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ABSTRACT
In the era of Big Data, omic-scale technologies, and
increasing calls for data sharing, it is generally agreed
that the use of community-developed, open data
standards is critical. Far less agreed upon is exactly
which data standards should be used, the criteria by
which one should choose a standard, or even what
constitutes a data standard. It is impossible simply
to choose a domain and have it naturally follow which
data standards should be used in all cases. The ‘right’
standards to use is often dependent on the use case
scenarios for a given project. Potential downstream
applications for the data, however, may not always be
apparent at the time the data are generated. Similarly,
technology evolves, adding further complexity. Would-be
standards adopters must strike a balance between
planning for the future and minimizing the burden
of compliance. Better tools and resources are required
to help guide this balancing act.

BACKGROUND
Members of the scientific community are increas-
ingly expected to share data, and to do so in a
standards-compliant manner. This is evidenced by
the recent mandates, announcements, and requests
for information by the funding agencies1–5 and
journals,6 and numerous essays and announcements
by the scientific community,7–10 including pre-
competitive initiatives by the life science industry.11

However, the scientific community is not necessarily
well poised to comply.12 All stakeholders—funders,
journal editors, researchers and those supporting
them, struggle to navigate the existing standards and
make informed decisions.13 As an example, in 2009
one of our groups aimed to create a standards-
compliant, integrated data repository for clinical and
‘omics’ data, among other types. This begged the
question: with which standards should we comply?
Through subsequent efforts to answer this question,
three key points have become clear:
1. Different groups and individuals have different

definitions for what constitutes a ‘data standard’.
2. Even within one domain, no one standard is the

‘right’ standard across all cases; rather, one must
select a standard (or even specific pieces of a
standard) based on one’s particular needs.

3. Integrated resources and registries are needed to
help researchers navigate the fluid standards land-
scape and to choose and implement the right
standard for their respective project.
The focus for that project was on omics data

standards, but these points apply across the spectrum
of biomedical data types. High-dimensional ‘Big
Data’ equate to large numbers of parameters, which
in turn require yet more data for sufficient statistical
power. Importantly, this massive amount of data
lends itself to many different analytic approaches,

putting comprehensive analysis beyond the capabil-
ities of any one researcher. The size and complexity
of these data, combined with growing scarcity of
research funding and the quest for personalized
medicine, make it increasingly important to maximize
the utility of research dollars through data sharing and
re-use. Efforts to this end are demonstrated by a spate
of new data sharing and aggregation initiatives by aca-
demics, private–public partnerships, and publishers,
for example Sage Bionetworks,14 the Pistoia Alliance
(http://www.pistoiaalliance.org) and DRYAD,15 among
others.16–18 At the national level in the USA, the data
sharing trend is reflected in programs such as the
National Institutes of Health’s (NIH) recently
announced ‘Big Data to Knowledge’ (BD2K) initia-
tive,19 and the White House office of science and
technology policy’s recent directive that the results of
government-funded research be made publicly avail-
able.20 The Innovative Medicines Initiative (http://
www.imi.europa.eu/) is Europe’s largest public–private
initiative that supports collaborative research projects
and builds networks of industrial and academic
experts in order to boost pharmaceutical innovation in
Europe. Internationally, the Research Data Alliance
(https://rd-alliance.org/) has been established by an
international steering group from funding agencies in
the USA, EU and Australia; and recently the global
alliance for genomic and clinical data sharing has
brought together over 70 leading healthcare, research,
and disease advocacy organizations, involving research-
ers from more than 40 countries, to enable secure
sharing of genomic and clinical data.21

These types of initiatives, together with the
evolving portfolio of grass-roots standards, have
enhanced the need to maximize awareness and disco-
verability of standards. Such efforts are becoming
more common,22–26 but they lack integration or uni-
fication. There is a clear need for some level of
coordination, without taking the form of a top-down
authority. How can we avoid requiring would-be
standard adopters to spend considerable time and
effort becoming well versed with a multitude of stan-
dards solely in order to rule most of them out?

WHAT IS A DATA STANDARD?
The International Organization for Standardization
defines a standard as ‘…a document that provides
requirements, specifications, guidelines or charac-
teristics that can be used consistently to ensure that
materials, products, processes and services are fit
for their purpose’.27 Standards range from de jure,
that is, ordained by some official organization such as
the International Organization for Standardization or
the American National Standards Institute, to de
facto, that is, developed by grass-root initiatives and
commonly adopted, but not prescribed by an official
or specific authority. The BioSharing registry (http://
biosharing.org/) houses a fairly comprehensive,
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curated list of data standards (primarily de facto) in the life
science, environmental, and biomedical space. These standards are
divided into three categories. First, content standards take the form
of reporting guidelines, for example, minimum information check-
lists. These vary from general guidance to itemized prescriptions of
the information that should be provided (ie, curation guidelines),
including both data and metadata. The second category consists of
syntax standards in the form of representations and formats that
facilitate the exchange of information. These fall broadly into two
types: delimited text, or a ‘markup language’ such as XML. Third
are the semantic standards in the form of terminology artifacts,
such as controlled vocabularies or ontologies. These add an inter-
pretive layer to the data by defining the concepts or terms in a
domain, and in some cases the relationships between them.

Other discussions of standards include the notion of a data
model, which extends beyond terms and their definitions to
describe the relationships between concepts in a domain.28

Other groups also use additional terms such as conceptual
model, conceptual schema, ontology, or domain analysis
model,29–32 but generally differ on what each of these terms
means. This is in fact part of the confusion—even data stand-
ard experts do not agree on what constitutes a data standard.
Nevertheless, focusing just within the context of transcrip-
tomics, preliminary investigation yielded a list of 15 potentially
relevant standards (table 1). Note that this list could grow
depending on the type of sample and organism used, as many
terminologies are species specific. Now imagine if a researcher
has an associated dataset from a proteomics investigation, for
example. How is a mere mortal to sort through these?

FIT FOR PURPOSE
In biomarker discovery, the phrase ‘fit-for-purpose’ refers to the
notion that the degree of rigor for assay validation should be
tailored to the intended purpose of a given biomarker study.33

The same is true for data standards adoption. While each

individual project will inevitably have its own specific require-
ments, it can be useful to group projects across a spectrum of
rigor. At the lowest level, there is the use case of data sharing
within a laboratory or between collaborators. While minimum
information guidelines should be followed, for the most part
any documentation need only be human readable, and issues
requiring clarification are merely a walk down the hall or an
e-mail away (at least until the student graduates or the postdoc
moves on). Data that are to be shared publicly, for example,
accompanying a publication, require more rigor. Ideally, a pro-
spective consumer of the data can both understand and repro-
duce those data without needing to contact the original author.
Furthermore, much of the content of publications is now aggre-
gated and curated by various online resources. These value-
added services can be much more efficient and effective at
making content available via secondary sources when quality
data standards are used. Minimally structured data can be very
helpful for such purposes; for example, the use of a unique
identifier to describe a molecule or a standardized vocabulary
term to denote the disease area under study. The highest level of
rigor is needed for contribution of data to a structured data
repository. In this case, additional effort is warranted in the
form of structured fields and a standardized, machine-readable
format. Such rigor enables querying across multiple datasets and
integrative meta-analysis combining more than one set.

One key point in differentiating between these levels of rigor
is that there are different ‘flavors’ of annotation. At every level,
there is a difference between what needs to be documented, and
what needs to be documented in a structured and queryable
fashion. While the option exists to select a standard that allows
for maximum structure and adopt it only loosely, complexity
can turn off would-be standards adopters, as well as waste time
in development if such rigor will ultimately never be needed.

Categories of criteria to be used in evaluating data standards
for adoption include:

Table 1 A sampling of (some of the) standards related to microarray-based transcriptomics, generated by non-experts for evaluation of
relevance to a project involving microarray-based transcriptomics data

Standard Type Description

MIAME Reporting guideline Minimum Information About a Microarray Experiment
Specifies six components that must be included to describe a microarray experiment, for example, raw and processed data,
experimental design, sample annotation, protocols. MIAME does not specify how these components must be represented,
for example, in any given format, or using any given terminology

ISA-TAB Exchange format Generic format for experimental representations; conversion tools to MAGE-Tab, MIMiML and other formats exist
MAGE-TAB Exchange format MicroArray and Gene Expression-Tabular

Simple tab-delimited, spreadsheet-based format. Used by ArrayExpress
MAGE-ML Exchange format MicroArray and Gene Expression-Markup Language. No longer supported
SOFT Exchange format Simple Omnibus Format in Text. Line-based, plain text format designed for rapid batch submission of data. Used by GEO
MIMiML Exchange format MIAME Notation in Markup Language. Optimized for microarray and other high-throughput molecular abundance data

Used by GEO
GO Terminology artifact Gene Ontology. Controlled vocabulary for annotation of gene function and cellular location. Part of the OBO Foundry
EFO Terminology artifact Experimental Factor Ontology. Provides a systematic description of many experimental variables. Used by ArrayExpress
OBI Terminology artifact Broader scope for experimental representations. Part of the OBO Foundry
MGED Ontology Terminology artifact Integrated in OBI
MAGE-OM Object model MicroArray and Gene Expression—Object Model. The object model from which MAGE-ML was derived
FuGE Object model Generic object model for functional genomics
SEND Exchange format Standard for Exchange of Nonclinical Data—an implementation of the CDISC (Clinical Data Interchange

Standards Consortium) SDTM (Standard Data Tabulation Model)

GEML Exchange format These three standards have since been deprecated and/or replaced by other standards, but that progression may
not always be clear to novice usersFUGO Terminology artifact

MAML Exchange format
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▸ The standard itself
– specification documentation
– ease of implementation (eg, level of documentation,

requirement for programmer support)
– human and machine readability
– formal structure
– expressivity—the breadth of information that can be

represented
– ease of use, for example, minimal required fields, text-

based interface familiarity to biologists.
▸ Adoption and user community

– broad adoption and implementation, outside the initial group
– support supplied by the user community
– use by community databases
– software development that supports the standard (eg, for

curating, submitting to databases)
– responsiveness to community requests
– availability of examples of use
– requirements of relevant authoritative bodies, for example,

funders (NIH, National Science Foundation, Centers for
Medicare & Medicaid Services), publishers, etc.

▸ Additional factors
– integration/compatibility with other standards
– extensibility and flexibility to cover new domains
– conversion and mapping, when applicable
– cost (eg, open vs licensing fee).
Of course, specific projects may have additional criteria to add,

and different projects will place different weight on the different
items. Unfortunately, standards adoption, when it happens, is
often determined less by an objective criteria-based evaluation
and more based on historical precedent (‘my advisor used stand-
ard X’), marketing (‘I saw a press-release about standard X’) or
sociopolitical circumstance (‘I know someone on the standard X
team’). What makes it even more difficult to select standards
empirically, based on objective criteria, is that standards are often
complex. Even well-documented standards can be dense and
impenetrable to prospective users who were not involved in their
development. This is one reason why standards are often dupli-
cated or reinvented. Other factors include the desire for some
level of control, or recognition for doing the work.

RESOURCES WANTED
The recent data and informatics working group report to the
advisory committee to the director of the NIH included recom-
mendations to establish a minimal metadata framework for data
sharing, and to create catalogs and tools to facilitate data

sharing.2 A truly minimal set of metadata elements is important
if we are to have any hope of compliance because the activation
energy required for data curation and annotation represents a sig-
nificant hurdle in facilitating data sharing. The minimum infor-
mation for biological and biomedical investigations (MIBBI)
project, part of the broader BioSharing effort, worked with dif-
ferent research communities to coordinate their ‘minimum infor-
mation’ checklists,34 but each community has some unique
requirements. Also, data annotation presents an inherent tension:
the easier we make it for investigators to annotate their datasets,
the harder it will be to ensure discoverability. Conversely, the
more discoverable we make the datasets, for example, through
annotation using controlled terminologies, the more burden we
put on the data generators.

Researchers need better tools and resources to identify, evalu-
ate, and implement standards. BioSharing is a great resource to
register and discover standards, and has adopted the initial set
of criteria described above, requiring the communities to do a
self-appraisal and tag their entries accordingly. The standards
development community also has an active role to play if they
wish to maximize the use and uptake of their work. Reviewers
of publications and associated adherence to data standards
should include biocurators. In the absence of widely agreed
upon metrics to evaluate community standards, the decision
about which is the right standard falls on the researcher. For
reasons described above, this situation is problematic. Table 2 lists
some potential resources/functionalities to address this problem.
For any of these resources, it is important to note that technology
is dynamic, and therefore so are any associated standards.
Relevant resources must be similarly dynamic and up to date.

DISCUSSION
While one can conjure up motivating scenarios from a regula-
tory or archiving standpoint, the value proposition behind
adherence to standards only really makes sense if data are to be
shared beyond the team that originally created them. Thanks in
part to policies put in place by some funders and publishers,8

many high throughput datasets are made publicly available and,
at some level, standards compliant. However, these policies
have a number of restrictions that make them fall short. Some
apply only to data generation through grants that exceed
US$500 000.2 Some require only a very low bar of compliance,
and data are still difficult if not impossible to interpret. In many
cases, the policies are simply not enforced,7 although the gov-
ernment and the NIH have recently taken steps to rectify that
fact.3 19 20

Table 2 Potential resources to assist in the selection and adoption of appropriate standards

Resource Notes

Lay person’s primer to
standards

This would be a text document for the lay person to describe the standard, what problem it helps solve, and how it achieves that. Although
FAQs address a number of these questions, one must first identify the standard and find the respective FAQ. This would be a centralized
collection of documentation that requires no previous knowledge

‘Consumer reviews’ This would be a rating system along the lines of Amazon product reviews. Ontology registries such as the NCBO and the OBO Foundry
enable or perform reviews, but the reviews are few in number, not substantive, or infrequent. As discussed above, the utility of a
standard depends on the purpose for which it is being used, so information beyond numeric scores is needed

Standard-selection wizard Decision support methods could be used to ask a researcher about the intended goals and make recommendations accordingly.
For example, ‘what instrument type was used to generate the data?’ and, ‘will these data be deposited in a public data repository?
If so, which one?’ etc. Clearly this would require significant resources and ongoing maintenance

Standards-adoption
‘helpdesk’

This would be a centralized resource of real humans with expertise across a number of standards. Once a standard has been selected,
many have rich user communities and distribution lists for help with questions. However, for an individual investigator who wants to be
standards-compliant and does not know where to begin, expert advice can save significant time in researching options

Quality assurance tools Similar to syntax validators such as for RDF, tools to gauge or validate standards compliance are useful for data submitters as well as reviewers

NCBO, National Center for Biomedical Ontology (http://www.bioontology.org/); RDF, Resource Description Framework.
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Ideally, it should be noted, researchers themselves would be
shielded from the complexity of data standards. Developers,
informaticists, and curators are perhaps better equipped to delve
into data standards than would be a clinician or bench scientist,
but even they are typically not experts in specialized standards. In
an ideal world, data generators would have access to user-friendly
tools that enable the seamless use of relevant standards and can
be customized to fit the different data and domain needs.9 The
actual standards would be hidden from the data generators, and
their use made automatic through intuitive, user-friendly tools.

Although we have described some tools for the discovery and
evaluation of standards if one is so inclined, the real challenge is
incentivizing researchers to go to the trouble. This will probably
need a combination of proverbial carrots and sticks. On the
penalty side, funders and publishers must continue to develop and
publicize progressive data-sharing policies, and to enforce those
policies through the delay of publication or future funding, if
necessary. On the incentives side, a formal system for data citation
must be developed, and those citations acknowledged and valued
by funders, professional organizations, and university promotion
and tenure committees. Recent activity in the realm of data pub-
lishing has been an important first step.35 36 Only when obstacles
are minimized and incentives are properly aligned will investiga-
tors be able to justify the effort required to do the right thing.

Correction notice This article has been corrected since it was published Online
First. In the Discussion section ‘US$500 million’ has been changed to ‘US$500 000.’
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