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Abstract

Background: Arbuscular mycorrhizal fungi (AMF) are known for their beneficial effects on plants. However, there is
increasing evidence that some ruderal plants, including several agricultural weeds, respond negatively to AMF colonization.
Here, we investigated the effect of AMF on the growth of individual weed species and on weed-crop interactions.

Methodology/Principal Findings: First, under controlled glasshouse conditions, we screened growth responses of nine
weed species and three crops to a widespread AMF, Glomus intraradices. None of the weeds screened showed a significant
positive mycorrhizal growth response and four weed species were significantly reduced by the AMF (growth responses
between 222 and 235%). In a subsequent experiment, we selected three of the negatively responding weed species –
Echinochloa crus-galli, Setaria viridis and Solanum nigrum – and analyzed their responses to a combination of three AMF
(Glomus intraradices, Glomus mosseae and Glomus claroideum). Finally, we tested whether the presence of a crop (maize)
enhanced the suppressive effect of AMF on weeds. We found that the growth of the three selected weed species was also
reduced by a combination of AMF and that the presence of maize amplified the negative effect of AMF on the growth of E.
crus-galli.

Conclusions/Significance: Our results show that AMF can negatively influence the growth of some weed species indicating
that AMF have the potential to act as determinants of weed community structure. Furthermore, mycorrhizal weed growth
reductions can be amplified in the presence of a crop. Previous studies have shown that AMF provide a number of beneficial
ecosystem services. Taken together with our current results, the maintenance and promotion of AMF activity may thereby
contribute to sustainable management of agroecosystems. However, in order to further the practical and ecological
relevance of our findings, additional experiments should be performed under field conditions.
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Introduction

Weeds represent one of the most serious problems in crop

production, with a potential crop loss of up to 34% each year [1].

In conventional farming systems, actual losses to weeds have been

kept to considerably lower values mainly through intensive tillage

and herbicide application [2]. However, with the increasing

restrictions on chemicals use (e.g. European Union pesticide

review EU 91/414/EEC), the emergence of more ecologically

sound farming systems (e.g. Organic Farming) and the recognition

of the importance of weeds to maintain or enhance on-farm

biodiversity [3], focus has shifted to sustainable alternative

approaches to weed management. The use and manipulation of

organisms that selectively cause damage to weeds has long been

recognized as one of such alternatives [4,5] but not much attention

has been paid to soil biota despite its known influence on weed

biology and ecology [6]. Here, we focus on weed interactions with

a particular group of symbiotic soil fungi, the arbuscular

mycorrhizal fungi (AMF).

Arbuscular mycorrhizal (AM) symbiosis is an ancient association

formed between fungi from the phylum Glomeromycota and

almost two thirds of all land plants [7,8]. The AMF extraradical

mycelium acts as an extension of the host root system, taking up

nutrients (especially phosphate) which are delivered to the plant in

return for photosynthetically assimilated carbon [8,9]. Thus, it is

to be expected that a host plant will benefit directly from the AM

symbiosis through increased nutrient uptake, and, consequentially,

increased growth. However, this is not always the case; some

plants do not show any growth increase while others even seem to

be negatively affected by AMF colonization [10–12].

In agroecosystems, the effects of AMF on crops have been

thoroughly studied [8,13–16]. These studies show that AMF

mainly promote crop yield under nutrient deficient conditions,

although negative or no effects have also been reported [17–21].

Less is known about the interactions between AMF and

agricultural weeds. It has been suggested that negative effects of

AMF are more likely to occur in ruderal species colonizing early

successional environments where there is considerable disturbance
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and where AMF are sometimes absent [22–24]. Many weeds have

a ruderal lifestyle and colonize agroecosystems, which are often

heavily disturbed environments where AMF abundance and

diversity has been shown to be reduced by practices like

monocropping, tillage and fertilization [25–27]. Therefore, it is

plausible to suggest that AMF-weed interactions might not be of

the mutualistic type. Vatovec et al. [28] and Jordan & Huerd [29]

found variable weed responses to soil fungi, including negative

responses. More recently, Rinaudo et al. [30] showed that weeds

grown in community were suppressed by AMF and that this effect

was even stronger in the presence of a crop plant (sunflower).

However, it is still unclear how individual weed species respond to

AMF and how individual responses are affected by the presence of

a crop. The potential role of AMF in weed management has

already been discussed [31,32] but, in order to realize this

potential, a better understanding of the effects of AMF on

individual weed species is required.

In this study we analyzed individual mycorrhizal growth

responses of nine weeds (listed in Table 1) that are common in

many countries, including Switzerland [33], and recognized by

farmers as troublesome in wheat and/or maize cultures by

reducing yield and quality of grain (based on interviews with

farmer advisors at Agroscope Reckenholz-Tänikon Research

Station ART). We first tested whether the widespread AMF

species G. intraradices [34] reduces the growth of the selected weeds.

Under field conditions, though, usually more than one AMF

species coexist in the host roots [34–36] and plants can respond

differently to different AMF or to different levels of AMF diversity

[12,37,38]. For these reasons, we then tested whether the negative

effects of G. intraradices on weed growth are reproducible when the

weeds are co-inoculated with other AMF species. Finally, we tested

whether the negative effects of AMF on weeds are enhanced by the

presence of a crop plant.

Materials and Methods

Ethics Statement
No specific permits were required for the described studies. The

soil used was collected from a field at Agroscope Reckenholz-

Tänikon Research Station ART and the experiments were run in

glasshouses also at Agroscope Reckenholz-Tänikon Research

Station ART. Agroscope Reckenholz-Tänikon Research Station

ART belongs to the Swiss Federal Office for Agriculture and is not

privately owned or comprises protected area. The experiments did

not involve endangered or protected species.

Methods
In this paper we present two experiments. In the first experiment

we analyzed the individual growth responses of nine agricultural

weed species (Table 1) to the presence of the AMF G. intraradices. We

added three crop species - wheat, maize and red clover – to compare

their mycorrhizal growth responses to the ones of the weeds. Clover,

in particular, as most of the legumes, often shows a positive response

to AMF [11,39,40], hence constituting a positive control. In a

second experiment we tested the effect of a combination of AMF

species on weed growth responses and investigated AMF-weed-crop

interactions: out of the nine weeds, we selected three species

showing a negative growth response in the first experiment

(Echinochloa crus-galli, Setaria viridis and Solanum nigrum) to analyze

their responses in the presence of maize and to a combination of

AMF species (G. intraradices, G. claroideum and G. mosseae). These three

Glomus sp. are common and often co-occurring in Swiss arable soils

[25,36]. Since direct root competition for soil resources might

hinder interpretation of results, we physically separated roots of

maize from weed roots by dividing the pots with a 30 mm mesh

which still allows the AM hyphae to pass through.

Both experiments were performed under controlled conditions

in the glasshouse and thereby might differ from a field situation.

Nonetheless, we consider such experiments as an important

starting point for further research on the effects of AMF on weeds

in the field.

Plant material, fungal inoculum and soil substrate
Plant species used in both experiments are listed in Table 1.

Wheat (Triticum aestivum L. cv. Runal), maize (Zea mays L. cv.

Gavott) and red clover (Trifolium pratense L. cv. Milvus) seeds were

obtained from Agroscope Reckenholz-Tänikon Research Station

ART, Switzerland. Seeds of the weed species were obtained from

Herbiseed, UK (www.herbiseed.com). All seeds were surface

sterilized in 1.25% sodium hypochlorite for 10 min and

subsequently rinsed with dH2O.

Table 1. Plant species used in experiments 1 and 2 with the respective common name and family.

Exp Crop species Common name Family

1 Trifolium pratense L. red clover Fabaceae

1 Triticum aestivum L. common wheat Poaceae

1, 2 Zea mays L. maize, corn Poaceae

Weed species

1 Agropyron repens (L.) P. Beauv. quackgrass Poaceae

1 Alopecurus myosuroides Huds. slender meadow foxtail, blackgrass Poaceae

1 Apera spica-venti (L.) P. Beauv. loose silkybent Poaceae

1 Cirsium arvense (L.) Scop. canada thistle, creeping thistle Asteraceae

1 Digitaria sanguinalis (L.) Scop. hairy crabgrass, large crabgrass Poaceae

1, 2 Echinochloa crus-galli (L.) P. Beauv. barnyardgrass Poaceae

1 Poa annua L. annual bluegrass Poaceae

1, 2 Setaria viridis (L.) P. Beauv. green bristlegrass, green foxtail Poaceae

1, 2 Solanum nigrum L. black nightshade Solanaceae

doi:10.1371/journal.pone.0027825.t001
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In experiment 1, soil inoculum containing colonized roots and

spores of Glomus intraradices Schenck & Smith (BEG 21) [41] was

used. In experiment 2, a mixture of equal parts in weight of G.

intraradices (BEG 21), Glomus claroideum Schenck & Smith (HG 181)

and Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe (HG 505) soil

inocula constituted the AMF inoculum that was added to the pots.

The G. claroideum and G. mosseae isolates were kindly provided by

Hannes Gamper (University of Basel). These isolates originated

from single spores collected in 2002 from trap cultures in grassland

plots. Grassland plots were established in previously arable land in

the Swiss long-term Free-Air CO2 Enrichment (FACE) experi-

ment in Eschikon, Switzerland (see [42,43] for more details of the

site). All inocula were propagated as pure cultures on Plantago

lanceolata L. for 5 months, in pots filled with an autoclaved (99 min

at 121uC) mixture of quartz sand with 20% (v:v) field soil. Glomus

intraradices, G. claroideum and G. mosseae colonized 77%, 43% and

51% of the root length of P. lanceolata, respectively, as assessed

microscopically after staining with trypan blue (see details of the

method below). The non-mycorrhizal (NM) control inoculum

consisted of the same soil inocula as mentioned above, for

experiments 1 and 2, but sterilized by autoclaving (26 99 min at

121uC).

The soil substrate used for both experiments consisted of an

autoclaved (99 min at 121uC) mixture of 50% (v:v) field soil with

quartz sand. Field soil was collected from an organically managed

field plot at Agroscope Reckenholz-Tänikon Research Station

ART (Zurich, Switzerland) but at different time points for

experiments 1 and 2. The pH and primary plant-available

nutrient concentrations of the soil substrate for each experiment

are shown in the Supporting Information (Table S1). Note that

both soil substrates were P-rich.

Experiment 1: mycorrhizal growth responses of nine
weed species (screening)

This experiment was set up in a randomized factorial design

with nine weed and three crop plant species inoculated with G.

intraradices (AMF treatment) or with NM control inoculum. Each

treatment was replicated six times for a total of 144 pots

(experimental units). The position of the pots in the glasshouse

was randomized every 2 weeks.

Pots were filled with 0.6 L of autoclaved soil substrate with 7%

(v:v) G. intraradices soil inoculum or the same amount of sterilized

inoculum in NM control pots. All the pots received 5 mL of

inoculum washing (120 g of soil inoculum suspended in 1 L water

and filtered through Whatman filter paper) to correct for possible

differences in microbial communities.

Seeds were germinated in quartz sand for approximately 4–7

days (depending on the plant species). Germinated seeds were

transferred into pots and thinned afterwards, leaving two seedlings

per pot (except for maize and wheat where only one seedling was

left per pot).

Pots were watered three times a week with dH2O, and every pot

was adjusted weekly to 10% water content by weighing. Plants

were maintained in the glasshouse with constant temperature

(25uC) and constant lighting provided by 400 W high-pressure

sodium lights to a daylength of 14 h. Plants were harvested 8

weeks after planting.

Experiment 2: AMF-Weed-Crop interactions
This experiment was set up in a randomized factorial design with

three weed (E. crus-galli, S. viridis and S. nigrum) and one crop species

(maize) grown either alone (named ‘‘monocultures’’ hereafter), or

each of the weed species grown in combination with maize (named

‘‘mixtures’’ hereafter). Plants were inoculated with a mixture of G.

intraradices, G. mosseae and G. claroideum (AMF treatment) or with NM

control inoculum. Each treatment was replicated seven times for a

total of 98 pots (experimental units). The position of the pots in the

glasshouse was randomized every 2 weeks.

Pots were divided in two equal parts by 30 mm nylon mesh to

separate roots but still allowing the passage of AMF hyphae. Each

half received 1 L of autoclaved soil mixture with 7% (v:v) AMF soil

inoculum or the same amount of sterilized inoculum in NM

control pots. All the pots received 10 mL (5 mL each half) of

inoculum washing (300 g of the soil inoculum suspended in 2 L

water and filtered through Whatman filter paper).

For the mixtures, three seeds of maize were sown in one half of

the pot, while five seeds of the same weed species were sown in the

other half. For the monocultures, five weed seeds or three maize

seeds were sown in one half while the other half remained unsown.

Germinating seeds were thinned to one maize seedling or three

weed seedlings per half-pot.

Pots were watered three times a week with dH2O and every pot

was adjusted weekly to 13% water content by weighing. Plants

were maintained in the glasshouse and additional lighting was

provided by 400 W high-pressure sodium lights when natural light

levels reached ,250 W m22, to a daylength of 14 h. Tempera-

tures varied in the glasshouse between a minimum of 14uC and a

maximum of 22uC. Plants were harvested 12 weeks after planting.

Harvest and analysis
Aboveground plant parts were cut at the soil surface, oven dried

(80uC) and weighed to determine the aboveground biomass. Soil

was separated from plant roots and carefully washed. Roots were

then cut into 1 cm segments, mixed and divided in two subsamples

which were both weighed. One of the subsamples was oven dried

(80uC) and weighed while the other was taken to determine the

percentage of root length colonized by AMF. The belowground

biomass of the subsample taken for root colonization determina-

tion was calculated by multiplying its fresh weight with the dry to

fresh weight ratio of the oven-dried root subsample. Sum of the

belowground biomass of both subsamples and aboveground

biomass gave the total biomass for each plant species.

Mycorrhizal growth responses (MGR) were calculated using the

following formulas [11]:

if NMvAMF , then MGR %ð Þ~ 1{
NM

AMF

� �� �
:100

if NMwAMF , then MGR %ð Þ~ {1z
AMF

NM

� �� �
:100

Where NM is the mean total biomass of the NM controls for each

plant species, and AMF is the total biomass of that plant species in

individual pots. A positive mycorrhizal growth response means

that the plant species benefited from AMF inoculation in terms of

total biomass. A negative mycorrhizal growth response indicates

that the plant species was suppressed by AMF.

Root samples for measurement of AMF colonization were cleared

with 10% KOH and stained with trypan blue [44]. The percentage

of root length colonized by AMF and frequency of hyphae, vesicles

and arbuscules was estimated according to McGonigle et al. [45],

using at least 100 intersections per root sample.

Statistical analyses
Total biomass, root length colonized by AMF (total, vesicles and

arbuscules) and mycorrhizal growth responses were analyzed
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separately using generalized linear least squares with the gls

function from the nlme library [46] for R2.9.0 [47]. Whenever

there was heterogeneity in the variance structure between

treatments we used the varIdent() function to allow each treatment

to have a different variance. Student’s t-test was used to assess

differences between two sample means.

In the first experiment, root length colonized and mycorrhizal

growth responses were analyzed by a one-way analysis of variance

(ANOVA) with ‘‘plant species’’ (each of 12 plant species

investigated) as factor, while total biomass was analyzed by a

two-way ANOVA with ‘‘plant species’’ and ‘‘AMF’’ (AMF

treatment or NM control) as factors. During this experiment,

both Agropyron repens plants in one of the pots inoculated with NM

control inoculum died and this replicate was therefore eliminated

from the analysis.

In the second experiment, weeds and maize were analyzed

separately. For the weeds, root length colonized and mycorrhizal

growth responses were analyzed by a two-way ANOVA with

‘‘weed species’’ (each of the three weed species investigated) and

‘‘plant combination’’ (weed monocultures or mixtures with maize)

as factors. Total biomass was analyzed separately for monocultures

and mixtures by two-way ANOVA with ‘‘weed species’’ and

‘‘AMF’’ as factors. For the maize, root length colonized and

mycorrhizal growth responses were analyzed by a one-way

ANOVA with ‘‘plant combination’’ as a factor. As we first wanted

to assess the general effect of the presence of weeds on the root

length colonized and mycorrhizal growth responses of maize, we

treated ‘‘plant combination’’ as a factor with two levels (maize

monoculture and mixture with weeds). Then we treated ‘‘plant

combination’’ as a factor with four levels (maize monoculture,

maize in mixture with E. crus-galli, maize in mixture with S. viridis

and maize in mixture with S. nigrum) to assess the differences

between maize in monoculture and maize grown with each of the

weed species. Maize total biomass was also analyzed separately for

monoculture and mixtures by one-way ANOVA with ‘‘AMF’’ as

factor.

Several authors use the sequential Bonferroni adjustment to

correct for multiple testing [48] but there are also important flaws

in this method [49]. Therefore, we present (Table S2) P-values for

total biomass comparisons between the AMF treatment and NM

control for each of the 12 plant species tested in the first

experiment (where Bonferroni corrections would have affected the

significance of the results), enabling readers to perform a

Bonferroni adjustment if preferred. In the text and figures, we

present means with their standard errors (SEM). In the Supporting

Information (Tables S3, S4, S5, S6, S7, S8) we present the

complete results for the ANOVA tests performed.

Results

Experiment 1: mycorrhizal growth responses of nine
weed species (screening)

AMF colonization. No colonization was observed in NM

control plants for any of the species. When inoculated with G.

intraradices, the percentage of total root length colonized varied

greatly among species (F11,60 = 298.7, P,0.0001), ranging from

2% to 97% (Table 2). All the typical fungal structures – hyphae,

vesicles and arbuscules – were observed in each plant species at

least once. Plant species with a low to moderate percentage of root

length colonized (,50%) by G. intraradices included the weeds

Alopecurus myosuroides, Apera spica-venti, Poa annua and the crop clover.

The remaining six weeds and the crop species wheat and maize all

showed a percentage of root colonization higher than 50%.
Growth responses. The analysis of the total biomass showed

that the effect of AMF was highly dependent on the plant species

(significant ‘‘AMF’’6‘‘plant species’’ interaction F11,119 = 6.1,

P,0.0001). This translates to variable individual mycorrhizal

growth responses of the different species (F11,60 = 9.0, P,0.0001).

Indeed, Fig. 1 shows how mycorrhizal growth responses varied

among the 12 plant species from positive to negative, ranging on

average from 3865.4% in clover to 23567.2% in the weed E.

crus-galli. Four plants species, A. myosuroides, A. spica-venti, P. annua

and clover, showed positive mycorrhizal growth responses. These

were higher than 20% except in the case of A. myosuroides. The

other eight plant species showed negative responses to G.

intraradices, with six species showing a strong negative

mycorrhizal growth response, lower than 220%.

Table 2. Percentage of root length colonized by G. intraradices in experiment 1.

Root length colonized (%)

Crop species Total Vesicles Arbuscules

Maize 8662.1 4462.0 2363.3

Wheat 7563.1 1962.1 1662.0

Clover 4567.1 262.1 864.1

Weed species

Cirsium arvense 9762.0 3261.6 4964.2

Solanum nigrum 7961.9 2462.5 2163.1

Echinochloa crus-gali 7763.7 2062.1 2863.10

Digitaria sanguinalis 6664.9 1963.0 1461.9

Agropyron repens 6367.9 2063.0 1763.5

Setaria viridis 6364.5 2262.6 760.9

Poa annua 4363.9 761.4 560.7

Apera spica-venti 864.3 161.0 160.4

Alopecurus myosuroides 261.2 0.560.9 0.360.3

Values are means of six replicates 6 SEM.
doi:10.1371/journal.pone.0027825.t002
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Six plant species showed statistically significant differences in

total biomass when inoculated with G. intraradices, compared to the

NM controls (Table S2). The referred species were: clover (t = 2.5,

P = 0.016), maize (t = 23.7, P,0.001), Digitaria sanguinalis

(t = 23.5, P,0.001), E. crus-galli (t = 25.7, P,0.0001), S. viridis

(t = 24.3, P,0.0001) and S. nigrum (t = 22.5, P = 0.014). From

these species, clover was the only one showing a positive growth

response which means that it was also the only plant whose

biomass was significantly increased in the presence of the AMF G.

intraradices. All the other five species suffered a significant biomass

reduction.

Experiment 2: AMF-Weed-Crop interactions
AMF colonization. No colonization was observed in NM

control pots. Roots of all the four plant species (E. crus-galli, S.

nigrum, S. viridis and maize) were colonized by AMF, showing the

typical mycorrhizal structures, when inoculated with a mixture of

G. intraradices, G. claroideum and G. mosseae.

The presence of maize had a differential effect on the

percentage of root length colonized by AMF for the three weed

species (significant ‘‘plant combination’’6‘‘weed species’’ interac-

tion F2,36 = 12.4, P = 0.0001). The weed species S. viridis and S.

nigrum achieved comparably high levels of colonization in the

absence and in the presence of maize (Fig. 2B, C). On the

contrary, E. crus-galli showed a significant increase of total root

length colonized by AMF, from 3765.3% in monoculture to

7263.9% when grown in mixture with maize (t = 5.4, P,0.0001;

Fig. 2A).

In general, maize achieved a significantly higher AMF root

colonization when grown alone (8063.7%) than when coexisting

with weeds (6862.3%; F1,26 = 9.1, P,0.01; effect measured across

the three weed species). AMF root colonization of maize was

consistently reduced in coexistence with each of the weed species

(Fig. 2) but not significantly in the presence of E. crus-galli (t = 21.6,

P = 0.134; Fig. 2A).

Growth responses. The presence of maize had also a

differential effect on the mycorrhizal growth responses of the

three weed species (significant ‘‘plant combination’’6‘‘weed

species’’ interaction F2,36 = 15.4, P,0.0001).

Consistent with the previous experiment, in monocultures, the

three weed species all responded negatively to AMF (Fig. 3). These

mycorrhizal growth responses represented a significant reduction

of total biomass in the presence of AMF, compared to NM

controls, in the case of S. viridis (t = 27.7, P,0.0001; Fig. 3B) and

S. nigrum (t = 24.1, P,0.001; Fig. 3C) but not in E. crus-galli

(t = 21.8, P = 0.075, Fig. 3A).

In the presence of maize, the three weed species also responded

negatively to AMF (Fig. 3). The total biomass of each weed was

Figure 1. Mycorrhizal growth responses (%) of the nine weed and three crop species in experiment 1. Bars are means of six replicates 6
SEM. Bars in grey indicate species with a total root length colonized by G. intraradices ,50% while bars in black indicate species with total root length
colonized by G. intraradices .50%. Asterisks represent significant differences (P,0.05) in total biomass between the AMF treatment and NM control,
for each species.
doi:10.1371/journal.pone.0027825.g001
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Figure 2. Percentage of total root length colonized by AMF in experiment 2. Total root length colonized by AMF (%) is represented as the
sum of the percentages of root length colonized by arbuscules (black), vesicles (dark grey) and hyphae (light grey). Plant species were grown alone
(Mono) or in weed-maize combinations (Mix). Bars are means of seven replicates 6 SEM. Asterisks represent significant differences in total root
colonization between monocultures and mixtures, for each species. Root colonization of maize in monoculture repeated in each graph for better
visual interpretation.
doi:10.1371/journal.pone.0027825.g002

Impact of Arbuscular Mycorrhizas on Weed Growth
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Figure 3. Total biomass (g) of the three weed species and maize in experiment 2. Plant species were grown alone (Mono) or in weed-maize
combinations (Mix). Monocultures and mixtures of E. crus-galli and maize (A), S. viridis and maize (B) and S. nigrum and maize (C) were inoculated
with AMF (black bars) or with NM control inoculum (grey bars). Bars are means of seven replicates 6 SEM. Asterisks represent significant differences
in total biomass between the AMF treatment and NM control for each species, in monocultures or mixtures. Total biomass of maize in monoculture
repeated in each graph for better visual interpretation. Values in white inserted in the bars indicate the mycorrhizal growth response (%) of each
species, in monocultures or mixtures (mean of seven replicates 6 SEM).
doi:10.1371/journal.pone.0027825.g003
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significantly reduced in the AMF treatment as compared to the

NM controls (t = 27.1, P,0.0001 for S. viridis; t = 23.4, P,0.01

for S. nigrum and t = 26.9, P,0.0001 for E. crus-galli). However, the

weed E. crus-galli showed a significantly amplified negative

mycorrhizal growth response when coexisting with maize

(t = 25.3, P,0.0001; Fig. 3A), compared to the respective

monoculture, while S. viridis and S. nigrum responded similarly

(P.0.05), with or without maize (Fig. 3B, C).

Maize was insensitive to the presence of AMF when grown

alone (F1,12 = 0.08, P = 0.783) (Fig. 3), showing a mycorrhizal

growth response of 2264.0%. Similarly, when weeds were

present, there was no significant difference in maize biomass

between the AMF treatment and the NM controls (F1,40 = 0.01,

P = 0.923; effect measured across the three weed species), as

reflected by the neutral (0.362.3%) mycorrhizal growth response

of maize in mixtures. Nonetheless, the mycorrhizal growth

response of maize grown with E. crus-galli was significantly

different from that of the monoculture, increasing to 1063.7%

(t = 2.3, P,0.05), and represented a marginally significant increase

of maize total biomass in the presence of AMF, compared to the

NM controls (t = 2.1, P = 0.057; Fig. 3A).

Discussion

Our results show that (1) biomass of four of the investigated

weed species was significantly reduced by G. intraradices while none

of the weeds significantly benefited from inoculation with this

AMF, (2) growth of the weed species E. crus-galli, S. viridis and S.

nigrum was also reduced by a combination of AMF and (3) the

presence of a crop (maize) further amplified the negative effect of

AMF in one out of the three weed species tested.

Previous work had shown that some weeds responded negatively

to soil fungi [28,29] and that weeds grown together with a crop

can be suppressed by AMF [30]. In this study we show that

monocultures of some troublesome weeds in Switzerland and

Europe respond negatively to inoculation with the AMF species G.

intraradices. Moreover, the weed species E. crus-galli, S. viridis and S.

nigrum maintained negative mycorrhizal growth responses when

inoculated with a mixture of G. intraradices, G. mosseae and G.

claroideum. Earlier experiments have shown that ruderal plant

species respond negatively to AMF [23,24]. Most weeds originate

from ruderal habitats [50] and our results thus confirm that many

plants from this type of habitat do not establish a beneficial AM

symbiosis. However, although this may be generally true for

ruderal plants as a group, not all weed species responded in this

way in our study. For instance, two of the weeds tested in

experiment 1, P. annua and A. spica-venti, showed positive, albeit not

statistically significant, mycorrhizal growth responses above 20%.

Hence, it is not possible to generalize our results to all weeds. In

addition, plant responses to AMF depend on the identity of the

fungus [12,37], indicating that the composition and diversity of

AMF communities are likely to affect AMF-plant interactions.

Future experiments should test the effect of whole AMF

communities (with differential composition and diversity) on weed

growth and whether specific weed species are absent or scarcer in

fields with high abundance of AMF and/or with a specific

composition of AMF communities.

Clover significantly benefited in biomass production from

inoculation with the AMF species G. intraradices. On the other

hand, the two cereal crops showed a negative mycorrhizal growth

response that, in the case of maize, represented a significant

growth reduction in the presence of G. intraradices. This is not

unexpected as wheat and maize are often unresponsive or

negatively responsive to AMF colonization in pot experiments

where root development is space limited [18,51–53], while clover

is mostly positively responsive [11,40]. When inoculated with a

combination of AMF species, the biomass of maize in monoculture

was not anymore significantly reduced most probably due to

differences in AMF diversity and abiotic conditions between the

experiments. In the presence of weeds, maize was also overall

unresponsive while the coexisting weed species, in contrast, grew

significantly less when colonized by AMF. This suggests that maize

forms a more beneficial symbiosis with AMF than the tested weed

species as it has been observed for another crop, sunflower [30].

Moreover, the competitive interactions of the different plants for

soil nutrients, mediated by the AMF networks, might have resulted

in further deprivation of symbiotic benefits to the weeds as

compared to the maize plants. This latter hypothesis will need to

be further tested using isotopic tracers in the future.

The suppressive effect of a combination of AMF species on S.

viridis and S. nigrum was comparable between monocultures and

mixtures with maize. In contrast, the negative mycorrhizal growth

response of E. crus-galli was significantly amplified (by 40%), from

216% in monoculture to 256% when in coexistence with maize.

Interestingly, also only in E. crus-galli the percentage of root length

colonized by AMF differed between monocultures and mixtures,

increasing from 37% to 72% when maize was present. This

indicates dynamic shifts of symbiotic costs and benefits in a plant

community sharing a common mycorrhizal network. This

phenomenon may well be of interest to practical exploitation in

agriculture, but its mechanistic understanding remains rather

poor. The fact that the amplified negative mycorrhizal growth

response in E. crus-galli in the presence of maize was only observed

when accompanied by an increase in AMF root colonization

suggests that enhanced colonization levels might have been

responsible for the latter. Previously, only species with a

percentage of root length colonized by G. intraradices higher than

50% showed a negative mycorrhizal growth response (Fig. 1). On

the other hand, unlike in the work of Li et al. [53] and Grace et al.

[20], none of the plant species poorly colonized by AMF showed

significant growth depressions when grown in monocultures.

Therefore, our results suggest that high AMF root colonization

might be an important factor determining negative mycorrhizal

growth responses, at least under our experimental conditions. It is

important to note that in other studies performed with different

plant species and in different conditions, highly colonized plants

could still strongly benefit from AMF [38,41,54]. We are currently

investigating whether the negative effect of AMF on some weeds

depends on AMF abundance in their roots.

Often, mycorrhizal growth depressions are attributed to AMF

parasitism, where carbon (C) demand from the fungus exceeds the

benefits of increased nutrient uptake. In agreement with this

notion, Graham & Abbott [18] found lower sucrose concentra-

tions in the roots of negatively responsive wheat plants colonized

by aggressive AMF. Our own results seem to fit in this explanation

as growth depressions were associated with high root colonization

and hence potentially high fungal C costs. Moreover, the soil

substrate used was P-rich, and high nutrient availability generally

increases the likelihood of parasitic associations [10]. In other

situations though, when growth depressions occur in weakly

colonized plants [20,53], C drain might not be a satisfactory

explanation and alternative mechanisms have been suggested.

These include: reduction or suppression of the direct plant P

uptake pathway with no or insufficient compensation from the

AMF uptake pathway [53], allelopathic effects of fungal exudates

[23] and AMF induction of costly plant defense responses [55]. In

addition, AMF-mediated plant competition can cause growth

depressions in positively responsive plants in the absence of a
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competitor [39]. However, it cannot alone explain the negative

mycorrhizal growth responses of the weeds grown with maize as

their responses were also negative in the absence of the crop.

It is difficult to assess the impact of AMF on plants in the field

because AMF are usually already present in the soil and their

abundance cannot be easily manipulated without simultaneously

changing other factors or activity of other organisms [56]. For this

reason, our experiments were established under controlled

conditions in sterilized soil to which AMF were added (together

with the associated microbial communities). In this way, it was

possible to successfully manipulate the presence of AMF, in line

with previous experiments [57–60]. Although a recent study by

Pringle & Bever [61] has shown comparable effects of AMF on

plants grown in growth chambers and in an open field, it is

important to consider that our study design with sterilized soil,

absence of larger soil organisms such as nematodes and

earthworms, for instance, and manipulation of microcosms under

glasshouse conditions has limitations and theoretically does not

reflect conditions found in the field [56]. In agreement, we

observed that some of the weed species investigated in this study

seemed to be generally less colonized by AMF in the field (Table

S9) than in our glasshouse experiments. Therefore, despite some

experimental constraints, future work investigating AMF-weed

interactions should be performed in field conditions in order to

enhance agricultural/ecological realism.

The results obtained here certainly do not indicate a strong

potential for AMF as a weed biocontrol agent. Even if AMF

suppressed some of the investigated weed species, the weeds kept

producing some biomass and several species started to produce

flowers or set seeds. Moreover, as previously mentioned, not all the

weed species tested were negatively affected by AMF. The

differential weed responses to AMF indicate though that the

composition of weed communities in agricultural fields and the

relative abundances of positively and negatively responsive species

within these communities, can be altered by AMF, similar to what

has been observed in other studies with different plant species

[37,62]. Furthermore, our results are also relevant for ruderal

plant communities since several of the investigated weeds are

abundant in heavily disturbed sites.

The suppressive effect of AMF on the growth of some weeds,

especially in coexistence with crop plants, might be of particular

interest to more sustainable farming systems, where weed

management to tolerable levels rather than total weed eradication

is the prevailing strategy. Previous studies have shown that AMF

provide a number of beneficial ecosystem services [63,64]. If our

results can be confirmed in field conditions, they provide an

additional argument to promote AMF activity in agroecosystems.
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