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Abstract: Vineyard soils normally do not provide the amount of nitrogen (N) necessary for red wine
production. Traditionally, the N concentration in leaves guides the N fertilization of vineyards to
reach high grape yields and chemical composition under the ceteris paribus assumption. Moreover, the
carryover effects of nutrients and carbohydrates stored by perennials such as grapevines are neglected.
Where a well-documented database is assembled, machine learning (ML) methods can account for
key site-specific features and carryover effects, impacting the performance of grapevines. The aim of
this study was to predict, using ML tools, N management from local features to reach high berry yield
and quality in ‘Alicante Bouschet’ vineyards. The 5-year (2015–2019) fertilizer trial comprised six N
doses (0–20–40–60–80–100 kg N ha−1) and three regimes of irrigation. Model features included N
dosage, climatic indices, foliar N application, and stem diameter of the preceding season, all of which
were indices of the carryover effects. Accuracy of ML models was the highest with a yield cutoff of 14
t ha−1 and a total anthocyanin content (TAC) of 3900 mg L−1. Regression models were more accurate
for total soluble solids (TSS), total titratable acidity (TTA), pH, TAC, and total phenolic content (TPC)
in the marketable grape yield. The tissue N ranges differed between high marketable yield and
TAC, indicating a trade-off about 24 g N kg−1 in the diagnostic leaf. The N dosage predicted varied
from 0 to 40 kg N ha−1 depending on target variable, this was calculated from local features and
carryover effects but excluded climatic indices. The dataset can increase in size and diversity with the
collaboration of growers, which can help to cross over the numerous combinations of features found
in vineyards. This research contributes to the rational use of N fertilizers, but with the guarantee that
obtaining high productivity must be with adequate composition.

Keywords: N fertilization; model-building; anthocyanin; total titratable acidity; vineyard management

1. Introduction

In wine production, the grape composition is of utmost importance [1]. ‘Alicante
Bouschet’ is being used as a deep purple wine to embolden red wines [2]. The nitrogen (N)
fertilization can impact the biochemical composition of ‘Alicante Bouschet’ [3,4]. Excess N
also increases plant vigor, the length of the growing period, the canopy density, and the
grape sensitivity to fungal diseases as well as several plant traits [1,5]. Excess N reduces
light penetration throughout the canopy, alters the grape biochemical composition, and
contributes to N loss by leaching or runoff [3,6–10]. Excess N has been shown to decrease
the total soluble solids (TSS) and anthocyanin content (TAC) and increase the total titratable
acidity (TTA) [11,12]. The N deficiency reduces vine growth, berry set, berry yield, grape N

Plants 2022, 11, 2419. https://doi.org/10.3390/plants11182419 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants11182419
https://doi.org/10.3390/plants11182419
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-3174-9992
https://orcid.org/0000-0001-7223-5544
https://orcid.org/0000-0001-9892-4057
https://orcid.org/0000-0002-4883-4835
https://orcid.org/0000-0002-6903-9961
https://orcid.org/0000-0002-5622-6303
https://doi.org/10.3390/plants11182419
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants11182419?type=check_update&version=1


Plants 2022, 11, 2419 2 of 14

content, and bud fruitfulness (number of cluster primordia per bud or number of clusters
per shoot).

The internal N status of grapevine is traditionally diagnosed by leaf or petiole analysis
at flowering or veraison [13,14]. However, the interpretation of the foliar N status is based
on the calibration of tissue N concentration against the grape yield or composition in the
current year. The vineyard manager must contemplate the results of tissue analysis at
full bloom or veraison, which occurs after the annual fertilization is done at bud break.
This happens more than one month after full bloom and more than three months post
veraison, to predict final the yield. Moreover, the yield to reach high-quality grape differs
from the yield potential of the vineyard [1]. Woody species such as grapevine may also
show little response to nutrients added during the current production season [15–18]
due to the carryover effects of nutrients and carbohydrates stored during the preceding
seasons [1,7,15,19,20].

A long-term experiment is required to associate the nutrient status of perennials
measured at time t to predict the stand performance at time t + 1 and adjust the fertilization
in time [21–23]. There is a great challenge to decipher the complexity of site-specific feature
combinations between geology, geomorphology, soil, climate, micro-biology, vine biology,
and human interventions to make accurate predictions of the grape yield and quality and
meet the production targets [7,24,25].

Machine learning (ML) models can integrate the carryover effects and other features
to make predictions [26]. Predictive machine learning (ML) models have been applied with
success in several domains such as marketing, banking, customer relationship management,
engineering, clinical medicine, and various other areas of science to classify data, select
key variables, and support decisions [27]. Compared to classical statistical models, data
mining can address much more key problem-relevant patterns in the analysis [27]. The
knowledge reported in sets of large and diversified data can be processed by ML tools
and communicated to domain experts. In comparison, a classical approach of agricul-
tural experimentation and data integration assumes, in a much easier fashion, that all
factors but the ones being varied are equal or at optimum levels under the ceteris paribus
assumption [28,29].

The application of ML to the analysis of agricultural data is still in its infancy. Machine
learning has been used in different domains of plant science such as plant breeding [30],
in vitro culture [31], stress phenotyping [32], stress physiology [33], plant system biol-
ogy [34], plant identification [35], and pathogen identification [36]. Machine learning has
also been used to build models of crop response to fertilization [26,37,38] and to derive
nutrient standards for several fruit crops accounting or not for the carryover effects [39].
The ML models in plant nutrition often exceeded 0.8. To our knowledge, neither nutrient
standards nor predictive models have been developed to account for the carryover effects
of nutrients or carbohydrates in grapevine. We hypothesized that (1) nitrogen fertilization
impacts foliar composition in grapevines as well as berry yield and quality, and (2) nutrients
and carbohydrates stored in grapevine impacts the grape yield and quality in the following
season. The aim of this study was to predict N management from local features to reach a
high berry yield and quality in ‘Alicante Bouschet’ vineyards.

2. Results
2.1. Climatic Conditions and Grape Quality Indices

The season 2018/2019 was the rainiest, 2016/2017 the coldest, and 2015/2016 the
warmest (Table 1). The number of chilling hours (7 ◦C) was the lowest in 2015/2016 (290 h).
As shown by the Shannon distribution index (SDI), rainfall was more evenly distributed in
2015/2016, 2017/2018, and 2018/2019 than in other years, but was adjusted to crop need
by irrigation. The berry yield varied between 3 and 34 t ha−1 during the experimental
period. Foliar N concentrations and stem diameter also varied widely at full bloom and
veraison (Table 2).
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Table 1. The median values of the synthetic climatic indices and target variables during the five
seasons.

Year 2014/2015 2015/2016 2016/2017 2017/2018 2018/2019

Climatic indices

Precipitations (mm) 722 896 592 794 1328
Shannon distribution index 0.635 0.590 0.629 0.594 0.585

Cumulated degree-days (10 ◦C) 1602 1927 1481 1816 1833
Number of chilling hours (7 ◦C) 386 290 626 342 577

Frost events (number) 27 15 37 15 22
Hail events (number) 2 3 0 1 4
Clear weather (days) 182 174 184 151 207

Table 2. The minimum, median, and maximum values of the features and target variables during the
five experimental seasons.

Variable Unit Minimum Median Maximum

Foliar N at full bloom g N kg−1 15.4 26.4 33.0
Foliar N at veraison g N kg−1 15.8 23.6 56.0

Stem diameter at full bloom cm 1.9 3.9 5.5
Stem diameter at veraison cm 2.2 4.2 25.0

Grape yield t ha−1 2.74 16.39 33.75
Must total titratable acidity (TTA) g tartric acid (100 g)−1 0.35 0.63 2.31

Must pH unitless 2.80 3.61 4.30
Must total soluble solids (TSS) ◦Brix 11.2 14.5 18.3

Must total phenolics content (TPC) mg L−1 2470 5879 17,197
Skin total anthocyanin content (TAC) mg L−1 1634 3448 6312

2.2. Machine Learning Model-Building and Foliar N

Features showing the highest RRelief scores on target climate, N doses, foliar N, stem
diameter, and application mode after accounting for the carryover effects. Other features
showed a negligible impact. The R2 value of the regression ML models depends on the
target variable (Table 3). All of the quality attributes showed high R2 values. We selected
TAC as the quality attribute because ‘Alicante Bouschet’ was used to embolden red wines.
The classification accuracy (CA) was highest using 14 t ha−1 as the cutoff yield (CA = 0.860)
and 3900 mg L−1 as the TAC cutoff content (CA = 0.936).

Table 3. The foliar N ranges at full bloom and veraison using the yield and TAC as the target variables
and comparison with the ranges reported in the literature.

Target Method
Minimum Centroid Maximum

Source
g N kg−1

At full bloom

TAC Quartiles 19 21 24 This study—current-year TAC
TAC Quartiles 21 23 25 This study—next-year TAC
Yield Quartiles 24 27 29 This study—current-year yield
Yield Quartiles 26 27 28 This study—next-year yield
Yield Range 24 27 30 [40]
Yield Range 24 - 30 [41]

- Range 16 - 24 [42]
- Range 30 - 35 [43]

At veraison

TAC Quartiles 22 24 26 This study—current-year TAC
TAC Quartiles 20 22 25 This study—next-year TAC
Yield Quartiles 22 24 25 This study—current-year yield
Yield Quartiles 21 23 24 This study—next-year yield

- Range 20 - 23 [1]
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Nitrogen concentration quartiles at full bloom and veraison were compared to the
literature data (Table 4). The N concentration quartiles accounting or not for the carryover
effects differed slightly from the N concentration ranges reported in the literature. The
N concentration quartile ranges were higher for berry yield than TAC. The tradeoff at
a centroid N concentration of 24 g N kg−1 between high berry productivity and high
TAC depended slightly on the carryover effects (current-year vs. preceding-year) The N
concentration centroids for TAC were 21–23 g N kg−1 at full bloom and 22–24 g N kg−1 at
veraison. The N concentration centroids at high berry yield were 27 g N kg−1 at full bloom
and 23–24 g N kg−1 at veraison. While the centroid foliar N differed to reach a high berry
yield and quality at full bloom, it was similar at veraison, typically occurring 3–4 weeks
before harvest. The N concentration ranges reported in the literature also varied more
widely at full bloom that at veraison.

Table 4. The most accurate machine learning models to predict the target variables.

Target
Adaboost Gradient Boosting Random Forest

RMSE R2 RMSE R2 RMSE R2

Yield 3.5 0.645 3.6 0.633 3.5 0.654
TSS 0.52 0.819 0.56 0.786 0.58 0.768
TAC 260 0.943 351 0.895 398 0.866
TPC 940 0.903 1094 0.869 1142 0.857
TTA 0.062 0.864 0.062 0.867 0.061 0.869
pH 0.050 0.947 0.056 0.933 0.056 0.933

2.3. Predictions

The goal of the predictive model was to relate the grape yield and quality to the N
dosage in order to assist the growers’ decision on the most appropriate N application rate in
the following year. The most accurate ML model depended on the target variable (Table 4).
Except for the must pH, the predictions generally paralleled the actual target variables
despite occasional differences in the data distribution (Figure 1), likely attributable to the
‘year’ effect. Must pH was poorly predicted. Indeed, 2019 was the rainiest. The N dosage
to reach high berry yield and quality varied between 0 and 40 kg N ha−1.
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Figure 1. Prediction of the yield (a), total soluble solids (TSS) (b), total anthocyanin concentration
(TAC) (c), total polyphenol concentration (TPC) (d), total acidity concentration (TTA) (e), and pH
(f) of ‘Alicante Bouschet’ in 2019 for the model calibration for the 2015–2018 period.

3. Discussion
3.1. Machine Learning Model-Building

The present plant nutrition diagnostic methods based on statistical relationships
between the nutrient status and crop performance are contemplative. Indeed, the results
of the current-year tissue analysis arrived after the application of N fertilization and
without any hint on the most probable final grape yield or must composition. In this paper,
ML models were elaborated to predict the grape yield and composition. The selected
learners processed combinations of key features. This differed from conventional research
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that addressed every feature separately under the ceteris paribus assumption across other
features [29].

To produce high-quality wine and meet the market demand, managers of vineyard
agroecosystems should be able to test and rank key features impacting the grapevine yield
and quality to predict the nutrient requirements and stand performance in advance to
adjust the fertilization programs. The prediction should integrate the carryover effects
from nutrient and carbohydrate storage in perennials. Tissue analysis, stem diameter,
and berry yield measured during the preceding season(s) were used as indicators for
stored nutrients and carbohydrates to adjust the fertilization program well in advance of
fertilizer applications.

Easily documented features were ranked for their impacts on berry yield and com-
position, then combined to predict the N dosage and we set apart the best performing
specimens. The key features of high-performing specimens form the basis to assist deci-
sions based on the documented facts. The manager can compare the features of a farm
specimen to those of high-performing specimens to focus on the ones that appear to be
limiting. Hence, ML models allow for the testing of new hypotheses on the way to improve
stand performance.

Machine learning models are well-suited to unravel the complexity of agroecosys-
tems [44]. Machine learning models can integrate the scientific knowledge from the lit-
erature as well as observable data to make predictions [45]. Cross-validation, as used
in this paper, is a means to initiate model-building. Because the model must be further
validated on new data, a larger and more diversified dataset could be acquired across
several grapevine agroecosystems to avoid model overfitting and enhance model reliability.

3.2. Tissue Test at High Grape Yield and Quality Levels

Sandy soils showing low organic matter content usually do not provide enough
mineral N to meet the demand of grapevines, especially for high-yield cultivars such as
‘Alicante Bouschet’ [3,4]. Tissue N concentration of ‘Alicante Bouschet’ was thus impacted
by N fertilization. As anticipated, there was a tradeoff of foliar N concentrations to achieve
high productivity or color intensity experimental results in the ‘Alicante Bouschet’ vineyard
(Table 3). The foliar N range at full bloom resembled that of [42] for TAC, and those of [41]
as well as [40] for grape yield. The N concentration quartiles at veraison for grape yield
and TAC were comparable and resembled the N ranges presented by [1] for Europe.

Only foliar N was analyzed during this experimentation. Tissue N content measured
at full bloom or veraison informs on N metabolism until veraison [1]. It is currently
diagnosed against critical nutrient concentration levels or ranges [46,47]. However, nutrient
ranges may lead to the wrong diagnosis as it is biased by pairwise and high-level nutrient
interactions [37,48]. The interactive interpretation of the foliar N status of grapevine was
first illustrated by the NPK ternary diagram or using pairwise N/P and N/K ratios [1].
While nutrient interactions are generally expressed as pairwise ratios [49], high-order
interactions can also be reported as isometric log ratios or balances [50]. Centered log ratios
can integrate pairwise ratios [48,50] and provide nutrient standards for grapevine [40].
Such an approach should also be addressed in future research for the carryover effects.

Similar to grapevine, cranberry has a vine growing pattern. The diagnostic tissue is
composed of vegetative and reproductive runners, hence leaves and woody stems [51]
that can store carbohydrates and nutrients. Such a sampling procedure can allow for
integrating the yearly and carryover effects to make predictions on the N requirements [26].
Tissue nutrient diagnosis of grapevine can thus be made more accurate by including the
carryover effects as well as visual indicators such as cultivar, production objectives, plant
morphology, vigor, canopy density, floral induction, bud fruitfulness, and yield potential [1].
Although not analyzed in the present study, grape N content at harvest could also provide
an integrative view of plant N status across the entire season including ripening.
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3.3. Grape Yield and Quality

Nitrogen applications can increase TTA in the must because of an increase in the vigor
of organs such as the leaves and branches of the year, reducing the incidence of sunlight on
clusters, which delays the degradation of acids in berries [13]. The increase in must pH can
also occur because larger leaf areas increase the transpiration and absorption of water and
nutrients such as K, which accumulates in berries [52,53]. The K accumulation takes place
because of the intense cell division and elongation in the tissues of the berries. The K in the
berry can promote stoichiometric exchange with protons (H+), forming K bitartrate, which
increases the must pH. The malic:tartaric acid ratio may also decrease, further contributing
to the pH increase [52].

The maintenance or increase of must TSS, even at high production levels, may occur
in grapevines because of a larger number of clusters with either fewer berries or berries of
smaller diameter that contain higher concentrations of sugars [3,54]. However, some com-
pounds in the must such as TPC can be diluted, where berries show a larger diameter [55,56].
This is not always the case for TAC, especially for cultivars such as ‘Alicante Bouschet’,
which shows a high TAC in berry, must, and wine [57]. Normally, grapevines grown in
sandy soils and fertilized with N absorb a proportion of the added N that promotes plant
vigor and decreases the activity of enzymes regulating the synthesis of compounds such as
TAC due to reduced sunlight [58,59].

3.4. Carryover Effects of Fertilization

Roots can store ≈75% of the N reserves of grapevines that has been acquired from the
leaves before leaf fall [1] as a small percentage of added N is recovered by the grapevine
within the season of fertilizer application [42,60]. Indeed, urea–N transferred preferentially
to the leaves contributed 3–8% to the nutrition of plant organs [42], indicating low N-use
efficiency in the year of fertilizer application and high potential for carryover effects. The
rye green manure left on the soil surface (2 t dry matter ha−1 providing 82 kg N ha−1)
was also shown to contribute less than 2% to biomass N in the annual and perennial grape
organs 28 weeks following fertilizer application [60]. Previous N fertilization can contribute
later to N supply through microbial N transformation into organic N, followed by the
mineralization of organic N [8,61].

Considering the carryover effects, the predictive model indicated that a grape yield of
15 t ha−1 could be obtained in 2019 across N doses. The state guidelines for testing soils low
in organic matter content (<2.5%) would be 50 kg N ha−1 for this 8-year-old vineyard [14].
Considering foliar N at full bloom (1.7–2.0%), the state recommendation would be more
restrictive at 20 kg N ha−1 for the yield level of 15 t ha−1. Despite similarities with the
state guidelines, the suggested N dosage in the range from 0 to 40 kg N ha−1 differentially
impacted the grape quality indices, providing more information on the potential effect of
various N fertilization scenarios on the grape quality.

The decision to skip or adjust N fertilization in the following year must consider
not only the responses to yearly growth-impacting factors, but also the carryover effects.
However, 2019 was much rainier compared to other years, and the effect of high rainfall on
the grape yield and quality was not within the range of the 2015–2018 calibrated model.
Additional experimental and observational data are thus necessary to cross over more
climatic indices and compare the predictions of grape yield and quality under various
climatic conditions. This is even more necessary in vineyards located in countries where
climate change is more intense.

3.5. Building a Dataset for Nutrient Management of Vineyards

Fertilization is needed to sustain grapevine internal nutrient reserves and yields [62,63].
This requires conducting fertilizer experiments under various sets of uncontrollable and
controllable factors. In Brazil, grapevine productivity has been tested in response to N
fertilization and irrigation [3,4,13,42,60], P fertilization [64], and K fertilization [65–67] to
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develop state fertilizer recommendations. Nevertheless, growers must also rely on their
own experience and expertise to manage the fertilization of vineyards.

The different pathways of the carryover effects detected by the soil and tissue tests
show the importance of selecting successful combinations of uncontrollable and controllable
factors to achieve high grape yield and quality. This requires documenting numerous
combinations of large and diversified experimental and observational (growers) datasets.
In addition to experimental data such as those collected in this research and in other
experiments [42,60,62], the observational data of the growers must be collected reliably and
ethically [40] to support information-based models of artificial intelligence. The datasets
should be built uniformly to facilitate knowledge exchange among stakeholders with the
objective of improving local fertilizer recommendations from well-documented successful
combinations of local features.

4. Materials and Methods
4.1. Experimental Setup

A 5-year study was conducted during the 2015–2019 period in an ‘Alicante Bouschet’
vineyard established in 2011 in Santana do Livramento (30◦48′31′′ S; 55◦22′33′′ W), Rio
Grande do Sul State, Brazil. The soil was classified as Typic Hapludalf [68]. The climate
of the region is humid subtropical (Cfa according to Köppen climate classification) [69],
characterized by mild temperatures and regular precipitations throughout the year. Me-
teorological data were obtained from the National Institute of Meteorology [70]. Land
topography was slightly undulating.

At the beginning of the experiment, the 0–20 cm soil layer showed the following
characteristics [71]: pH of 5.5 in water (1:1 ratio), 25 mg P kg−1, and 72 mg K kg−1 extracted
using the Mehlich-1 method, and 0.0 cmolc Al kg−1, 1.99 cmolc Ca kg−1, and 0.92 cmolc Mg
kg−1 extracted using the KCl 1 N method. The soil contained 822 g sand kg−1, 115 g silt
kg−1, 63 g clay kg−1, and 11 g Walkley–Black organic matter kg−1. Prior to the experiment,
the vineyard received 45 kg P2O5 ha−1 as triple superphosphate (41% P2O5) and 37.5 kg
K2O ha−1 as KCl (60% K2O) [71].

Cultivar ‘Alicante Bouschet’ was grafted on the ‘Paulsen 1103′ rootstock. The training
system was ‘espalier’ with double string on the first thread. Winter pruning retained a
comparable number of buds across treatments. The prunings were exported out of the field
as a preventive measure against plant diseases. The spacing was 2.8 m between rows and
1.2 m between plants, for a plant density of 2976 plants ha−1. The vegetation between rows
was composed of Paspalum notatum, Paspalum plicatulum, and Lolium multiflorum mowed
mechanically at a 10 cm height up to five times during the annual cycle of the grapevine.
The vegetation on the planting rows was desiccated annually using herbicides. The dates
of events in the experimental vineyard are reported in Table 5.

Table 5. The dates (month/day/year) of events in the experimental vineyard.

Event 2014/2015 2015/2016 2016/2017 2017/2018 2018/2019

Bud break 09/10/2014 08/28/2015 09/10/2016 08/30/2017 08/29/2018
First N application 10/12/2014 09/20/2015 09/30/2016 10/16/2017 10/092018

Leaf sampling at full bloom 11/22/2014 11/15/2015 11/06/2016 11/28/2017 11/21/2018
Leaf sampling at veraison 01/18/2015 01/22/2016 01/09/2017 01/24/2018 n.a.

Grape harvest 02/12/2015 02/24/2016 02/16/2017 02/20/2018 02/21/2019

n.a.—not analyzed.

4.2. Treatments

The N treatments were 0, 20, 40, 60, 80, and 100 kg N ha−1, surface-applied as urea 14 d
after budbreak. There were three methods of N application: (1) conventional—granular
form without mechanical incorporation and without irrigation within the crown projection;
(2) conventional-irrigated—granular form without mechanical incorporation within the



Plants 2022, 11, 2419 9 of 14

crown projection and drip irrigation for 30 min d−1 after fertilizer application; and (3) ferti-
gation for 30 min d−1—liquid form without mechanical incorporation within the crown
projection. More details on the treatments are provided in [4]. There were five replications
per treatment. With six N treatments, three N application methods, five replications, and
five years of experimentation, there were 450 observations in total.

4.3. Foliar and Fruit Analysis

Six fully expanded leaves opposite to the cluster in the middle third of the annual
growth [14] were collected at full bloom from October to November and at veraison (fruit
ripening), where berries changed color from December to January [1,72,73]. The stem
diameter was also measured at full bloom and veraison. Leaves were washed gently with
distilled water, oven-dried at 65 ◦C, and ground to less than 2 mm. Leaves were acid-
digested [71]. Total N was quantified by semi-micro Kjeldahl. Berries were harvested in
February and the yield was reported as kg ha−1. Total soluble solids (TSS), total titratable
acidity (TTA), pH, total anthocyanin content (TAC), and total phenolic content (TPC) were
analyzed as described in [4].

4.4. Meteorological Data

Meteorological data were obtained from the closest weather station [70]. Climatic
indices were synthesized as growing degree-days [19], number of chilling hours, rainfall
indices, days of clear weather, and the occurrence of catastrophic events (hail, frost, . . . ).
While mild temperatures and moderate rainfall promote N uptake by the grapevine,
cool, cloudy, and rainy seasons may reduce N uptake and photosynthesis and lead to N
leaching [1].

The optimum temperature for grapevine ranges between 10 and 35 ◦C [1]. The number
of cumulated growing degree days (GDD) was computed using Model 1 in [74], as shown
in Equation (1):

GDD =
t

∑
i=1

(Tmin + Tmax)/2− Tbase, (1)

where i→ t represents the length of the period; (Tmin + Tmax)/2 is the daily mean temper-
ature averaged between minimum Tmin and maximum (Tmax) temperatures; and Tbase is
the base temperature set at 10 ◦C [75]. Cumulated days and degree-days were computed
from bud break to harvest. The GDD indicated that the region was classified as Region
III according to the Winkler index. The Shannon diversity index (SDI) is a measure of
rainfall distribution [76]. The SDI was computed between bud break and harvest as shown
in Equation (2):

SDI = −
[

t

∑
i=1

ln(pi)

]
/ln(t) (2)

where pi is the fraction of daily rainfall relative to total rainfall between bud break and
harvest and t is the number of days between bud break and harvest; SDI→ 1 implies a
trend toward rainfall evenness (i.e., equal amounts of rainfall in each day); SDI→ 0 implies
a trend toward complete unevenness where all rain would fall in a single day.

4.5. Statistical Analysis

Machine learning (ML) models were those available in the Orange data mining free-
ware vs. 3.29.3. Models were tested in regression (continuous variable) or classification
(categorial variable) modes. Categories were set about a specified target for yield or must
composition. Models were trained using stratified cross-validation (k = 10). The features
and target variables are presented in Table 6.
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Table 6. A list of the variables during the experimental years.

Variable 2015 2016 2017 2018 2019

Features

N dose X X X X X
Fertilization method X X X X X
Foliar N at flowering X X X X X
Foliar N at veraison X X X X X

Stem diameter at flowering X X X X X
Stem diameter at veraison X X X X X

Total rainfall X X X X X
Cumulated degree-days X X X X X

Target variables

Grape yield indices

Yield per plant X X X X X
Yield per hectare‡ X X X X X

Grape quality indices

Must acidity X X X X X
Must pH X X X X X

Must total soluble solids X X X X X
Must total phenolics X X X X X

Skin total anthocyanin content X X X X X

Relief results are commonly viewed as selection methods for feature subsets to guide
the machine learning models [77]. Relief family algorithms are robust and noise tolerant
ranking estimators to detect conditional dependencies between attributes. We used gain
ratio (classification mode and RRelief (regression mode) as Relief estimators.

The confusion matrix sets apart true negative (quadrant for high predicted and high
actual targets), true positive (low predicted and low actual targets), false negative (high
predicted and low actual targets), and false positive specimens (low predicted and high
actual targets). The nutrient standards for the target variable were computed as quartiles
among the true negative specimens.

The current-year ML model was elaborated in classification mode to compute the
statistics for the current-year relationships between target variable and features as follows
in Equation (3) [40]:

Targett = f (Featurest), (3)

The carryover ML regression model included previous foliar N at full bloom or verai-
son, berry yield, biochemical components, and stem diameter at veraison. The carryover
model was elaborated in Equation (4):

Targett+1 = f (Featurest), (4)

The carryover dataset comprised the first four years of observations (2015–2018). The
predicted response models used the last year of observations (2019). As a result, there
were three datasets to run ML models: current-year (450 observations in total), carryover
(360 observations in 2015–2018), and prediction (180 observations in 2019).

5. Conclusions

This study addressed the N management of ‘Alicante Boschet’ as a blending ingredient
for red wines. Predictive ML models estimated the variables from key features. The model
could adjust the N dosage to the internal plant reserves of nutrients and carbohydrates.
Using foliar N concentration required to reach a high grape yield and quality of ‘Alicante
Bouschet’, local (0–40 kg N ha−1) and state recommendations (20 or 50 kg N ha−1) may
differ depending on the selected target variable. The dataset must be enhanced to include
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many more and diversified experimental and observational data to cross over the numerous
combinations of features impacting the target variables and to make accurate predictions
across various climatic and soil conditions. This research contributes to the rational use
of N fertilizers to reach high productivity and adequate must composition under site-
specific conditions.

Author Contributions: Conceptualization, L.É.P., G.B. and C.A.C.; Methodology, M.S.d.S.K., L.O.S.,
A.T., G.N.d.S. and R.O.S.d.S.; Formal analysis, L.É.P. and G.B.; Investigation, L.É.P., M.S.d.S.K.,
L.O.S., A.T. and R.O.S.d.S.; Writing—original draft preparation, L.É.P., M.S.d.S.K., L.O.S. and A.T.;
Writing—review and editing, G.B., C.A.C., P.A.A.F., D.E.R., T.L.T. and L.É.P.; Supervision, G.B.; Project
administration, G.B. and C.A.C.; Funding acquisition, G.B. and T.L.T. All authors have read and
agreed to the published version of the manuscript.

Funding: The present work was carried out with the support of CNPq, the National Council for
Scientific and Technological Development—Brazil (Conselho Nacional de Desenvolvimento Científico
e Tecnológico—CNPq—201975/2020-3; 302023/2019-4; 423772/2018-0), and the Fundação de Amparo
à Pesquisa do Estado do Rio Grande do Sul (FAPERGS—21/2551-0000602-1).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during the current study are available from the
corresponding author on reasonable request.

Acknowledgments: We thank all of the staff and students responsible for the maintenance and
data collection from this field trial. We would like to thank the CNPq, the National Council for
Scientific and Technological Development—Brazil (Conselho Nacional de Desenvolvimento Científico
e Tecnológico—CNPq), and the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
(FAPERGS) for the scholarships granted.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Verdenal, T.; Dienes-Nagy, Á.; Spangenberg, J.E.; Zufferey, V.; Spring, J.L.; Viret, O.; Marin-Carbonne, J.; van Leeuwen, C.

Understanding and Managing Nitrogen Nutrition in Grapevine: A Review. OENO One 2021, 55, 1–43. [CrossRef]
2. Puckette, M.; Hammack, J. Wine Folly: The Master Guide, 1st ed.; Avery: New York, NY, USA, 2018; p. 317
3. Stefanello, L.O.; Schwalbert, R.; Schwalbert, R.A.; De Conti, L.; de Souza Kulmann, M.S.; Garlet, L.P.; Silveira, M.L.R.; Sautter,

C.K.; de Melo, G.W.B.; Rozane, D.E.; et al. Nitrogen Supply Method Affects Growth, Yield and Must Composition of Young
Grape Vines (Vitis vinifera L. Cv Alicante Bouschet) in Southern Brazil. Sci. Hortic. 2020, 261, 108910. [CrossRef]

4. Stefanello, L.O.; Schwalbert, R.; Schwalbert, R.A.; Drescher, G.L.; De Conti, L.; Pott, L.P.; Tassinari, A.; de Souza Kulmann, M.S.;
da Silva, I.C.B.; Brunetto, G. Ideal Nitrogen Concentration in Leaves for the Production of High-Quality Grapes Cv ‘Alicante
Bouschet’ (Vitis vinifera L.) Subjected to Modes of Application and Nitrogen Doses. Eur. J. Agron. 2021, 123, 126200. [CrossRef]

5. Martinez, D.A.; Loening, U.E.; Graham, M.C.; Gathorne-Hardy, A. When the Medicine Feeds the Problem; Do Nitrogen Fertilisers
and Pesticides Enhance the Nutritional Quality of Crops for Their Pests and Pathogens? Front. Sustain. Food Syst. 2021, 5, 234.
[CrossRef]

6. Hilbert, G.; Soyer, J.P.; Molot, C.; Giraudon, J.; Milin, M.; Gaudillere, J.P. Effects of Nitrogen Supply on Must Quality and
Anthocyanin Accumulation in Berries of Cv. Merlot. VITIS J. Grapevine Res. 2003, 42, 69–76. [CrossRef]

7. Baeza, P.; Junquera, P.; Peiro, E.; Lissarrague, J.R.; Uriarte, D.; Vilanova, M. Effects of Vine Water Status on Yield Components,
Vegetative Response and Must and Wine Composition. Adv. Grape Wine Biotechnol. 2019, 1, 73–94. [CrossRef]

8. Toselli, M.; Baldi, E.; Cavani, L.; Mazzon, M.; Quartieri, M.; Sorrenti, G.; Marzadori, C. Soil-Plant Nitrogen Pools in Nectarine
Orchard in Response to Long-Term Compost Application. Sci. Total Environ. 2019, 671, 10–18. [CrossRef]

9. Cui, M.; Zeng, L.; Qin, W.; Feng, J. Measures for Reducing Nitrate Leaching in Orchards:A Review. Environ. Pollut. 2020, 263,
114553. [CrossRef]

10. Mia, M.J.; Monaci, E.; Murri, G.; Massetani, F.; Facchi, J.; Neri, D. Soil Nitrogen and Weed Biodiversity: An Assessment under
Two Orchard Floor Management Practices in a Nitrogen Vulnerable Zone in Italy. Horticulturae 2020, 6, 96. [CrossRef]

11. Tarara, J.M.; Lee, J.; Spayd, S.E.; Scagel, C.F. Berry Temperature and Solar Radiation Alter Acylation, Proportion, and Concentration
of Anthocyanin in Merlot Grapes. Am. J. Enol. Vitic. 2008, 59, 235–247.

12. Kelly, M.; Gill Giese, W.; Velasco-Cruz, C.; Lawson, L.; Ma, S.; Wright, M.; Zoecklein, B. Effect of Foliar Nitrogen and Sulfur on
Petit Manseng (Vitis vinifera L.) Grape Composition. J. Wine Res. 2017, 28, 165–180. [CrossRef]

http://doi.org/10.20870/oeno-one.2021.55.1.3866
http://doi.org/10.1016/j.scienta.2019.108910
http://doi.org/10.1016/j.eja.2020.126200
http://doi.org/10.3389/fsufs.2021.701310
http://doi.org/10.5073/VITIS.2003.42.69-76
http://doi.org/10.5772/INTECHOPEN.87042
http://doi.org/10.1016/j.scitotenv.2019.03.241
http://doi.org/10.1016/j.envpol.2020.114553
http://doi.org/10.3390/horticulturae6040096
http://doi.org/10.1080/09571264.2017.1324774


Plants 2022, 11, 2419 12 of 14

13. Brunetto, G.; Ceretta, C.A.; Kaminski, J.; de Melo, G.W.; Girotto, E.; Trentin, E.E.; Lourenzi, C.R.; Vieira, R.C.B.; Gatiboni, L.C.
Produção e Composição Química Da Uva de Videiras Cabernet Sauvignon Submetidas à Adubação Nitrogenada. Ciência Rural
2009, 39, 2035–2041. [CrossRef]

14. CQFS-RS/SC. Fertilization and Liming Manual for the States of Rio Grande Do Sul and Santa Catarina, 11th ed.; SBCS—Núcleo
Regional Sul/UFRGS: Porto Alegre, Brazil, 2016; Volume 11.

15. Tagliavini, M.; Millard, P.; Quartieri, M.; Marangoni, B. Timing of Nitrogen Uptake Affects Winter Storage and Spring Remobilisa-
tion of Nitrogen in Nectarine (Prunus persica var. nectarina). Trees. Plant Soil 1999, 211, 149–153. [CrossRef]

16. Taylor, B.K.; van den Ende, B. The Nitrogen Nutrition of the Peach Tree. IV. Storage and Mobilization of Nitrogen in Mature Trees.
Aust. J. Agric. Res. 1969, 20, 869–881. [CrossRef]

17. Tromp, J. Nutrient Reserves in Roots of Fruit Trees, in Particular Carbohydrates and Nitrogen. Plant Soil 1983, 71, 401–413.
[CrossRef]

18. Cruz, A.F.; de Almeida, G.M.; Salvador Wadt, P.G.; de Carvalho Pires, M.; Gerosa Ramos, M.L. Seasonal Variation of Plant Mineral
Nutrition in Fruit Trees. Braz. Arch. Biol. Technol. 2019, 62, 19180340. [CrossRef]

19. Grossman, Y.L.; Dejong, T.M. Maximum Vegetative Growth Potential and Seasonal Patterns of Resource Dynamics during Peach
Growth. Ann. Bot. 1995, 76, 473–482. [CrossRef]

20. Rubio Ames, Z.; Brecht, J.K.; Olmstead, M.A. Nitrogen Fertilization Rates in a Subtropical Peach Orchard: Effects on Tree Vigor
and Fruit Quality. J. Sci. Food Agric. 2020, 100, 527–539. [CrossRef]

21. Nava, G.; Júnior, C.R.; Parent, L.É.; Brunetto, G.; Moura-Bueno, J.M.; Navroski, R.; Benati, J.A.; Barreto, C.F. Esmeralda Peach
(Prunus persica) Fruit Yield and Quality Response to Nitrogen Fertilization. Plants 2022, 11, 352. [CrossRef]

22. Badra, A.; Parent, L.E. Early Nutrient Diagnosis of Kentucky Bluegrass Combining Machine Learning and Compositional
Methods. J. Plant Sci. 2022.

23. Parent, L.E.; Natale, W.; Brunetto, G. Machine Learning, Compositional and Fractal Models to Diagnose Soil Quality and Plant
Nutrition. In Soil Science—Emerging Technologies, Global Perspectives and Applications; IntechOpen: London, UK, 2021. [CrossRef]

24. Parent, L.E.; Jamaly, R.; Atucha, A.; JeanneParent, E.; Workmaster, B.A.; Ziadi, N.; Parent, S.É. Current and Next-Year Cranberry
Yields Predicted from Local Features and Carryover Effects. PLoS ONE 2021, 16, e0250575. [CrossRef]

25. van Leeuwen, C.; Friant, P.; Choné, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of Climate, Soil, and Cultivar on
Terroir. Am. J. Enol. Vitic. 2004, 55, 207–217.

26. Parent, S.É.; Lafond, J.; Paré, M.C.; Parent, L.E.; Ziadi, N. Conditioning Machine Learning Models to Adjust Lowbush Blueberry
Crop Management to the Local Agroecosystem. Plants 2020, 9, 1401. [CrossRef]

27. Bellazzi, R.; Zupan, B. Predictive Data Mining in Clinical Medicine: Current Issues and Guidelines. Int. J. Med. Inform. 2008, 77,
81–97. [CrossRef]

28. Nelson, L.A.; Anderson, R.L. Partitioning of Soil Test—Crop Response Probability. Soil Test. Correl. Interpret. Anal. Results 1977,
29, 19–38. [CrossRef]

29. de Wit, C.T. Resource Use Efficiency in Agriculture. Agric. Syst. 1992, 40, 125–151. [CrossRef]
30. van Dijk, A.D.J.; Kootstra, G.; Kruijer, W.; de Ridder, D. Machine Learning in Plant Science and Plant Breeding. iScience 2021, 24,

101890. [CrossRef]
31. Hesami, M.; Jones, A.M.P. Application of Artificial Intelligence Models and Optimization Algorithms in Plant Cell and Tissue

Culture. Appl. Microbiol. Biotechnol. 2020, 104, 9449–9485. [CrossRef]
32. Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine Learning for High-Throughput Stress Phenotyping in

Plants. Trends Plant Sci. 2016, 21, 110–124. [CrossRef]
33. Jafari, M.; Shahsavar, A. The Application of Artificial Neural Networks in Modeling and Predicting the Effects of Melatonin on

Morphological Responses of Citrus to Drought Stress. PLoS ONE 2020, 15, e0240427. [CrossRef]
34. Hesami, M.; Alizadeh, M.; Jones, A.M.P.; Torkamaneh, D. Machine Learning: Its Challenges and Opportunities in Plant System

Biology. Appl. Microbiol. Biotechnol. 2022, 106, 3507–3530. [CrossRef]
35. Grinblat, G.L.; Uzal, L.C.; Larese, M.G.; Granitto, P.M. Deep Learning for Plant Identification Using Vein Morphological Patterns.

Comput. Electron. Agric. 2016, 127, 418–424. [CrossRef]
36. Mishra, B.; Kumar, N.; Mukhtar, M.S. Systems Biology and Machine Learning in Plant–Pathogen Interactions. Mol. Plant-Microbe

Interact. 2019, 32, 45–55. [CrossRef]
37. Nowaki, R.H.; Parent, S.É.; Cecilio Filho, A.B.; Rozane, D.E.; Meneses, N.B.; Silva, J.A.D.S.D.; Natale, W.; Parent, L.E. Phosphorus

Over-Fertilization and Nutrient Misbalance of Irrigated Tomato Crops in Brazil. Front. Plant Sci. 2017, 8, 825. [CrossRef]
38. Hahn, L.; Parent, L.-É.; Paviani, A.C.; Feltrim, A.L.; Wamser, A.F.; Rozane, D.E.; Ender, M.M.; Grando, D.L.; Moura-Bueno, J.M.;

Brunetto, G. Garlic (Allium sativum) Feature-Specific Nutrient Dosage Based on Using Machine Learning Models. PLoS ONE 2022,
17, e0268516. [CrossRef]

39. Parent, S.É.; Barlow, P.; Parent, L.E. Nutrient Balances of New Zealand Kiwifruit (Actinidia deliciosa Cv. Hayward) at High Yield
Level. Commun. Soil Sci. Plant Anal. 2015, 46, 256–271. [CrossRef]

40. Rozane, D.E.; Vahl de Paula, B.; Wellington Bastos de Melo, G.; Haitzmann dos Santos, E.M.; Trentin, E.; Marchezan, C.; Stefanello
da Silva, L.O.; Tassinari, A.; Dotto, L.; Nunes de Oliveira, F.; et al. Compositional Nutrient Diagnosis (CND) Applied to
Grapevines Grown in Subtropical Climate Region. Horticulturae 2020, 6, 56. [CrossRef]

http://doi.org/10.1590/S0103-84782009005000162
http://doi.org/10.1023/A:1004698422522
http://doi.org/10.1071/AR9690869
http://doi.org/10.1007/BF02182682
http://doi.org/10.1590/1678-4324-2019180340
http://doi.org/10.1006/anbo.1995.1122
http://doi.org/10.1002/jsfa.10031
http://doi.org/10.3390/plants11030352
http://doi.org/10.5772/INTECHOPEN.98896
http://doi.org/10.1371/journal.pone.0250575
http://doi.org/10.3390/plants9101401
http://doi.org/10.1016/j.ijmedinf.2006.11.006
http://doi.org/10.2134/ASASPECPUB29.C2
http://doi.org/10.1016/0308-521X(92)90018-J
http://doi.org/10.1016/j.isci.2020.101890
http://doi.org/10.1007/s00253-020-10888-2
http://doi.org/10.1016/j.tplants.2015.10.015
http://doi.org/10.1371/journal.pone.0240427
http://doi.org/10.1007/s00253-022-11963-6
http://doi.org/10.1016/j.compag.2016.07.003
http://doi.org/10.1094/MPMI-08-18-0221-FI
http://doi.org/10.3389/fpls.2017.00825
http://doi.org/10.1371/journal.pone.0268516
http://doi.org/10.1080/00103624.2014.989031
http://doi.org/10.3390/horticulturae6030056


Plants 2022, 11, 2419 13 of 14

41. Melo, G.W.; Rozane, D.E.; Brunetto, G. Identification of the Critical Levels, Sufficiency Ranges and Potential Response to Nutrient
Fertilization in Vineyards by the DRIS Method. Acta Hortic. 2018, 1217, 423–429. [CrossRef]

42. Brunetto, G.; Ceretta, C.A.; de Melo, G.W.B.; Girotto, E.; Ferreira, P.A.A.; Lourenzi, C.R.; da Rosa Couto, R.; Tassinaria, A.;
Hammerschmitt, R.K.; da Silva, L.O.S.; et al. Contribution of Nitrogen from Urea Applied at Different Rates and Times on
Grapevine Nutrition. Sci. Hortic. 2016, 207, 1–6. [CrossRef]

43. Raij, B.V.; Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. Recomendações de Adubação e Calagem Para o Estado de São Paulo; Instituto
Agronómico & Fundação IAC: São Paulo, Brazil, 1996; Volume 1, pp. 1–285.

44. Betemps, D.L.; de Paula, B.V.; Parent, S.É.; Galarça, S.P.; Mayer, N.A.; Marodin, G.A.B.; Rozane, D.E.; Natale, W.; Melo, G.W.B.;
Parent, L.E.; et al. Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional
Methods. Agronomy 2020, 10, 900. [CrossRef]

45. Demšar, J.; Zupan, B. Hands-on Training about Overfitting. PLoS Comput. Biol. 2021, 17, e1008671. [CrossRef] [PubMed]
46. Vanni Ferreira, L.; Picolotto, L.; Aldrighi Gonçalves, M.; Valgas, R.A.; Corrêa Antunes, L.E. Fertilizer Maintenance Nitrogen in

Vegetative Development and Production of Peach. Braz. J. Agric. Rev. Agric. 2018, 93, 80. [CrossRef]
47. Farias Barreto, C.; Correa Antunes, L.E.; Ferreira, L.V.; Navroski, R.; Benati, J.A.; Nava, G. Nitrogen Fertilization and Genotypes

of Peaches in High-Density. Rev. Bras. Frutic. 2020, 42, 1–9. [CrossRef]
48. de Paula, B.V.; Arruda, W.S.; Parent, L.E.; de Araujo, E.F.; Brunetto, G. Nutrient Diagnosis of Eucalyptus at the Factor-Specific

Level Using Machine Learning and Compositional Methods. Plants 2020, 9, 1049. [CrossRef] [PubMed]
49. Castamann, A.; Alexandre, P.; Escosteguy, V.; Berres, D.; Zanella, S. Diagnosis and Recommendation Integrated System (Dris) of

Soybean Seed Oil Content. Rev. Bras. Ciência Solo 2012, 36, 1820–1827. [CrossRef]
50. de Lima Neto, A.J.; de Deus, J.A.L.; Filho, V.A.R.; Natale, W.; Parent, L.E. Nutrient Diagnosis of Fertigated “Prata” and “Cavendish”

Banana (Musa spp.) at Plot-Scale. Plants 2020, 9, 1467. [CrossRef]
51. Davenport, J.R.; Provost, J. Cranberry Tissue Nutrient Levels as Impacted by Three Levels of Nitrogen Fertilizer and Their

Relationship to Fruit Yield and Quality. J. Plant Nutr. 1994, 17, 1625–1634. [CrossRef]
52. Mpelasoka, B.S.; Schachtman, D.P.; Treeby, M.T.; Thomas, M.R. A Review of Potassium Nutrition in Grapevines with Special

Emphasis on Berry Accumulation. Aust. J. Grape Wine Res. 2003, 9, 154–168. [CrossRef]
53. Ciotta, M.N.; Ceretta, C.A.; da Silva, L.O.S.; Ferreira, P.A.A.; Sautter, C.K.; da Rosa Couto, R.; Brunetto, G. Grape Yield, and

Must Compounds of “Cabernet Sauvignon” Grapevine in Sandy Soil with Potassium Contents Increasing. Ciência Rural 2016, 46,
1376–1383. [CrossRef]

54. Alatzas, A.; Theocharis, S.; Miliordos, D.E.; Leontaridou, K.; Kanellis, A.K.; Kotseridis, Y.; Hatzopoulos, P.; Koundouras, S. The
Effect of Water Deficit on Two Greek Vitis vinifera L. Cultivars: Physiology, Grape Composition and Gene Expression during
Berry Development. Plants 2021, 10, 1947. [CrossRef]

55. Tian, B.; Harrison, R.; Morton, J.; Jaspers, M. Changes in Pathogenesis-Related Proteins and Phenolics in Vitis vinifera L. Cv.
‘Sauvignon Blanc’ Grape Skin and Pulp during Ripening. Sci. Hortic. 2019, 243, 78–83. [CrossRef]

56. Manso-Martínez, C.; Sáenz-Navajas, M.P.; Menéndez, C.M.; Hernández, M.M. Wine Quality and Berry Size: A Case Study with
Tempranillo Tinto Progenies. J. Sci. Food Agric. 2021, 101, 3952–3960. [CrossRef] [PubMed]

57. Castellarin, S.D.; Pfeiffer, A.; Sivilotti, P.; Degan, M.; Peterlunger, E.; di Gaspero, G. Transcriptional regulation of anthocyanin
biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ. (Print) 2007, 30, 1381–1399. [CrossRef]

58. Pérez-Álvarez, E.P.; Martínez-Vidaurre, J.M.; Martín, I.; García-Escudero, E.; Peregrina, F. Relationships among Soil Nitrate
Nitrogen and Nitrogen Nutritional Status, Yield Components, and Must Quality in Semi-Arid Vineyards from Rioja AOC, Spain.
Commun. Soil Sci. Plant Anal. 2013, 44, 232–242. [CrossRef]

59. Cheng, G.; He, Y.N.; Yue, T.X.; Wang, J.; Zhang, Z.W. Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon
Berry Growth and Anthocyanin Profiles. Molecules 2014, 19, 13683–13703. [CrossRef]

60. Brunetto, G.; Ceretta, C.A.; Melo, G.W.B.; Kaminski, J.; Trentin, G.; Girotto, E.; Ferreira, P.A.A.; Miotto, A.; Trivelin, P.C.O.
Contribution of Nitrogen from Agricultural Residues of Rye to ‘Niagara Rosada’ Grape Nutrition. Sci. Hortic. 2014, 169, 66–70.
[CrossRef]

61. Brunetto, G.; Stefanello, L.O.S.; Ceretta, C.A.; Couto, R.R.; Ferreira, P.A.A.; Ambrosini, V.G.; Borghezan, M.; Comin, J.J.; de Melo,
G.W.; Baldi, E.; et al. Nitrogen Fertilization of ‘Chardonnay’ Grapevines: Yield, Must Composition and Their Relationship with
Temperature and Rainfall. Acta Hortic. 2018, 1228, 451–456. [CrossRef]

62. Lorensini, F.; Ceretta, C.A.; de Conti, L.; Ferreira, P.A.A.; Dantas, M.K.L.; Brunetto, G. Nitrogen Fertilization in the Growth Phase
of “Chardonnay” and “Pinot Noir” Vines and Nitrogen Forms in Sandy Soil of the Pampa Biome. Rev. Ceres 2017, 64, 433–440.
[CrossRef]

63. Barreto, C.F.; Ferreira, L.V.; Navroski, R.; Frasson, S.F.; Cantillano, R.F.F.; Vizzotto, M. Adubação Nitrogenada Em Pessegueiros
(Prunus Persica (L.) Batsch): Influência Sobre a Qualidade Pós-Colheita. Rev. Iberoam. Tecnol. Postcosecha 2017, 18, 93–99.

64. Ciotta, M.N.; Ceretta, C.A.; Ferreira, P.A.; Stefanello, L.; Couto, R.D.R.; Tassianri, A.; Marchezan, C.; Girotto, E.; Conti, L.D.;
Lourenzi, C.R.; et al. Phosphorus Fertilization for Young Grapevines of Chardonnay and Pinot Noir in Sandy Soil. Idesia (Arica)
2018, 36, 27–34. [CrossRef]

65. Ciotta, M.N. Adubação Potássica Em Videiras Jovens e Em Produção No Sul Do Brasil. Ph.D. Thesis, Universidade Federal de
Santa Maria, Santa Maria, Brazil, 2014.

http://doi.org/10.17660/ActaHortic.2018.1217.55
http://doi.org/10.1016/j.scienta.2016.05.002
http://doi.org/10.3390/agronomy10060900
http://doi.org/10.1371/journal.pcbi.1008671
http://www.ncbi.nlm.nih.gov/pubmed/33661899
http://doi.org/10.37856/bja.v93i1.3270
http://doi.org/10.1590/0100-29452020629
http://doi.org/10.3390/plants9081049
http://www.ncbi.nlm.nih.gov/pubmed/32824810
http://doi.org/10.1590/S0100-06832012000600016
http://doi.org/10.3390/plants9111467
http://doi.org/10.1080/01904169409364835
http://doi.org/10.1111/j.1755-0238.2003.tb00265.x
http://doi.org/10.1590/0103-8478cr20150472
http://doi.org/10.3390/plants10091947
http://doi.org/10.1016/j.scienta.2018.08.018
http://doi.org/10.1002/jsfa.11035
http://www.ncbi.nlm.nih.gov/pubmed/33345302
http://doi.org/10.1111/j.1365-3040.2007.01716.x
http://doi.org/10.1080/00103624.2013.736319
http://doi.org/10.3390/molecules190913683
http://doi.org/10.1016/j.scienta.2014.02.019
http://doi.org/10.17660/ActaHortic.2018.1228.67
http://doi.org/10.1590/0034-737x201764040013
http://doi.org/10.4067/S0718-34292018000100027


Plants 2022, 11, 2419 14 of 14

66. Ciotta, M.N.; Domingues, F.; Ceretta, C.A.; Brunetto, G.; Anchieta, M.; Tassinari, A.; Piccin, R.; Facco, D.; Ferreira, P.A.A. Impacto
Do Teor de Potássio No Solo Sobre a Produção e Composição da Uva em Viníferas Cultivadas em Solo Com Textura Arenosa. In
Proceedings of the XV Congresso Latino-Americano de Viticultura e Enologia/XIII Congresso Brasileiro de Viticultura e Enologia,
Bento Gonçalves, Brazil, 3–7 November 2015.

67. Ciotta, M.N.; Ceretta, C.A.; Oliveira, L.S.; Kulmann, M.S.S.; Ferreira, P.A.A.; Brunetto, G. Plant Growth and Nutritional Status of
Leaves from Young Grapevines Grown in Soil Subjected to Potassium and Limestone Applications. Idesia (Arica) 2020, 38, 77–85.
[CrossRef]

68. Soil Survey Staff. Keys to Soil Taxonomy; Government Printing Office: Washington, DC, USA, 2014.
69. Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Leonardo, J.; Gonçalves, M.; Sparovek, G. Köppen’s Climate Classification Map for

Brazil. Meteorol. Z. 2013, 22, 711–728. [CrossRef]
70. INMET Clima e Tempo—Português (Brasil). Available online: https://www.gov.br/agricultura/pt-br/assuntos/inmet (accessed

on 1 August 2022).
71. Tedesco, M.J.; Volkweiss, S.J.; Bohmen, H. Soil, Plant and Other Material Analysis, 1st ed.; UFRGS: Porto Alegre, Brazil, 1995;

Volume 1.
72. Comas, L.H.; Anderson, L.J.; Dunst, R.M.; Lakso, A.N.; Eissenstat, D.M. Canopy and Environmental Control of Root Dynamics in

a Long-Term Study of Concord Grape. New Phytol. 2005, 167, 829–840. [CrossRef] [PubMed]
73. Radville, L.; Bauerle, T.L.; Comas, L.H.; Marchetto, K.A.; Lakso, A.N.; Smart, D.R.; Dunst, R.M.; Eissenstat, D.M. Limited Linkages

of Aboveground and Belowground Phenology: A Study in Grape. Am. J. Bot. 2016, 103, 1897–1911. [CrossRef] [PubMed]
74. McMaster, G.S.; Wilhelm, W.W. Growing Degree-Days: One Equation, Two Interpretations. Agric. Meteorol. 1997, 87, 291–300.

[CrossRef]
75. Gris, E.F.; Burin, V.M.; Brighenti, E.; Vieira, H.; Bordignon-Luiz, M.T. Phenology and Ripening of Vitis vinifera L. Grape Varieties

in São Joaquim, Southern Brazil: A New South American Wine Growing Region. Cienc. Investig. Agrar. 2010, 37, 61–75. [CrossRef]
76. Tremblay, N.; Bouroubi, Y.M.; Bélec, C.; Mullen, R.W.; Kitchen, N.R.; Thomason, W.E.; Ebelhar, S.; Mengel, D.B.; Raun, W.R.;

Francis, D.D.; et al. Corn Response to Nitrogen Is Influenced by Soil Texture and Weather. Agron. J. 2012, 104, 1658–1671.
[CrossRef]

77. Robnik-Šikonja, M.; Kononenko, I. Theoretical and Empirical Analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69.
[CrossRef]

http://doi.org/10.4067/S0718-34292020000200077
http://doi.org/10.1127/0941-2948/2013/0507
https://www.gov.br/agricultura/pt-br/assuntos/inmet
http://doi.org/10.1111/j.1469-8137.2005.01456.x
http://www.ncbi.nlm.nih.gov/pubmed/16101919
http://doi.org/10.3732/ajb.1600212
http://www.ncbi.nlm.nih.gov/pubmed/27879261
http://doi.org/10.1016/S0168-1923(97)00027-0
http://doi.org/10.4067/S0718-16202010000200007
http://doi.org/10.2134/agronj2012.0184
http://doi.org/10.1023/A:1025667309714

	Introduction 
	Results 
	Climatic Conditions and Grape Quality Indices 
	Machine Learning Model-Building and Foliar N 
	Predictions 

	Discussion 
	Machine Learning Model-Building 
	Tissue Test at High Grape Yield and Quality Levels 
	Grape Yield and Quality 
	Carryover Effects of Fertilization 
	Building a Dataset for Nutrient Management of Vineyards 

	Materials and Methods 
	Experimental Setup 
	Treatments 
	Foliar and Fruit Analysis 
	Meteorological Data 
	Statistical Analysis 

	Conclusions 
	References

