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Feature selection plays a crucial role in the development of machine learning algorithms.
Understanding the impact of the features on a model, and their physiological relevance
can improve the performance. This is particularly helpful in the healthcare domain
wherein disease states need to be identified with relatively small quantities of data.
Autonomic Dysreflexia (AD) is one such example, wherein mismanagement of this
neurological condition could lead to severe consequences for individuals with spinal
cord injuries. We explore different methods of feature selection needed to improve
the performance of a machine learning model in the detection of the onset of AD.
We present different techniques used as well as the ideal metrics using a dataset of
thirty-six features extracted from electrocardiograms, skin nerve activity, blood pressure
and temperature. The best performing algorithm was a 5-layer neural network with
five relevant features, which resulted in 93.4% accuracy in the detection of AD. The
techniques in this paper can be applied to a myriad of healthcare datasets allowing
forays into deeper exploration and improved machine learning model development.
Through critical feature selection, it is possible to design better machine learning
algorithms for detection of niche disease states using smaller datasets.

Keywords: spinal cord injuries, machine learning, feature selection, electrocardiography, healthcare

INTRODUCTION

Current healthcare practices revolve around human expert assessments of correlations between
symptoms and diagnoses. There is a growing trend in the medical community to use automated
or semi-automated systems to monitor the well-being of individuals in their care. Several of these
automated systems leverage upon machine learning (ML). ML has been applied to various areas
of healthcare and has enormous potential to improve detection of disease for rapid point-of-
care treatment (Saria et al., 2010; Kuhn and Johnson, 2013; Alimadadi et al., 2020; Mishra et al.,
2020), help clinicians with making diagnostic decisions (decision support system) (Roski et al.,
2014; Rumshisky et al., 2016; Esteva et al., 2017), and improve individual management of chronic
health conditions.
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Machine learning techniques can contribute to finding
patterns and trends that contribute to the knowledge about
different disease states as well as help diagnose them early (Chen
et al., 2017). Supervised ML methods are among some of the
most common approaches used in the clinical setting due to the
large amount of annotated data which is available (Wiens and
Shenoy, 2018). Some applications of ML to healthcare settings
include automated arrhythmia analysis tools using physiological
data such as electrocardiogram (ECG) or alerts for low oxygen
saturation using photoplethysmography (PPG) (Polat and Gunes,
2007; Uçar et al., 2017; Alfaras et al., 2019; Radha et al., 2019).
However, despite its strengths, ML cannot identify relationships
that are not present in the data; therefore, data veracity is
critical to any accurate ML model (Wiens and Shenoy, 2018).
Supervised ML methods are comprised of three crucial steps-
feature extraction and selection, classifier training, and lastly
evaluation (Badillo et al., 2020).

Feature extraction is the process of reducing a set of
raw/preprocessed data into a smaller set of features which
represent the key qualities of the data. In healthcare data
extraction of relevant features is often guided by physiological
understanding of the mammalian system (Jen et al., 2012;
Su et al., 2012; Jothi and Husain, 2015). Feature selection
prevents overfitting of a machine learning model to improve
performance and provide faster, more cost-effective models.
Through feature selection, the original representation of the
features is not altered, and the original semantics are preserved.
Additionally, through specific feature selection, we can gain
deeper insight into the underlying processes which led to
variation in the data. Automated feature selection through deep
learning networks have also been explored in healthcare literature
(Waring et al., 2020; Wosiak and Kowalski, 2020). Despite their
ability to select relevant techniques and features rapidly, they
can limit comprehension of the phenomenon being classified.
Additionally, they rely heavily on large amounts of data which
may not be common in various medical datasets. Once relevant
features have been identified from the data, machine learning
models can be trained and evaluated. There are a myriad of
feature selection techniques and machine learning models which
have been used in various biomedical applications.

In this paper, we present the feature selection techniques
and supervised machine learning models we explored in the
development of a system for the detection of autonomic
dysreflexia (AD). AD is a potentially life-threatening disorder
which occurs in individuals with spinal cord injuries (SCI)
due to often innocuous triggers below the level of injury. Self-
management of AD begins with individuals understanding their
symptoms and knowing triggers. Very few researchers have
explored the detection of AD while it occurs. These studies
rely entirely on the pre-determined patterns in blood pressure
measured by a telemetry system to detect the onset of AD event
induced by a trigger (Rabchevsky et al., 2012; Popok et al., 2016).
However, there are few studies known to the authors which
explore the use of multimodal systems to detect the onset of AD.
Particularly, there are no studies which have explored the use of
machine learning algorithms to automate the process of detecting
AD during onset using non-symptom-based approaches.

We developed a non-invasive, multi-parametric system to
detect AD using the most efficient machine learning methods
and feature selection techniques (Suresh and Duerstock, 2020).
In this paper, we describe the feature extraction and selection
procedures required to develop an efficient machine learning
model which can characterize the onset of AD. These feature
selection techniques can also be applied in a variety of medical
applications which do not have large datasets due to the relatively
small population of persons with this condition.

MATERIALS AND METHODS

Dataset Preparation
Sensor data was collected from 19 male Sprague Dawley rats.
All animals were between 3 and 5 months of age and weighed
450–600 g prior to spinal cord injury. These rats were given a
spinal cord injury at the T2/T3 level and AD was induced through
colorectal distension (O’ Mahony et al., 2012) up to 14 days post-
SCI. All rats had sensory and motor loss below the level of injury
which was verified through pinch tests. The experiments were
performed in accordance with the international directions for
the protection of animals used for scientific purposes and the
protocol was approved by the Purdue University IACUC.

Sensors
Time-series data were collected from wearable ECG, skin nerve
activity (skNA), blood pressure (BP), and skin temperature
sensors from a restrained animal while it was awake (Figure 1).
skNA allows non-invasive measurement of stellate ganglion
nerve activity which provides sympathetic innervation to the
heart, and has been validated in humans, rat and dog models
(Jiang et al., 2015; Everett et al., 2017; Suresh et al., 2019).

Electrocardiogram and skNA were measured through gel-
based electrodes placed in a Lead I configuration at the level of
the right and left third ribs, with the electrode placed at the right
leg serving as a reference electrode. Placement of the electrodes
in this location allowed us to observe the cardiovascular activity
below the level of injury. Since most AD symptoms are related to
the cardiovascular system, the location of the electrodes allow us
to investigate the association of nerve activity to cardiovascular
impacts during AD. The electrodes were connected to the Power
Lab 26T bio-amplifier (AD Instruments, Colorado Springs, CO,
United States) and digitized with a sampling rate of 10 kHz and a
recording bandwidth of 10 Hz–3 kHz (Jiang et al., 2015).

Blood pressure (BP) was measured through a CODA 6-
Channel High Throughput Non-Invasive Blood Pressure system
(Kent Scientific, United States) (Daugherty et al., 2009). The Coda
system provides measurements of the systolic (SBP), diastolic
(DBP) and mean (MAP) blood pressure from the tail of the
animal. The BP values were measured two times a minute. The
blood pressure system comprises an occlusion cuff placed at the
base of the tail and a volume-pressure recording (VPR) cuff which
is placed 2 inches from the base of the rat’s tail.

A DS18B20 waterproof digital temperature probe was used to
measure skin temperature from the shaved back of the rat directly
above the site of injury. The temperature probe is connected
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FIGURE 1 | (A) Schematic of the sensors. Noninvasive electrodes placed on the ventral skin surface of a rat in Lead I configuration, the Coda
R©

Blood Pressure
system with occlusion and VPR cuff and a temperature probe connected to an Arduino

R©
. Rats restrained in (B) Lomir

R©
“cuddle” jacket and (C) Plexiglass tube to

restrain the animal during data collection.

to an Arduino and provides up to 12 bits of temperature data
from the onboard digital to analog controller (Maxim, 2008). In
conjunction with the Dallas temperature control Arduino library,
the temperature sensor logs data with a sampling rate of 0.03 Hz
(LI Gang, 2005).

Variations in the sampling rate were adjusted post-processing
through timestamp matching. A 20 mmHg increase in systolic
blood pressure when colorectal distension was induced was used
as a gold standard to label the data collected from certain
timestamps as either AD or non-AD datapoints.

Signal Processing
The data from the sensors was processed using filters to remove
artifacts such as motion and other high-frequency noise. The
ECG signal was processed using a 60 Hz notch filter to remove
power line interference, and a seventh order Butterworth band-
pass filter between 0.01 and 30 Hz to remove movement artifacts
and other high frequency noise (Figure 2). Smoothing is often
useful to suppress noise or interference on a signal and was
done by using a moving average filter on the signal (Gacek and
Pedrycz, 2014), skNA is derived from the ECG signal using a
band-pass filter between 500 and 1,000 Hz (Lenis et al., 2017).
The skNA signal contained interferences from QRS intervals
(Figure 3A). These QRS intervals were isolated through the
Pan-Tompkins algorithm and smoothed using a median filter to
remove the interference (Figure 3B). The signal was then rectified
and integrated (iskNA) over a 100 ms window (Figure 3C).
Non-bursting baseline values of iskNA during rest were used to
determine bursts in nerve activity. The mean of non-bursting
iskNA plus 3 standard deviations (SD) were used as a threshold
amplitude for determining bursting activity (Figure 3D).

Feature Extraction
A fixed, sliding, non-overlapping window of 15 s was used to
extract thirty-six relevant features (Table 1). The detection of
the QRS complexes and the R-peaks provide the fundamentals
for almost all automated ECG analytics (Sadhukhan and Mitra,
2012). The Pan-Tompkins algorithm was used to extract the
RR peaks as well as the QRS segments of each beat of the
filtered ECG signal (Figure 4). To ensure detection accuracy, the
derived RR peaks are further processed to ensure the minimum

difference between two successive peaks is between 100 and
500 ms (200 bpm < HR < 600 bpm) to generate the normal to
normal (NN) intervals (Chan et al., 2005). The heart rate and
medianNN are calculated from the NN intervals. The PR interval,
QRS interval, QT interval, ST interval, PR segment and the ST
segment which provide additional information about the cardiac
condition were also extracted (Schamroth, 1990).

Heart rate variability (HRV) measures were also calculated
from each window. These include the standard deviation of NN
beat intervals (SDNN), covariance of NN intervals (covNN),
the square root of the mean of the squares of the successive
differences between adjacent NNs (RMSSD), and the proportion
of the number of successive NN intervals which differ by more
than 5 ms (NN5) as well as the percentage of NN5 (pNN5).
The spectral power for HRV was analyzed on the windowed
ECG segments. The total power (TP), very-low-frequency
(VLF; 0.003–0.04 Hz), low-frequency (LF; 0.04–0.15 Hz), high-
frequency (HF; 0.15–0.4 Hz) components were extracted from
an FFT performed on the ECG signal. The peak amplitudes in
VLF, LF, and HF components as well as the areas under these
components were calculated. Additionally, the LF/HF ratio was
also calculated.

The number of bursts, duration of bursts, Area under curve
of the bursts were extracted from the iskNA. In addition, the
average value of skNA and iskNA were extracted from each
window. In addition, FFT performed on the skNA signal allowed
extraction of the low, high and very high frequency bands of the
sympathetic nerve activity.

A total of 2,200 data points were collected from the rats. After
the features were extracted, they were normalized using a min-
max scaler. For each feature value, we computed the z-score,
that is the number of standard deviations the value was from its
mean. Observations with a z-score greater than 3 (<8% of the
dataset) were considered outliers and removed. Majority of these
outliers were non-AD data. Observations containing missing
values, though rare, were discarded.

Feature Selection
For classification and regression tasks, it is often
useful to remove features which do not help model
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FIGURE 2 | (A) Raw ECG data collected from rats (B) processed with ECG without high frequency components and prominent R and S segments. This allows clear
determination of individual beats of the ECG signal.

FIGURE 3 | (A) Raw skNA signal with QRS interferences (B) median filtered skNA signal without QRS interference (C) rectified and integrated skNA (iskNA) (D) mean
baseline value of non-bursting events (pink dotted horizontal line) and burst activity during sympathetic activation event (vertical dashed line) indicated by red dots.

accuracy. The removal of extraneous variables tends to
lower variance in the predicted values and reduces the
likelihood of overfitting. Moreover, determining which
features are useful in prediction can help point toward
underlying mechanisms of the given problem, from which
domain experts can work to develop new hypotheses.

Below, we discuss the approaches we used for selecting
useful features.

Univariate Filter Methods
Univariate feature selection allows the examination of each
feature individually to measure its ability to determine the
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TABLE 1 | 36 features extracted from the different sensors.

Signal Features

ECG Temporal:
1. NN intervals
2. Heart rate
3. QRS interval
4. PR interval
5. MedianNN
6. Number of NN

intervals < 5 ms (nn5)
7. Percentage of nn5 (pnn5)
8. covNN
9. RMSSD

Spectral:
10. Power of low frequency

band (0.01–0.75Hz) - LFpow

11. Power of high frequency
band (0.75–2.5 Hz) - HFpow

12. LFpow/HFpow

13. Area under low frequency
bands (ALF)

14. Area under high frequency
bands (AHF)

15. ALF/AHF ratio

skNA Temporal:
16. Average skNA
17. Average iskNA
18. Area under Curve (AUC)

skNA
19. Number of bursts
20. Duration of bursts
21. AUC bursts

Spectral:
22. Power of low frequency

band (0–2.5 Hz) - LFpow

23. Power of high frequency
band (2.5–5 Hz) - HFpow

24. Power of very high
frequency band (5–10 Hz) -
VHFpow

25. LFpow/HFpow

26. Area under LF band (ALF)
27. Area under HF band (AHF)
28. Area under VHF band

(AVHF)
29. ALF/AHF ratio

Skin
Temperature

30. 1temperature
31. Mean

temperature
32. Median

temperature

Blood Pressure 33. 1SBP
34. 1DBP
35. Mean SBP
36. Mean DBP
37. Mean

arterial
pressure
(MAP)

Top 5 selected features have been indicated in bold.

response variable. This often involves the computation of
measures of association.

We computed a p-value through hypothesis testing (Student’s
t-test) and removed any features which did not meet a specific
threshold (p < 0.05). A chi-squared test was used to determine
which features most closely resulted in changes in the features
of the predictor.

We also used Pearson correlation-based feature selection
wherein highly correlated features were removed. We removed
predictors which are highly correlated (R2 > 0.7) with other
predictors (Figure 5). While this approach is simple and
can be reasonably effective, features which show higher-
order or multivariate relationships with the response variable
(but which individually do not show strong patterns) may
unwittingly be discarded.

Best Subset Selection and Stepwise Search
Commonly used best subset regression techniques involve fitting
and comparing 2p possible models, wherein p is the number

of features. However, this technique is often impractical for all
but the smallest number of total features. In our case, with 30
features, 1 billion potential models need to be fit to determine
the ones which lead to the best performance metrics. We used
an iterative, stepwise, “greedy” search approach wherein a full
model is initially built, and features are either successively added
or removed from the dataset. We performed “recursive feature
elimination” starts by fitting a full model (containing all available
features), and computes “feature importance” values for each
feature (e.g., for logistic regression, one could use the p-value
from the Wald-tests for the coefficient parameters). We also
used the inherent abilities of the decision tree to calculate a
feature importance score from the Gini coefficient. Features
whose feature importance does not meet a specified threshold
were discarded. The procedure was then repeated, recursively,
until all remaining features meet the threshold criteria, or until
a target model dimension is achieved.

Recursive Feature Elimination
A recursive feature elimination (RFE) algorithm was used for
feature selection. The RFE algorithm method attempts to find the
best subset of size σ (σ < N) through a greedy backward selection.
It chooses the σ features which lead to the largest margin of
class separation by the logistic regression classifier. It iterates in a
greedy fashion through the removal of input dimensions/features
to decrease the margin of separation between the classes until
only σ input dimensions remain. A binary logistic regression
model was used for classification to identify the impact of the
different features in predicting the onset of AD.

Machine Learning Models
Eleven different classifiers were compared for the initial
exploration of performance. These include K- Nearest
Neighbor (KNN), linear and logistic regression, support
vector machines (SVM) with linear and RBF kernels, Naïve
Bayes, Quadratic Discriminant Analysis, ensemble methods such
as random forest and Adaboost models, and neural networks
(multilayer perceptron).

In order to train our machine learning models, we split the
data into three stratified sets- the training set (70%), the test
set (15%) and the validation set (15%). 10-fold cross-validation
(CV) was used to create variations of the training, test and
validation sets to reduce overfitting. The models were trained
on the complete dataset as well as the reduced dataset developed
from the feature selection methods.

Performance Measures
We measured performance through a confusion matrix (Table 2).
To determine the best performing algorithm, we used metrics
of accuracy, sensitivity (true positive rate), specificity (true
negative rate), and AUC-ROC score to evaluate the performance
of the different models developed using the different feature
selection techniques. Through the ROC curves, we were able
to screen for the different types of errors which arise in many
biomedical scenarios.
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FIGURE 4 | QRS segments identified from each individual beat of the filtered ECG signal.

RESULTS

Through the aforementioned feature selection approaches, we
identified five relevant features which best characterized the
onset of AD. These five features include medianNN, average
iskNA, number of bursts, which are representative of sympathetic
activity and RMSSD, pNN5 which are representative of vagal
activity. These five features enabled a deeper insight into the
biological processes involved in the resulting symptoms of AD
(Suresh et al., under review).

As can be observed from Figure 6, there is an observed overlap
when visualizing AD and non-AD responses on a bivariate plot.
However, the differences in the different distributions suggest the
ability for discernment between the presence and absence of AD
through the five features. These formed the basis of the separation
between the two classes (AD and non-AD).

The reduced subset of features enabled us to develop
and compare the eleven different models (Table 3). The
best performing machine learning model developed using the
reduced feature subset was a five-layer neural network (multi-
layer perceptron) which had high accuracy (93.4%), sensitivity
(93.5%) and specificity (93.3%). There is a notable increase
in performance of the neural network when trained on the
reduced feature subset when compared to the dataset without any
feature selection.

DISCUSSION

Feature selection performs a reduction in the complexity of a
dataset to enable the development of reliable machine learning
models (Saeys et al., 2007). Through better feature selection,
it is possible to develop models which use physiological and
healthcare data as an invaluable data source to assist in disease
detection, rehabilitation and treatment (Faust and Bairy, 2012).
In this paper, we compared different feature selection methods
and machine learning models which enabled us to characterize
the onset of AD with high-performance metrics.

These techniques can be used in different capacities to
enable the development of machine learning models which are
explainable, relevant and most importantly, perform well with
clinically relevant physiological data. Machine learning models
can enable early mitigation of AD leading to a reduction in related
complications and mortality in individuals with SCI.

Relevance of Feature Selection Using
Small Physiological Datasets
With an increase in availability of wearable sensing technologies,
such as the AppleTM Watch, FitbitTM, there is an increasing
amount of healthcare data that can be collected and made
available to clinicians and others in the field of healthcare. This
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FIGURE 5 | Heatmap of correlation of the thirty-six different features (x and y axes are the features listed in Table 1 above). Highly correlated features are removed
and not considered in the development of the models.

leads to a voluminous number of features, which can be extracted
allowing a richer understanding of the biological processes
involved in various disease states instead of being limited
in collecting data in controlled settings. Unfortunately, this
development of increasingly complex datasets which have a great
deal of inter-related features serves to complicate straightforward
discrimination of results necessitating the development of
machine learning models. There is a need to provide efficient,
parallel data processing techniques to develop efficient machine

learning models, which is made possible through feature
selection (Jain and Singh, 2018). Feature selection is particularly
important when making predictions regarding the outcomes or
onset of diseases.

Through the feature selection approaches presented in this
paper, we were able to narrow our feature subset. The selection
of five features rather than thirty-six enabled a sharper focus on
relevant changes occurring in the physiology due to the onset of
AD. However, there is no “best” feature selection procedure, as
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TABLE 2 | Representation of the confusion matrix for AD detection and
metrics determination.

Predicted AD Predicted Non-AD

Actual AD True positive (TP) False negative (FN)

Actual non-AD False positive (FP) True negative (TN)

Sensitivity: true positive rate; specificity: true negative rate.

FIGURE 6 | Bivariate plot showing the differences observed in the five
features during AD and non-AD events. There is an observed overlap between
the two classes but also some differences between the features which make
them discernible. The y-axis are the normalized units of each feature. The
green boxes are features which represent sympathetic activity while the red
boxes are feature which represent vagal activity.

TABLE 3 | Performance metrics for the different classifiers with the AD dataset.

Name Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC-ROC

Neural network
(without feature selection)

72.2 70.1 76.7 0.74

Neural network 93.4 93.5 93.3 0.93

Adaboost 79.3 79.3 79.2 0.78

Decision tree 86.1 83.3 89.5 0.86

Gaussian process 91.7 88.9 94.4 0.92

K Nearest neighbor 86.5 83.3 89.5 0.86

Linear SVM 62.2 30.1 86.7 0.61

Logistic regression 87.4 84.3 82.5 0.87

RBF SVM 63.9 72.2 84.2 0.64

Naïve bayes 88.9 94.4 83.3 0.89

Random forest 63.9 72.2 84.2 0.64

the choice of selection procedure highly depends on details of
the problem at hand: the number of features, the availability of
feature importances, and the computational resources required
by the model fitting procedure. The techniques presented in this
paper provide a template which can be modified to suit the needs
of other small dataset related projects.

Relevance of Neural Network
Performance
From our experiments, the feedforward neural network arguably
showed the strongest overall performance, including the highest
accuracy and AUC score among the models tested. The Gaussian
Process model performed similarly, but with slightly lower
accuracy and AUC score. These results indicate that there are
likely important non-linear relationships within our data, as
neural networks and Gaussian processes are two of the more
flexible supervised learning models. In our case, the neural
network contained a total of ∼2,000 parameters (and Gaussian
processes are non-parametric). It is not too surprising that
these two models performed similarly, as it is known that
neural networks, in a sense, approximate Gaussian processes
(Quiñonero-Candela and Rasmussen, 2005).

A drawback of the more flexible models is that they tend to
require relatively more data to achieve good performance. On the
other hand, as the size of data grows, they tend to better detect
subtle relationships that may exist. Consequently, as more data
becomes available, we may likely see even further improvements
in the performance of the neural network and Gaussian process
models (as well as the other more flexible models).

We do note that although the more flexible models showed
the strongest performance, two of the simpler models—
logistic regression and quadratic discriminant analysis—showed
reasonably strong performance as well. This suggests that while
complex non-linear relationships may exist within the data, much
of the variation in the response is accounted for by first and
second-order terms of the features. In a setting where the number
of observations is relatively small, it may be more prudent to
consider the simpler methods, as they tend to be relatively more
stable (low variance), especially for smaller datasets.

Clinical Relevance in Autonomic
Dysreflexia
Recognition and prevention of AD related signs and symptoms
plays a critical role in avoiding escalation to more dire
circumstances in clinical and non-clinical environments.
Currently the standard approach for managing AD is to train
persons with SCI to recognize their symptoms and to promptly
alleviate the AD trigger, which can be difficult to identify and
frequently requires the assistance of a caregiver. There is a need
for a sensitive yet non-invasive method of detecting the onset of
AD, which can be adopted easily into clinical practice and for at
home use (Hubli and Krassioukov, 2014).

The major findings of this study suggest that there are alternate
techniques to determining the onset of AD through non-invasive
wearable sensing techniques. Additionally, there are signatures
of the onset of AD described through these five relevant features
which could enable better detection (Suresh et al., unpublished).

These could be complementary to current clinical tools.
A non-invasive sensor system that can automatically detect the
onset of AD, can improve independence and quality of life of
individuals with SCI. Additionally, such a detection system could
allow individuals more time to identify and eliminate the trigger
before escalation to dangerous hypertensive levels.
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