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Abstract: A membrane contactor is a device that attains the transfer of gas/liquid or liquid/liquid
mass without dispersion of one phase within another. Membrane contactor modules generally
provide 30 times more surface area than can be achieved in traditional gas absorption towers and
500 times what can be obtained in liquid/liquid extraction columns. By contrast, membrane contactor
design has limitations, as the presence of the membrane adds additional resistance to mass transfer
compared with conventional solvent absorption systems. Increasing mass transfer in the gas and
solvent phase boundary layers is necessary to reduce additional resistance. This study aims to increase
the mass transfer in the gas phase layer without interfering with membrane structure by oscillating
the velocity of the feed gas. Therefore, an unsteady state mathematical model was improved to
consider feed gas oscillation. The model equation was solved using Comsol Multiphysics version 6.0.
The simulation results reveal that the maximum CO2 removal rate was about 30% without oscillation,
and at an oscillation frequency of 0.05 Hz, the CO2 percent removal was almost doubled.

Keywords: CFD simulation; membrane contactor; CO2 removal; oscillating flow; overall mass
transfer coefficient; potassium glycinate

1. Introduction

Power plants established on fossil fuels are the main source of CO2 emissions and
hence, a primary environmental and climate change concern [1]. Reducing CO2 emissions
from power plants through carbon capture is a reasonable solution. Various CO2 capture
techniques have been implemented, including cryogenic separation, solvent absorption,
and, lately, membrane solvent-gas contactors [2–4]. Membrane solvent-gas technology has
the advantages of gas separation and compact sizes with resealable CO2 absorption [5,6].
By contrast, membrane separation technologies introduce mass transfer resistances in the
liquid phase, gas phase, and membrane layer [7]. Membrane contactors are also used for
purposes other than absorption. Membrane contactors have been used to strip dissolved
gases other than CO2, such as methane from wastewater treatment anaerobic effluents,
natural gas, and flue gas [8,9]. The treatment method has been used in converting chemical
oxygen to biogas. As methane is the primary source of biogas, the membrane separation
process is utilized to liberate dissolved methane from anaerobic effluents [10]. Potassium
glycinate solvent is an effective solvent as an aqueous solution used to absorb CO2 inside
a solvent-gas hollow fiber membrane contactor [11,12]. Feed gas oscillating flow was
induced experimentally, and the mass transfer correlations were improved in terms of
Sherwood number. The study revealed that inducing mixing with the gas phase enhanced
the absorption rate in the membrane contactor [13]. Thin polymeric hollow fiber films are
another type of practical hollow fiber membrane for CO2 removal [14,15].

Computational fluid dynamics (CFD) and the design of experiments were performed
on a membrane distillation. Simulation results revealed that the membrane module’s length
strongly impacts the flux [16]. Mathematical modeling was performed for membrane
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contactors for CO2 absorption in different solvents. Various solvents were used in the
CO2 absorption process, such as 4-diethylamino-e-butanol (DEAB), diethanolamine (DEA),
and methyl diethanolamine (MDEA) in hollow fiber modules. DEAB absorption rate
was competitive with MEA aqueous solutions [17]. The gas velocity in membrane gas
absorption plays a significant role in improving separation performance, and the addition
of baffles improves SO2 absorption performance at the critical velocity [18].

The ammonia-based CO2 capturing process in a hollow fiber membrane contactor
shows better mass transfer performance in the dense membrane phase than conventional
gas/liquid absorption processes [19]. The membrane outer diameter has a substantial
impact on membrane separation performance. Membrane modules with fibers finer than
1.2 mm in diameter increased mass transfer resistance and decreased the membrane contac-
tor specific area per unit volume. A membrane with a 0.9 mm outer diameter or less was
more suitable [20]. A significant parametric study for different physical solvents revealed
the importance of physical solvents in absorption and regeneration processes compared
with the conventional packed column technology [21]. Developing gas-liquid membrane
conductors reduces capital cost and energy consumption of conventional CO2 absorbers
and separation columns [22–24]. The membrane material, type of solvent, configuration
of solvent and gas placed in the lumen or shell side, and the operating temperature plays
significant roles in conquering the technical challenges of membrane wetting and may
result in a decrease in the mass transfer coefficient [25,26]. Nanoparticles such as SiO2 and
Al2O3, along with MEA aqueous solution, help reduce the energy consumption of CO2
stripping. The highest mass transfer resistance is in the liquid phase, and increased liquid
velocity increases the desorption flux [27].

Based on the above findings, there are difficulties in increasing the mass transfer
coefficient based on the membrane structure, composition, and configuration. Accordingly,
the current work focused on modeling and simulating the gaseous solvent membrane
contactor based on the oscillating feed gas flow rate to increase CO2 removal without
affecting membrane structure and composition.

2. Mathematical Model

We built a two-dimensional unsteady state mathematical model to describe carbon
dioxide absorption from methane in potassium glycinate (PG) aqueous solution using a
hollow fiber membrane absorption process under the influence of an oscillating gas flow.
The model was solved in two scenarios; the first method is to validate the model predictions
in which the gas is fed into the tube lumen side (Figure 1a). In the second scenario, the
gas is fed to the shell side (Figure 1b). The model equations listed below describe the most
common scenario taking place in a membrane contactor. The potassium glycinate solvent
is fed to the lumen at z = L, and the gas stream enters the shell side currently at z = 0
(Figure 1b). Specific assumptions were considered, such as isothermal operation, laminar
flow, and Henry’s law, which is applicable at the liquid-gas interface and non-wetting mode
(gas-filled membrane pores).

2.1. Hollow Fiber Lumen (Solvent Flow)

Considering the case where gas is fed into the shell side and liquid solvent to the
lumen side, the unsteady steady-state gas transport in the lumen solvent side i is CO2, CH4.

∂Ci,t

∂t
= −Di,t

[
∂

∂r

(
1
r

∂Ci,t

∂r

)
+

∂2Ci,t

∂z2

]
+ ri,t + vz,t

∂Ci,t

∂z
(1)

where ci,t is the molar concentration of CO2 in the liquid solvent flowing in the membrane
tube side and Di is the diffusion coefficient of CO2 in the tube side.
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Figure 1. Schematic diagram and the membrane contactor model domain: (a) gas fed in the lumen 
side, (b) gas fed in the shell side. 
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Figure 1. Schematic diagram and the membrane contactor model domain: (a) gas fed in the lumen
side, (b) gas fed in the shell side.

The aqueous solution velocity (vz,t):

vz,t =
2Qt

nπr2
1

(
1 −

(
r
r1

)2
)

(2)

where Qt is the liquid solvent feed rate, n is the number of fibers, and r1 is the inner radius
of the tubes.

The boundary conditions:
at z = 0, CCO2,t = 0 (the CO2 concentration in the fresh solvent is zero);

at z = L,
∂CCO2,t

∂z = 0 (the convective flux is zero at the exit of the tube);

at r = 0,
∂CCO2,t

∂r = 0 (axial symmetry assumption);
at r = r1, CCO2,t = m CCO2,m (at the gas-liquid interface, the solubility of CO2 in PG).
The forward reaction rate is expressed as follows [28].

rCO2 = −2.42 × 1016 exp
(
−8544

T

)
exp

(
0.44CPg

)
CPgCCO2 (3)

where T(K) is the liquid temperature, Cpg, are the concentrations of PG, and CCO2 is the
concentration of CO2.

2.2. Membrane Skin

In this section, the model equations describe the unsteady steady-state gas diffusion
across the membrane walls where the convective flux is neglected, and only diffusion
is considered:

∂Ci,m

∂t
= −Di,m

[
∂

∂r

(
1
r

∂Ci,m

∂r

)
+

∂2Ci,m

∂z2

]
(4)
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The boundary conditions of the membrane skin:
at z = 0, ∂Ci ,m

∂z = 0 (at the inlet of the module, the membrane walls are solid, and
diffusion flux is assumed insignificant);

at z = L, ∂Ci ,m
∂z = 0 (at the exit of the membrane module, the membrane walls are solid,

and diffusion flux is ignored);
at r = r1, Di,m

∂Ci ,m
∂r = Di,t

∂Ci ,t
∂r (at the liquid-liquid interface, the fluxes are as-

sumed equal);
at r = r2, Ci,m = Ci,s (at the membrane-gas interface, the membrane resistance is

neglected, and the concentration of the gas in the shell side is assumed to be equal to that
in the membrane walls).

2.3. The Shell of the Module (Gas Stream)

The unsteady steady-state gas concentration in the shell side:

∂Ci,s

∂t
= −Di,s

[
∂

∂r

(
1
r

∂Ci,s

∂r

)
+

∂2Ci,s

∂z2

]
+ vz,s

(
∂Ci,s

∂z

)
(5)

Here, Ci,s is the molar concentration of the CO2 in the gas on the module shell side
and Dis is the diffusion coefficient of CO2 in the gas phase flowing on the shell side.

The perturbation of the gas velocity on the shell side [29] is modified to consider the
sine wave frequency of the gas velocity on the shell side (vsm), whereas vsm is the main gas
velocity on the shell side before reaching the oscillating device.

vz,s = vzm sin(ωt)

{
1 −

(
r2

r3

)2
}

(
r
r3

)2
−
(

r2
r3

)2
− 2ln

(
r
r2

)
3 +

(
r2
r3

)4
− 4
(

r2
r3

)2
+ 4 ln

(
r2
r3

)
 (6)

where ω is the frequency. The appropriate boundary conditions:
z = L, Ci,s = Ci,0 (the gas flows in the module counter currently; accordingly, the

concentration of CO2 in the gas equals the initial concentration);

z = 0, ∂2Ci ,sa
∂z2 = 0 (the gas leaves from the entrances of the module and hence, convec-

tive flux of the exit gas stream is negligible);
r = r2, Di,s

∂Ci ,sa
∂r = Di,ms

∂Ci ,ma
∂r (at the membrane skin-shell gas interface, the diffusive

flux is equal);
r = r3, ∂Ci ,sa

∂r = 0 (at the outer module radius, the diffusion flux is neglected).
The radius of the free surface (r3), is expressed as follows:

r3 = r2

(
1

1 − ϕ

)0.5
(7)

The module void fraction (ϕ):

ϕ =
R2 − n r2

2
R2 (8)

R, and r2n are the inner radius of the module and fiber outer radius, respectively. Qt
is the solvent circulation volumetric rate, and n is the number of fibers. Table 1 lists the
characteristics of the hollow fiber membrane module. The experimental conditions were at
atmospheric pressure and room temperature.



Polymers 2022, 14, 3783 5 of 12

Table 1. Membrane characteristics used in the mathematical model at room temperature and ambi-
ent pressure.

Number of fibers 20
Hollow fiber, inner radius, mm 0.21
Hollow fiber, outer radius, mm 0.55

Module inside radius, m 0.008
Module length, m 0.25

3. Mass Transfer Coefficient, KG

The total mass transfer coefficient, KG

(
kmol

m2.s.kPa

)
, was estimated based on the two-

phase theory as the ratio of the CO2 absorption flux (JCO2) to the solute concentration
gradient between gas and liquid [30]. CO2 absorption flux (JCO2 ) was calculated based on
the following expression [31]:

JCO2(mol/m2.s) =
Qg,in yCO2,in − Qg,out yCO2 ,out

A
(9)

where Qg is the gas molar flow rate (mol/s) (assuming inlet and exit flow rate are the
same; neglecting the effect of the amount of CO2 being absorbed on the exit gas flow rate),
yCO2,in and yCO2,out are the inlet and exit mole fractions of CO2, respectively, and A is the
gas—liquid interface contact area based on the internal diameter of the hollow fiber. The
total mass transfer coefficient is calculated as follows [32]:

KG (m/s) =
JCO2

Cg,Lm
(10)

where KG symbolizes the overall mass transfer coefficient in the gas phase and Cg,Lm is
the average log mean concentration of CO2 in the bulk gas phase of the outlet and inlet
concentration [33].

Cg,lm =
CCO2,in − CCO2,out

ln
(
CCO2,in/CCO2,out

) (11)

The exit gas concentration (CCO2,out) is determined using the boundary line integration
built using the software Comsol, version 6.0 [34].

4. Results and Discussion
4.1. Model Validation

The model predictions were validated using experimental data available from the
literature [35]. The model validation was performed by comparing the overall mass
transfer coefficient between the experimental data and simulation predictions. As per
the experimental data used in the model validation, the gas stream was fed to the lumen
side and the solvent to the shell side (Figure 1a). Figure 2 shows the effect of the feed
flow rate represented by the Reynolds number on the overall mass transfer coefficient
(KG). The results revealed that the mass transfer coefficient increased with an increased
Reynolds number, a common trend of the membrane contactors that is attributed to the
increase in gas velocity being associated with a decrease in the boundary layer thickness.
This replicates the presence of supplementary mixing in the gas phase boundary layer,
as the oscillating flow disrupts the thickness of the boundary layer and the flow regime
around this layer [36]. The model predictions revealed that increasing the gas velocity had
significant effects on the total gas mass transfer coefficients owing to the formation of a
thin film for mass transfer layer at higher speeds, which resulted in increases in the mass
transfer coefficient of the gas phase layer in spite of decreasing the residence time of the gas
inside the membrane module at high velocities. Increase in the velocity has insignificant
impact on the overall mass transfer coefficient [37].
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Figure 2. Model validation with the experimental data [35]. The gas phase is fed into the lumen side
and the solvent into the shell side (Figure 1a).

A comparison of the gas feed rate between the tube side and shell side revealed that
introducing the gas to the shell side of the membrane module enhanced the overall mass
transfer coefficient compared with gas being introduced into the tube side, attributed to
increases in surface contact area and gas residence time in the membrane module (Figure 3).
Accordingly, the rest of the results are based on gas flow fed into the shell side and liquid
solvent into the tube side (Figure 1b). This configuration matches most of the experimental
work performed in the literature, where liquids are introduced to the lumen side of the
membrane module for better contact area and residence time [8,33]. The increase in the
mass transfer coefficient when gas is fed into the shell side is attributed to better mixing
and the increase in residence time when the gas flow rate decreases. Our simulation is
based on the data available in Table 1, where the gas is introduced into the shell side.
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4.2. Gas Feed Perturbation

The gas feed velocity coefficient at different employed sinusoidal frequencies was
investigated. As absorption occurred in a gas-liquid membrane system that was stabilized
very rapidly, a time range of 60 s was investigated [35]. The frequency range was maintained
while increasing the speed gradually and reaching the maximum point in 60 s. For example,
at a frequency of 0.03, the gas speed gradually increased until it reached its maximum
value. Frequencies (other than 0.05) cause the velocity to reach the maximum speed more
than once in an oscillatory manner within the studied range. Under sinusoidal operating
conditions, the velocity of the feed gas at different frequencies is described in Figure 4. The
figure shows the effect of the feed gas sinusoidal frequency on CO2 concentration along
the shell side of the membrane unit. The lowest exit CO2 concentration profile was at a
frequency of 0.05 HZ. A smaller CO2 concentration in the exit stream indicates a higher
percentage removal of CO2 from the gas stream mixture [35].
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Figure 5 depicts the effect of sinewave frequencies on the percent removal of CO2
from the feed gas stream. The figure shows that the CO2 removal percentage was low
(0.03 percent), and the removal rate reached the maximum at a frequency of 0.05. Further
increase in the frequencies causes a decline in the percentage of CO2 removal, and that is
attributed to the sinusoidal number of cycles; at a frequency of 0.2, the velocity coefficient
increases within the investigated interval of 60 s around four times. The results indicated
that an oscillation frequency of 0.05 achieves the highest CO2 removal rate associated with
a reduction in the boundary layer thickness. This reflected the presence of supplementary
mixing in the gas phase boundary layer as the oscillating flow interrupted the boundary
layer thickness and flow regime around this layer [37].
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The increase in membrane efficiency caused by a frequency of 0.05 shows the best
removal rate as the velocity reaches a maximum and then decreases to give more room
for fresher gas and increase the driving force. Further increase in frequencies leads to a
greater number of cycles within the investigated period, decreasing the residence time and
not giving enough time for separation [35]. The reasonable frequency of 0.05 doubled the
percentage removal because the pressure wave generated by the oscillation of the feed gas
produced localized increases in the partial pressure driving force for mass transfer across
the membrane. The results were consistent with previous experimental observations [37].

Figure 6 shows the model predictions for the effect of a feed gas flow rate at a constant
sinusoidal frequency of 0.05 on CO2 concentrations and removal flux along the dimen-
sionless membrane length. The figure shows that, along the membrane dimensionless
length, the higher the gas flow rate, the lower the CO2 removal rate, and the higher the
CO2 removal flux. This is attributed to the fact that an increase in the gas flow rate usually
reduces the thickness of the gas boundary layer, which is supposed to enhance the mass
transfer rate and increase the CO2 removal ratio. At the same time, an increase in the
feed gas flow rate reduces the residence time, which reduces the rate of mass transfer, and
thus, reduces the rate of CO2 absorption along with the membrane gas-phase compartment
(membrane unit envelope side). Similar results were reported in previous studies [38–40].
This indicates that the residence time strongly impacts the CO2 removal rate. The increase
in the CO2 removal flux with the gas flow rate is credited to the increased amount of CO2
being absorbed with the gas flow rate. Accordingly, residence time strongly affects CO2
removal compared with gas mass transfer intensification.
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Figure 6. Effect of feed gas flow rate on CO2 concentrations and removal flux at the optimum
frequency of 0.05.

Figure 7 indicates the influence of the gas feed rate on the total mass transfer coeffi-
cients under the presence (0.05 sinusoidal frequency) and absence of feed oscillation. The
total mass transfer coefficient increased with the gas feed rate due to the amount of carbon
dioxide absorbed, and the thickness of the gas boundary layer decreased with the increase
in gas velocity. The total mass transfer coefficients increase with the increase in gas velocity
mentioned earlier. The results are within the range of those obtained experimentally. In
contrast, the effect of gas supply rate on the total mass transfer coefficient in the absence
of gas supply disturbance in the sine waveform is negligible. There is a significant in-
crease in KG compared with the non-oscillating mode of operation. The oscillating flow
disturbed the boundary layer thickness and flow regime around the layer, causing further
mixing in the gas phase boundary layer, and hence, enhancing the CO2 diffusion rate to
the absorbing solvent.
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Figure 8 compares the CO2 removal flux between the oscillatory and non-oscillatory
gas feed velocity represented by the gas feed rate. The figure shows that the removal
percentage increased slightly in the non-oscillating operating mode at a gas feed rate up to
a flow rate of 0.25 L/min. Beyond this, the change in the removal ratio with the gas feed
rate was insignificant. In contrast, under oscillating mode, a considerable increase in the
mass transfer coefficient was observed, indicating the success of the feed gas oscillation
mode of operation.
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Figure 8. Influence of feed perturbation on the CO2 removal flux under the effect of oscillatory and
non-oscillatory gas feed rate. The oscillating mode was at the optimum frequency of 0.05 HZ.

5. Conclusions

A two-dimensional (2D) transient mathematical model, assumed to operate under
non-wetted mode conditions, was upgraded by considering feed gas oscillation conditions.
The feed gas enters the membrane module at different sinusoidal waves with different
frequencies. The model was utilized to study the absorption of CO2 from natural gas into a
PG aqueous solution within a hollow fiber membrane unit. In addition to the perturbation
of the inlet gas velocity, the model considers the radial and axial diffusion within the hollow
fiber lumen, membrane walls, and module shell sides. The predicted results revealed that
the feed gas oscillation frequency and flow rate of both gas and liquid streams influenced
CO2 removal efficiency. We found significant improvement in the sinusoidal frequency of
the feed gas stream. The optimum frequency that doubled the percentage removal of CO2
was around 0.05. The percentage removal increased from almost 30% at no oscillation to
around 70% at a frequency of 0.05. The model predictions were in good agreement with
experimental data.
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