 
measure MRD with sensitivity at 10-5. Sustained MRD negativity is related to prolonged survival, and it is evaluated 
in all recent clinical trials as a surrogate of drug efficacy.
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INTRODUCTION
Multiple myeloma (MM) represents the second most frequent hematological malignancy, and significant 
survival improvements in the years have been seen[1-3]. Survival has ameliorated thanks to the availability of 
novel classes of drugs such as proteasome inhibitors (PIs: bortezomib, and carfilzomib), 
immunomodulatory drugs (IMIDs: thalidomide, lenalidomide, and pomalidomide), monoclonal antibodies 
(moAb: daratumumab, elotuzumab, isatuximab, and belantamab mafodotin). These new drugs are utilized 
alone or combined as triplets or quadruplets in the treatment of relapsed/refractory patients and thereafter 
at diagnosis with good results also in extramedullary MM[4-17]. MM has important clinical heterogeneity and 
complex genetic abnormalities[18]. Cytogenetic analysis and fluorescence in situ hybridization can help to 
distinguish different categories and risk-stratify MM patients[19]. In particular, t(4;14), t(14;20), gain of 
chromosome 1q, and deletion 17p give a poorer outcome, while t(11;14) and t(14;16) seem to have an 
intermediate prognosis[20-22]. In this view, relapses are seen in the majority of patients, and some of them still 
have a dismal prognosis. However, while cytogenetic analysis can help to stratify prognosis, it does not fully 
explain initial MM drug resistance (DR). Two main factors seem to emerge: (1) acquired drug resistance; 
and (2) sub-clonal heterogeneity[23,24]. Mechanisms of acquired drug resistance to the main classes of new 
drugs available in MM have been extensively reviewed recently[22]. A novel method to detect minimal 
residual disease has been developed recently[23-35], i.e., MRD detected by next-generation flow (NGF) or 
next-generation sequencing (NGS), which have been reported as important tools by the International 
Myeloma Working Group (IMWG) in the recent response guidelines[36]. MRD is an important surrogate for 
survival, as well as progression-free (PFS) and overall survival (OS)[37]. In particular, sustained MRD 
negativity confirmed at one year is of great importance to predict clinical outcome of MM patients. MRD 
can also detect sub-clones that acquire higher genomic instability and can ultimately drive resistance[38]. This 
review summarizes the main DR cell-inherent/intrinsic and extrinsic mechanisms to novel drugs in MM 
and will focus on recent developments regarding MRD as a tool to predict PFS and OS in clinical trials.

Drug resistance in MM
Drug resistance is the leading cause of a relapsed/refractory disease, and it can ultimately decrease survival. 
Many novel drugs are now available in MM with many used at diagnosis in triplet or quadruplet. MM 
patients can develop DR after a few cycles of therapy in a variable manner. The main mechanisms of 
resistance to chemotherapeutic drugs in MM can involve a drug-efflux pump, such as P-glycoprotein, or 
other mechanisms that inhibit the drug to enter the cell. Moreover, enzymatic inactivation of the drug or 
adhesion to bone marrow stromal cells, such as fibroblasts and immune cells including macrophages, in the 
microenvironment can be mentioned. To develop strategies for the future treatment of DR-MM patients, 
the main mechanisms of resistance to the different classes of drugs, namely proteasome inhibitors, 
immunomodulatory drugs, and monoclonal antibodies, have to be elucidated. The principal mechanisms of 
resistance to novel drugs and resistance escape are reported in Table 1.

Drug resistance to proteasome inhibitors
The PIs used in recent years in clinical practice are bortezomib (Bor), carfilzomib (Car), and ixazomib 
(Ixa)[39,40]. Bor is approved for use at diagnosis in both transplant and non-transplant eligible MM patients, 
while Car and Ixa are used in the relapsed and refractory treatment setting. The structure of the proteasome 
was first described as a hollow single-cylinder protein. The proteasome functions as an ATP-dependent 
organelle in which almost 90% of intracellular proteins are degraded following tagging by the polyubiquitin 
chain. Three subunits of the proteasome are recognized as the site of degradation in the 20S particle: β1 
(caspase), β2 (trypsin), and β5 (chymotrypsin). The final result of proteasome inhibition is MM plasma cell 
death or apoptosis via protein accumulation[41]. Other mechanisms have been reported: p53 activation, 
inhibition of nuclear factor-κB (NF-κB) activity, activation of c-Jun N-terminal kinase, and stabilization of 
cell cycle inhibitors. PI can bind the β5 subunit reversibly (Bor and Ixa) or irreversibly (Car). Resistance to 



Page 173Gozzetti et al. Cancer Drug Resist 2022;5:171-83 https://dx.doi.org/10.20517/cdr.2021.116

Table 1. Principal mechanisms of drug resistance and resistance escape

C D M of A DR Resistance escape Ref.

moAb Dara 
Isa 
Elo 
Bela

ADCC, CDC, macrophage-mediated phagocytosis, apoptosis via Fc-mediated 
crosslinking stimulatory effects on NK cells (for anti CD38 moAb), direct cytotoxicity

Decrease target expression, complement 
protein increase, sBCMA increase, BCMA 
down expression

Change drug class, upregulation of CD38 using 
ATRA

[61-67]

IMIDs Tha 
Lena 
Poma

BM microenvironment targeting; degradation of IKZF1 and IKZF3 via CRBN-dependent 
ubiquitination; IRF4 and MYC downregulation; triggering caspase 8/9-mediated 
apoptosis; immune modulation; anti-angiogenic activity

Downregulation of CRBN expression; 
deregulation of IRF4 expression 
Mutation of CRBN and IKZF1 and IKZF3

Change drug class, next-generation CRBN E3 
ligase modulators (iberdomide)

[58,59]

PIs Bort 
Car 
Ixa

Inhibition of activity of the 20S proteasome; inhibition of NF-κB activity; induction of 
apoptosis by activation of caspase 8/9 and p53; adhesion molecules downregulation

Mutation of β5 subunit, upregulation of 
pumps of efflux, HSP induction

Change drug class, pan proteasome inhibitor 
(marizomib), hydroxychloroquine, pan HDAC 
inhibitor

[46,48]

C: Class of drug; D: drug name; M of A: mechanisms of action; DR: drug resistance; moAb: monoclonal antibody; IMIDs: immunomodulatory drug; PI: proteasome inhibitors; Dara: daratumumab; Isa: isatuximab; Elo: 
elotuzumab; Bela: belantamab mafodotin; Tha: thalidomide; Lena: lenalidomide; Poma: pomalidomide; Bor: bortezomib; Car: carfilzomib; Ixa: ixazomib; ADCC: antibody-dependent cellular cytotoxicity; CDC: 
complement-dependent cytotoxicity; BCMA: b cell maturation antigen; ATRA: all trans retinoic acid; IKZF1: Ikaros; IKZF3: Aiolos; BM: bone marrow; CRBN: Cereblon; IRF4: interferon regulatory factor 4; NF-κB: 
nuclear factor-κB; HDAC: histone deacetylase; HSP: heat shock protein.

PIs is related to mutations in the β5 subunit gene (PSMB5) at both diagnosis and relapse[42,43]. The presence of mutations at other subunits, namely PSMA1, 
PSMB8, and PSMB9, has been described, but they have not been found to be related to resistance yet and thus need to be confirmed. Another protein 
important for DR seems to be the X-box protein 1 that acts in the proteostasis in the MM plasma cell. Downregulation of this pathway has been reported in PI-
DR cells[44]. Decreased drug accumulation is another mechanism of DR in MM. In particular, the multidrug resistance protein P-glycoprotein (P-gp) has been 
well studied in the past[45]. P-gp works by implementing drug efflux from the MM plasma cell, thus reducing drug activity. Both Car and Bor have been 
reported to be P-gp substrates[46-48]. The mechanisms of resistance escape are reported in Table 1[49,50]. The results of preclinical studies indicate that inhibition of 
various heat shock proteins (HSPs), e.g., HSP90, can increase the efficacy of PIs[51]. HSPs are induced by the transcriptional blockade of protein degradation, 
which can contribute to drug resistance. The results from early phase I trials combining HSP90 inhibitors with PIs have identified safe doses for both drugs. In 
a preclinical study using bor-resistant MM cell lines, the blockade of IGF-1 downstream effectors re-sensitized cell lines to bortezomib. Furthermore, the IGF-
1R inhibitor OSI-906 induced more apoptosis than Bor alone, both in vitro and in vivo[52].

Moreover, investigators used a mouse MM model to study gene-expression signatures (GES) related to Bor resistance. GES related to resistance included 
nuclear factor (erythroid-derived 2)-like 2 (NFE2L2), highly expressed as part of an antioxidant-response pathway[53]. Thus, MM cells with elevated antioxidant 
capacity before treatment might be resistant to bortezomib.
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Drug resistance to immunomodulatory drugs
The IMIDs currently used in clinical practice are thalidomide, lenalidomide, and pomalidomide (Thal, Len, 
and Pom, respectively). All three agents were initially used in the relapsed and refractory setting, but Len 
and Thal are now also approved for use at diagnosis[54]. IMIDs have antiproliferative properties and direct 
pro-apoptotic effects. Other mechanisms exhibited are anti-angiogenic and immunomodulatory effects, by 
activating NK and T cells. The E3 ligase protein Cereblon (CRBN) is targeted by IMIDs, in particular in 
complex with CRL4, ultimately leading to degradation of the Aiolos and Ikaros proteins and IRF4 
reduction[55-57]. This mechanism of action is the principal target of DR, mainly because of occurring 
mutations or gene expression modifications in this complex. It has been demonstrated that CRBN 
mutations appear after a relapsed/refractory disease occurs, probably due to clonal selection after long IMID 
therapy[58]. In addition, IRF4 has been investigated as a potential downstream target for DR in Waldenstrom 
macroglobulinemia after therapy with Len and Pom[59]. Methylation of CRBN has also been recently 
reported[60].

Drug resistance to monoclonal antibodies
Monoclonal antibodies directed at antigens present on the surface of plasma cells have recently entered the 
therapeutic armamentarium against MM. The approved moAb in clinical practice are daratumumab, 
elotuzumab, isatuximab, and belantamab mafodotin. Thse drugs were all tested as monotherapy first, and 
have since been proven to be more efficacious when combined with other agents in triplet or 
quadruplet[61-65].

Even though daratumumab, an IgG 1 anti-CD38 moAb, has been found to be very efficacious, resistance 
can be observed during treatment. Although CD38 mutations are not described as potential mechanism of 
DR, it has been reported that low CD38 expression could be a cause of initial resistance to therapy. 
Moreover, CD38 expression reduction during treatment has been described as a major mechanism and 
occurs via the action of sheddases[66]. Another occurring event observed is upregulation of CD55 and CD59 
complement inhibitors[67]. For other moAb, the DR mechanism is not currently known, although it is logical 
to think that, as per daratumumab, the loss of the target antigen is likely a major mechanism of 
resistance[68-72].

Extrinsic mechanisms of drug resistance
The bone marrow microenvironment, including osteoblasts, osteoclasts, mesenchymal stem cells (MSC), 
and tumor-associated macrophages (TAM), is highly connected with MM progression and drug resistance 
[Figure 1]. In MM in the “osteoblastic niche”, macrophages are differentiated into osteoclasts by the release 
of osteoclasts activating factors (i.e., IL-6, IL-1-α, TNF-α, TNF-β, and IL-11) and promote bone resorption. 
Osteoprotegerin represents an antiapoptotic MM factor by binding to TNF-related apoptosis-inducing 
ligand. Stromal cells can give drug resistance by TGF-β inhibition of osteoblasts differentiation. Stromal 
cells in the microenvironment have been shown to secrete several cytokines that regulate the antiapoptotic 
members of the Bcl-2 family (Mcl-1, Bcl-xl, and Bcl2) via IL-6 signaling[73]. A “vascular niche” is formed by 
endothelial cells (EC), MSC, and TAM and can protect MM plasma cells from cytotoxic drugs. In particular, 
EC can express an aberrant active phenotype (VEGFR-2 and FGFR-3) that can help to prevent MM 
apoptosis, favoring PC migration into the bloodstream and dissemination[74]. MSC can contribute to 
bortezomib resistance in MM via Bcl2 increased expression and enhanced NF-κB activity through cell-cell 
contact[74].

TAM have a basic role in MM pathogenesis, since they promote plasma cells proliferation, homing, and 
angiogenesis, supporting MM immune evasion and progression[75].
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Figure 1. Drug resistance intrinsic and extrinsic mechanisms. EC: Endothelial cells; MSC: mesenchymal stem cells; TAM: tumor-
associated macrophages.

MM plasma cells in vitro could upregulate CD206 expression and favor an M2 TAM polarization of 
cocultured macrophages[76]. In a preclinical model, CD68-positive TAM were shown to inhibit drug-
induced apoptosis of tumor cells by caspase 3 and poly-ADP ribose polymerase cleavage[77,78]. Moreover, 
intracellular adhesion molecule-1 (ICAM-1) and P-selectin glycoprotein ligand-1 (PSGL-1) on the MM cells 
surface could activate TAM and favor TAM-induced chemoresistance through the SRC, ERK1/2, and C-
MYC pathway[79]. VEGF production by M2 TAM was demonstrated during progression from MGUS to 
MM, with increased angiogenic switch[80,81].

An interesting study reported a possible correlation between the pro-tumor effect of TAM and the Stat3 
pathway activation in 5T33MM cells. Interestingly, an ATP-competitive Janus kinase (JAK)2 inhibitor, the 
so-called AZD1480, could restore the sensitivity of MM cells to bortezomib[82,83].

Clinical studies confirmed CD68/CD163 double-positive M2 TAM were associated with increased 
microvessel density and reduced survival, independently of the MM stage[84-86]. In this field, high IHC 
CD163-positive M2 TAM expression at diagnosis was associated with lower complete response (CR) rate 
and reduced PFS and OS in 198 MM patients receiving bortezomib-based regimens[84]. Interestingly, an 
elevated level of soluble M2 TAM markers CD163 and CD206 was associated with worse OS; conversely, 
higher M1 density demonstrated a correlation with OS improvement[85].

In a retrospective study enrolling 68 MM patients, an elevated CD68-positive and CD163-positive TAM 
expression showed a significant reduction of six-year OS, as confirmed by multivariate analysis. As a 
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complementary finding, an increased CD163-positive M2 TAM number was associated with an elevated 
microvessel density[86]. In another relevant study, a reduced response was observed in patients presenting 
with high CD68-positive and CD163-positive TAM; however, only high CD163 TAM expression was 
related to a reduced PFS and OS. CD163 and CD168 were combined with ISS to design a new prognostic 
model[87]. M2 TAM infiltration and correlation with pro-angiogenic factor CD147 were investigated in a 
spectrum from MGUS to recurrence MM. CD163 was used as the M2 marker and the cutoff for M2 
infiltration was 100 per core. The authors showed a significant OS reduction in relapsed MM patients with 
high M2 expression (32 months vs. 6 months, P = 0.02), suggesting a prognostic role of CD163-positive 
TAM in MM[88]. Finally, Andersen et al.[89] evaluated CD163 as a soluble marker in 104 blood samples and 17 
BM samples in newly diagnosed MM patients. CD163 BM expression was higher compared to blood 
samples and was associated with a higher ISS stage. An elevated CD163 expression, with the suggested 
cutoff of 1.8 mg/L, was associated with poor prognosis, further suggesting M2 TAM could favor MM 
growth and progression[89].

MINIMAL RESIDUAL DISEASE
New drugs in MM have revolutionized the treatment paradigm and improved both progression-free and 
overall survival. However, progress in the definition of response is needed, since a CR has been defined for 
almost 15 years simply as the absence of a monoclonal component at immunofixation and a percentage of 
monoclonal plasma cells < 5% in the bone marrow.

The goal is to predict patients relapsing soon after the initial therapy and distinguish them from patients 
who maintain a long response (sustained CR) that is a surrogate for PFS and OS. Novel drugs are combined 
now in triplet or quadruplet treatment schedules and can implement in a high percentage of patients CR to 
a virtual disease disappearance. However, most MM patients still relapse. NGF and NGS have been 
introduced into clinical trials, bringing more sensitivity to detect minimal residual disease after therapy[23-34]. 
The detection limit of MRD is now considered 10-5; however, data suggest that a deeper limit of 10-6 or 10-7 
could predict a better PFS[90]. Although NGS has been reported initially to have a deeper limit of detection 
(10-6) than NGF (10-5), both can now reach comparable sensitivity at 10-6.

NGF and NGS in MM
NGF has recently become part of the MRD evaluation, and it is based on the detection and quantification of 
normal PC vs. monoclonal PC using specific antibodies: PC markers such as CD38 and CD138; aberrant 
antigens expression such as CD45-low, CD19-, CD27- , CD81-, and CD56; CD28; CD117; and light chains κ or 
ʎ. The Euro-Flow Consortium has introduced a more sensitive standardized technique based on two eight-
color tubes that permit detecting MRD with 100% applicability[24] with a 4 h sample processing time. 
Sensitivity needs to be at least 10-5, but it has been reported as even better. A correct and adequate 
concentrate sample is needed to avoid hemodilution, and strategies to overcome CD38 monoclonal 
antibody interference have been described[26].

NGS analyzes the clonal rearrangements of the immunoglobulin heavy chain (IgH) regions with parallel 
sequencing of reads with a sensitivity of 10-6. Importantly, patient primer construction is not needed, and 
the depth of detection is a strength[91]. Commercial kits are now available and FDA approved 
(LymphoSIGHT® and ImmunoSEQ, Adaptive Biotechnologies). Costs and a bioinformatic database for 
analysis as well as hemodilution are the limits[26]. NGF and NGS are recognized as complementary 
techniques, and the IMWG suggests utilizing the one available at the centers in clinical trials[36]. The 
Cassiopeia trial showed comparable sensitivity for NGF and NGS[13].
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Minimal residual disease sub-clone characterization
MRD can be a surrogate for PFS and OS and is becoming an important tool for risk-stratification since the 
depth of response is correlated with prolonged survival[92]. In fact, a non-sustained CR can frequently be 
seen in MRD-positive MM patients. A goal in actual MM therapy could be to reach a sustained CR with 
MRD negativity lasting for at least one year. Searching for a sub-clone in MRD analysis could be an ideal 
way to identify drug resistance. It has been reported that MRD MM sub-clones could overexpress CD11a, 
CD11c, CD29, CD44, CD49d CD49e, CD54, CD138, CXCR4, and HLADR in the GEM2010MAS65 study 
involving 40 elderly patients[93] treated with nine cycles of VMP (bortezomib, melphalan, and prednisone) or 
alternating VMP to Rd (lenalidomide and dexamethasone). In particular, integrins, chemokines, and 
adhesion molecules were overexpressed. These chemoresistant clones with a specific multi-flow signature 
also displayed genetic copy number alterations (CNA) that were present since diagnosis, and the resistant 
clone was selected after therapy resistance. The same group recently studied a larger number of patients (n = 
390) in the PETHEMA/GEM2012MENOS65 protocol (six induction cycles with Bor, Lena, and 
dexamethasone followed by autologous stem cell transplant, two consolidation cycles with Bor, Lena, and 
dexamethasone, and then randomization to maintenance therapy with Lena and dexamethasone vs. Ixa, 
Lena, and dexamethasone)[88]. They used NGF to identify detectable MRD and mechanisms related to 
resistance in 90 patients with high-risk (HR; i.e., del17p, t4;14, or t14;16) cytogenetics and 300 patients with 
standard-risk cytogenetics (SR; i.e., other anomalies not HR). Importantly, the results show the superiority 
of 90% PFS in MRD-negative patients vs. MRD-positive patients, irrespective of the cytogenetic status. 
Moreover, NGF studies and whole-genome sequencing showed clonal selection and higher genomic 
aberrations and mutations in 40 patients with multi-resistant clones[94]. Most mutations affected KRAS, 
BRAF, CCND1, ROS1, NRAS, and FLT3 genes. CNA and mutations present at diagnosis were more likely to 
disappear in SR-cytogenetics patients, while HR patients had novel mutations during treatment, suggesting 
more genomic instability. In addition, when evaluating transcriptional clones, patients with HR cytogenetics 
showed the expression of PRDX6 and SOD1, which were related to a worst PFS. The authors concluded 
that, in HR cytogenetics MM patients, MRD resistance can arise from clones that evolve transcriptionally 
after therapy.

Minimal residual disease negativity after current upfront therapies for transplant and non-transplant 
eligible myeloma patients
With the introduction of novel drugs, responses can be seen in the majority of MM patients treated at 
diagnosis, both transplant and non-transplant eligible, with PFS lasting up to five years [Tables 2 and 3].

It is now evident that PFS alone cannot be the main parameter to judge new drugs in clinical trials. MRD 
has been proven to be a good prognosticator for PFS, OS, and drug resistance[92]. In the GIMEMA-MMY-
3006 study, VTD was compared to TD in 480 MM transplant eligible patients for induction therapy and 
double ASCT followed by consolidation therapy[95]. VTD incorporated into a double ASCT strategy plus 
consolidation therapy proved to be superior to TD in terms of CR attained (58% vs. 41%, respectively) and 
PFS and OS at 10 years (34% vs. 17% and 60% vs. 46%, respectively)[96]. Although MRD was not done at that 
time, one study showed that, in a subset of patients treated with VTD consolidation after ASCT, MRD 
negativity was achieved and relapses were delayed[97]. In the IFM 2009, VRD was compared with VRD + 
ASCT, and in the latter group CR was superior (59% vs. 49%) but OS did not differ significantly[98]. 
Importantly, MRD negativity was significantly correlated with improved three-year PFS (87% vs. 42%), 
independently of the therapy received. Car was combined with Len and dexamethasone in the KRD 
regimen tested as induction and consolidation + maintenance therapy for up to 10 cycles[93,99]. Although 
relatively few patients were treated, MRD negativity was reached in a high percentage of patients. Recently, 
Dara was added to VTD and compared to VTD alone in 1085 patients in the CASSIOPEIA study[13]: 
response and MRD negativity were superior in Dara-VTD vs. VTD (64 % vs. 44%). Dara was added before 
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Table 2. CR and MRD results in transplant eligible patients with currently available therapy

Authors Regimen n ASCT 
(NO/1/2) C/M CR (%) MRD neg (%) PFS/OS (months)

Cavo et al.[95] TD 
VTD

238 
236

2 C + M 41 
58

NA 40.7/110 
59.6/NR

Attal et al.[98] VRD 
VRD

350 
350

NO 
1

C + M 49 
59

65 
80

37/NR 
50/NR

Jasielec et al.[99] KRD 76 1 C + M 78.9 70 NR

Moreau et al.[13] Dara-VTD 
VTD

543 
542

1 C + M 39 
26

64 
44

NR

Voorhees et al.[100] 
Laubach et al.[101]

Dara-VRD 
VRD

103 
104

1 C + M 66 
47

64 
30

NR

PFS: Progression-free survival; OS: overall survival; CR: complete response; C + M: consolidation + maintenance; NA: not applicable; NR: not 
reached; ASCT: autologous stem cell transplantation; TD: thalidomide and dexamethasone; VTD: bortezomib, thalidomide, and dexamethasone; 
VRD: bortezomib, lenalidomide, and dexamethasone; KRD: carfilzomib, lenalidomide, and dexamethasone; Dara-VTD: daratumumab, bortezomib, 
thalidomide, and dexamethasone; Dara-VRD: daratumumab, bortezomib, lenalidomide, and dexamethasone.

Table 3. CR and MRD results in non-transplant eligible patients with currently available therapy

Authors Regimen n CR (%) MRD neg (%) PFS/OS (months)

San Miguel et al.[102] VMP 
MP

344 
338

30 
4

NA 24/56 
16.6/43

Benboubker et al.[103] RD cont. 
RD18 
MPT

535 
541547

15 
14 
9

NA 25.5/59 
20.7/62 
21.2/49

Facon et al.[12] Dara-RD 
RD

368 
369

48 
25

31 
10

NR 
34/NR

Mateos et al.[11] Dara-VMP 
VMP

356 
350

46 
25

28 
7

36.4/NR 
19.3/NR

Durie et al.[105] VRD 
RD

235 
225

24.2 
12.1

NA 41/NR 
29/69

PFS: Progression-free survival; OS: overall survival; CR: complete response.

ASCT to VRD in the GRIFFIN study and then compared to VRD alone[100,101]. Consolidation and 
maintenance therapy were also applied for up to 26 months of total therapy. MRD negativity was 
significantly superior in the Dara group (64% vs. 30%).

In the non-transplant eligible setting, great improvement with respect to the standard VMP or RD used 
until a few months ago[102-104] was brought recently by the addition of daratumumab. The MAIA study[12] 
compared Dara-Rd vs. Rd in MM patients not eligible for ASCT. At five years of follow-up, PFS has not 
been reached for the Dara-Rd group. CR was reached in 47% vs. 24% and MRD negativity was significantly 
higher (31% vs. 10%). The Alcyone trial[11] compared VMP vs. Dara-VMP. This study confirmed the 
superiority of the triplet with Dara, in both PFS and MRD negativity. Lastly, VRD was superior to RD in the 
SWOGS0777 trial in patients not proceeding to ASCT (PFS 41 months vs. 29 months)[105]. Daratumumab 
was tested as consolidation therapy in patients achieving a > VGPR after ASCT in the DART4MM 
study[106,107]. An interim analysis showed MRD negativity in 45% of the patients at six months of treatment. 
Besides the great progress achieved with the new drugs with regard to the depth of responses, MRD status 
should not guide clinical decisions.
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CONCLUSION
MM patients still relapse after a variable period of remission. Drug resistance is a major cause of MM 
relapse with both intrinsic and extrinsic mechanisms. Therapeutic targeting of the bone marrow 
microenvironment and its interaction with MM plasma cells seems to be an ideal approach for the future. 
Besides the need for novel, more efficacious drugs, better prognosticators are also needed. MRD measured 
by NGF or NGS has entered into the MM diagnostic armamentarium and is a great prognosticator for novel 
drugs in clinical trials. Sustained MRD negativity is likely to be a long-term remission pre-requisite. 
Research has to be done to better clarify its role in identifying minimal residual sub-clones resistant to drugs 
commonly utilized in MM. NGF seems promising in this biological view. The characterization of these 
clones should be pursued in future large MM trials.
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