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Patients with posttraumatic stress disorder (PTSD) exhibit an increased state of inflam-
mation. Various animal models for PTSD have shown some of the same immune imbal-
ances as have been shown in human subjects with PTSD, and some of these studies are 
discussed in this review. However, animal studies can only indirectly implicate immune 
involvement in PTSD in humans. This review of mainly studies with human subjects 
focuses on dissecting the immunological role in the pathogenesis of PTSD following 
initial trauma exposure. It addresses both the inflammatory state associated with PTSD 
and the immune imbalance between stimulatory and inhibitory immune mediators, as 
well as variables that can lead to discrepancies between analyses. The concept of immu-
nological treatment approaches is proposed for PTSD, as new treatments are needed 
for this devastating disorder that is affecting unprecedented numbers of Veterans from 
the long-standing wars in the Middle East and which affects civilians following severe 
trauma.
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iMMUne iMBALAnCeS in POSTTRAUMATiC STReSS  
DiSORDeR (PTSD)

Posttraumatic stress disorder is a debilitating psychiatric disorder that follows trauma exposure. 
There are four symptom clusters that characterize PTSD: reliving the traumatic event, avoidance of 
situations reminiscent of the traumatic event, negative thoughts and mood, and hyperarousal. These 
symptoms are debilitating to function. Trauma exposure is a required risk factor for developing 
PTSD, but is not sufficient as not all who are exposed to trauma develop PTSD (1, 2). The complex 
phenotype of PTSD emerges from interactions among genetic, environmental, and other biological 
risk factors. Dissecting the causes of PTSD could identify individuals who would be at increased risk 
of developing PTSD following trauma exposure.

A number of studies assessing cytokine levels and, in a few instances, blood immune cell func-
tions have provided support for immunological involvement in PTSD following an initial trauma 
event. Although somewhat inconsistent, the compilation of these studies points to immune altera-
tions in PTSD that indicate the immunological balance is skewed toward a pro-inflammatory state 
(Table 1). This is supported by increased levels of pro-inflammatory cytokines such as IFN-γ, IL-6, 
TNF-α, and IL-17 in the plasma, and increased levels of immune stimulatory Th1 and inflammatory 
Th17 cells in the blood (3–8). The increase in levels of the pro-inflammatory mediators IL-12 and 
IFN-γ in plasma of PTSD subjects is associated with multiple genetic and epigenetic modifications 
in peripheral blood mononuclear cells (9).
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TABLe 1 | Correlative association between posttraumatic stress disorder and immune imbalance in humans.

Source Mediator Reference interpretation caution

Increase in inflammatory cytokine or cell 
levels

Plasma IL-2
IFN-γ
IL-6

TNF-α
IL-12
IL-17

(5–9) Depression associated with increase in pro-inflammatory cytokines
Diurnal variations
May be influenced by type of trauma, time since trauma

Saliva IL-2
IFN-γ
IL-6

IL-17
CCL2

(6, 25, 26) Oral health conditions increase pro-inflammatory cytokines

Blood cell secretion IL-1
IL-6

TNF-α

(22) Leukocyte cytokine secretion may not reflect plasma levels

Blood cells Th1
Th17

(3)

Decrease in inhibitory cytokine or cell levels Plasma TGF-β
IL-4

IL-10

(5, 6, 8, 20, 21) Decrease may be difficult to see if normal levels are low

Saliva IL-4
IL-10

(6)

Blood cells Treg (3, 23)
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Multiple molecular genetics studies that have sought to pin-
point genetic variations associated with the risk for PTSD after 
trauma exposure (10). Some of these include genes encoding 
mediators involved in immune regulation. The best studied is 
the FK506-binding protein 5 gene, FKBP5, which encodes an 
immune regulatory immunophilin (11). FKBP5 gene variants 
moderate the effect of trauma exposure on the risk of PTSD. 
The minor allele of FKBP5 SNPs rs1360780 was associated with 
increased hurricane-associated PTSD (12). In subjects with 
chronic pain, heterozygous T-allele carriers of the FKBP5 SNP 
rs9470080 were associated with an increased risk for PTSD (13). 
A study of mainly African-American subjects who had experi-
enced severe childhood trauma showed that those who carried 
minor alleles of FKBP5 SNPs rs9296158, rs3800373, rs1360780, 
or rs9470080 were more likely to exhibit PTSD (14).

In addition to FKBP5 polymorphisms, there are associations 
between variants in the pro-inflammatory C-reactive protein 
(CRP) and PTSD. A study of mainly African-American inner-
city individuals who had been exposed to trauma showed a link 
between a CRP SNP, rs1130864, and the risk of PTSD, with the 
most prominent symptom of being overly alert (15). This risk 
SNP was also associated with increased serum CRP levels, which 
indicates an inflammatory state.

Multiple studies have indicated that immune hyperactivation 
could be a predictor of PTSD risk. For example, high levels of 
CRP in Marines before their deployment were predictive of PTSD 
following deployment; this study suggested inflammation to be a 
contributor to PTSD (16). Blood levels of inflammatory cytokines 
were increased in hospitalized patients with traumatic orthopedic 
injuries who subsequently developed PTSD (8). In a pre- and 
post-deployment analysis that used whole-transcriptome RNA-
Seq gene expression of blood from U.S. Marines, both pairs of 

samples from subjects who developed PTSD over-expressed 
genes enriched for immune responses (17). This supports the 
concept that immune hyperactivation before trauma exposure 
could predict PTSD.

Some studies have shown that increases in inflammatory 
mediators correlate with PTSD severity (3), although others have 
not (18). A polymorphism in the gene of the inflammatory marker, 
TNF-α (rs1800629) was associated with PTSD in Vietnam war 
combat Veterans, and correlated with PTSD severity (19). While 
rs1800629 was a risk genotype for PTSD severity, serum levels of 
TNF-α were associated with symptom severity, but only trended 
to significance when controlling for covariates.

Although studies have shown increases in pro-inflammatory 
mediators in subjects with PTSD, fewer have measured inhibi-
tory cytokines (5, 8, 20). In such studies, PTSD subjects have 
generally lower inhibitory cell levels such as Treg and reduced 
levels of the inhibitory mediators TGF-β and IL-4 (3, 6) in the 
blood. A comparison of individuals who were exposed to urban 
violence-associated trauma showed that those with PTSD had 
lower blood levels of the inhibitory mediator IL-10 than those 
who were resilient to the trauma (21). The importance of these 
deficiencies in immune inhibitory regulators is that a healthy 
immune status is composed of a balance of stimulatory and 
inhibitory cells and mediators. In studies where balances in 
stimulatory and inhibitory mediators were assessed, immune 
skewing was toward the pro-inflammatory direction in Veterans 
and civilians with PTSD (6, 8).

Most studies examining the changes in cytokine levels in PTSD 
have measured cytokine levels in the blood. However, several 
studies have also examined the sources of the pro-inflammatory 
cytokines. Blood leukocytes of war-exposed refugees with PTSD 
spontaneously produced increased levels of IL-1, IL-6, and TNF-α 
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than did leukocytes of controls, although plasma cytokine levels 
were similar among the two groups of subjects (22). Also shown 
in this study was a direct correlation between PTSD severity and 
spontaneous secretion of IL-6 and TNF-α by the leukocytes. 
Stimulation of the PTSD subjects’ blood leukocytes with LPS 
further increased IL-6 production to higher levels than those pro-
duced by leukocytes of controls. A separate analysis of peripheral 
blood of combat Veterans with PTSD showed increases in blood 
pro-inflammatory Th1 and Th17 subsets and a reduction in the 
number of inhibitory Treg (3). Reduced levels of Treg cells were 
similarly seen in war-exposed civilians with PTSD as compared 
to exposed civilians without PTSD or controls (23). In contrast, 
a separate study comparing war Veterans to age-matched healthy 
controls showed reduced T-cell production of pro-inflammatory 
cytokines IL-2 and IFN-γ (24). Possible reasons for the discrepan-
cies among some of these studies are discussed below.

There have been a few studies that also examined levels of 
immune mediators in saliva. Similar to the blood observations, 
inflammatory mediator levels in saliva were increased following 
stress exposure (25, 26). Veterans with PTSD had higher levels 
of pro-inflammatory mediators IL-2, IFN-γ, IL-6, and IL-17 and 
reduced levels of the inhibitory mediators IL-4 and IL-10 in saliva 
compared to Veterans without combat-related PTSD (6). In this 
latter study, it was shown that the immune cytokine imbalances 
in PTSD patients are more prominently expressed in saliva than 
in blood (6). A study of hurricane survivors with PTSD showed 
that the increased saliva levels of the inflammatory mediator 
CCL2 (MCP-1) correlated with PTSD severity (25). The origin 
of cytokines in saliva and whether salivary cytokine levels are a 
reflection of blood levels has been questioned, but increases in 
inflammatory cytokines have appeared rapidly in saliva following 
acute stress and could reflect mental health status (26–28).

Comorbidities need to be considered when studying immune 
imbalances in saliva, plasma, or blood cells of PTSD subjects. For 
example, oral health increases salivary cytokine levels in indi-
viduals with periodontitis, gingivitis, premalignant oral lesions, 
and oral cancer (29, 30). Depression, which is common in sub-
jects with PTSD, also increases levels of inflammatory cytokines 
(31). However, several studies that examined the contribution of 
depression to the increases in inflammatory cytokines in subjects 
with PTSD showed that such increases were independent of a 
depression diagnosis (6, 32). Other variables that can impact 
on cytokine or immune cell analyses could include treatments 
and recovery from PTSD. Traumatized women with PTSD had 
increased plasma levels of IL-6, but those who had recovered 
from PTSD had the same lower levels as did healthy controls 
(33). The reduced levels of Treg in war-exposed PTSD subjects 
were restored to levels of healthy controls following narrative 
exposure therapy (23). Cytokine levels can also be influenced by 
technical complications. For example, cytokines such as IL-1 and 
IL-6 exhibit diurnal variations, which can contribute to differing 
results among studies (34, 35). The type of trauma can also impact 
on cytokine measurements. This was highlighted by an analysis 
showing that interpersonal-related traumas had distinct gene 
expression signatures from combat-related traumas, but there 
was convergence on immune cascades between the different 
trauma categories (36).

More difficult to control in studies with human subjects is the 
impact of the duration between the PTSD-associated trauma 
and the time of immunological analysis, in particular if the 
immunological skewing is a predisposing factor for PTSD (37). 
However, this can be controlled in animal models of PTSD. 
Using the stress-enhanced fear learning model, IL-1 expres-
sion was shown to rapidly increase (within 6 h) in the dorsal 
hippocampus and remain increased for the 72-h duration of 
assessments (38). Brain levels of IL-α, IL-6, and TNF-α were 
also increased within 1 day of stress re-exposure in a rat preda-
tor stress model for PTSD (39). Also using the predator model, a 
separate study showed increased brain levels of the inflammatory 
mediator IL-1 and reduced levels of the inhibitory mediators 
IL-4 and IL-10 after 7 days following re-exposure (40). While 
these studies in animal models of PTSD demonstrate dysregu-
lation of cytokines within the brain within a short period of 
time following stress exposure, there is a deficiency in studies 
to demonstrate the duration of this immune imbalance. This 
leaves a gap in understanding the kinetics of the immune imbal-
ances associated with PTSD as diagnosis, immune analysis, and 
treatment for humans with PTSD typically occur considerably 
later after exposure to the traumatic event. However, these 
animal models are in a unique position to determine whether 
immunological dysregulation is a consequence or a cause of 
PTSD; this is further discussed below.

CLiniCAL iMPACTS OF iMMUne 
iMBALAnCeS in PTSD

Associated with PTSD is not only inflammation but its cons-
equence on poorer health outcomes. For example, health-related 
quality of life was lower in military persons with PTSD who 
had higher plasma levels of IL-6 (41). The pro-inflammatory 
milieu of subjects with PTSD may predispose them to auto-
immune diseases since combat Veterans with PTSD have 
an increased incidence of thyroiditis, inflammatory bowel 
disease, multiple sclerosis, rheumatoid arthritis, and systemic 
lupus erythematosus (42). Patients exhibiting trauma-related 
symptoms had a slower neutrophil recovery time following 
stem cell transplantation than those without PTSD (43). Other 
comorbidities of subjects with PTSD include an increased risk 
of coronary heart disease (25, 44). A study of a Vietnam Era 
Twin Registry showed that the rate of coronary heart disease 
in twins with PTSD was twice that of twins without PTSD (44). 
The increased risk of coronary heart disease in PTSD subjects 
could be due to the increased levels of immune chemokines 
such as CCL-2, which recruits monocytes toward the inflamed 
endothelium (25). Monocytes, whose role has not been exten-
sively examined in PTSD, have upregulation of target genes 
of the pro-inflammatory NF-κB/Rel family of transcription 
factors, which further contributes to the inflammatory state of 
PTD subjects (45).

It could also be argued that the increase in autoimmune diseases 
and other immune-associated comorbidities of PTSD are not the 
result of PTSD but are predisposing factors for developing PTSD 
following a traumatic event. Although the immune skewing in 
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TABLe 2 | Suggestions of causal associations between immune imbalances and 
posttraumatic stress disorder (PTSD).

Assessment Result Reference

Human studies

Endotoxin 
administration to 
healthy volunteers

Plasma ↑  TNF-α
↑  IL-6

↑  IL-8

(58)

CNS Brain microglial activation (58)

Immune stimulatory 
cytokine administration 
to cancer patients

Plasma ↓  Neurotransmitter 
precursors including 
tryptophan

(66)

PTSD 
symptoms

↑  Hypervigilance, 
irritability, anxiety

(66)

Animal models

Peripheral immune 
activation

Brain ↑  Brain neuroinflammation (49, 50)

Blocking IL-1 signaling PTSD 
symptoms

↓  Symptoms after 
predator stress

(38)

Blocking monocyte 
migration to brain

PTSD 
symptoms

↓  Anxiety in repeated 
social defeat model

(46, 51)
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PTSD subjects toward an inflammatory state is becoming esta-
blished, it is difficult to design studies with human subjects to test 
causality between immune dysregulation and PTSD. However, 
triggering of CNS neuroinflammation by peripheral inflamma-
tion has been shown in animal models (38, 46–55). Activation of 
the peripheral immune system by endotoxin injection triggered 
neuroinflammation in the brain (49, 50). Studies with animal 
models have also shown the requirement for functional immune 
competence for anxiety behavior to be evident following stress 
sensitization. For example, neutralization of the inflammatory 
cytokine IL-1 lessened the maladaptation to acute psychological 
stress (38). Also shown was monocyte recruitment from the 
periphery to the brain in stress-sensitized mice, but splenectomy 
before stress sensitization prevented monocyte migration to the 
brain and, in turn, prevented anxiety is stress-sensitized mice 
(38, 46–55).

Studies with human subjects have been less frequent 
and less definitive, but nevertheless suggest the contribu-
tion of peripheral inflammation to neuroinflammation and 
behavior (Table  2). Traumatic brain injury resulting from 
military deployment is associated with inflammation and, 
more recently, this has been associated with a higher extent 
of PTSD comorbidity (56). This study speculated that the 
chronic inflammatory state associated with the traumatic brain 
injury results in elevated cytokine levels in the central nervous 
system and, in turn, microglial over-activation. In a clinical 
trial, patients with acute respiratory distress who were treated 
with GM-CSF had more severe PTSD symptoms than those 
treated with placebo (57). Since GM-CSF stimulates prolifera-
tion and differentiation of hematopoietic cells and can cross 
the blood–brain barrier, this study suggested the possibility 
of GM-CSF stimulating either brain microglia or production 
of inflammatory cytokines within the brain to result in more 
severe PTSD.

While not directly studied, it could be expected that 
increased persistent infection could stimulate a chronic 
inflammatory state to, in turn, increase vulnerability to PTSD 
following trauma. This concept could be in part supported by 
studies with human subjects in which healthy volunteers who 
systemically received endotoxin exhibited stimulated peripheral 
levels of inflammatory mediators TNF-α, IL-6, and IL-8, and 
microglial activation in the brain (58). Once activated, brain 
microglia release mediators such as nitric oxide, IL-1, IL-6, 
TNF-α, and glutamate, which impact neurotransmission, 
neuronal apoptosis, neuroendocrine function, neural plasticity, 
and behavior (59–64). Induction of peripheral inflammation in 
healthy human volunteers via typhoid vaccination resulted in 
functional impairments in the form of reduced spatial memory 
performance (65). The impact of peripheral immune activation 
on behavior was inadvertently made evident by immune-acti-
vating treatment of cancer patients who resulted in symptoms 
characteristic of PTSD such as hypervigilance, irritability, anxi-
ety, and decreased concentrations of tryptophan, a precursor 
to the neurotransmitter serotonin (66). The serotonergic axis 
influences mood, aggression, arousal, anxiety, sleep, learning, 
nociception, fear, and appetite (67).

PTSD TReATMenTS in THe COnTeXT  
OF iMMUne iMBALAnCeS

A few studies have examined the impact of therapies for PTSD on 
the inflammatory status of patients with PTSD, although more 
of these studies have been conducted in mouse PTSD models.  
A study with PTSD patients showed that narrative exposure 
psychotherapy improved PTSD symptoms and restored the lev-
els of immune inhibitory Treg cells, which were reduced before 
treatment (23). However, the immune imbalances were not fully 
corrected as the proportion of naïve T-cell remained low relative 
to memory T-cells, suggesting premature immune senescence. 
PTSD subjects who received pharmacotherapy with selective 
serotonin reuptake inhibitors (SSRIs) improved clinically and 
showed reductions in levels of the pro-inflammatory mediator 
IL-1 (68). In a mouse model of PTSD, treatment with the SSRI 
inhibitor fluoxetine prevented stress-induced inflammatory 
gene expression and improved PTSD-like symptoms (69). The 
results of this study indicated the role of inflammation in PTSD 
pathology and suggested using anti-inflammatory agents to 
treat PTSD. A rat study of PTSD showed that treatment with 
ibuprofen to directly target inflammation reduced both levels 
of inflammatory cytokines and PTSD-like symptoms (70). 
Similarly, treating mice with intraperitoneal injections of COX-2 
inhibitors to diminish inflammation attenuated their PTSD-like 
symptoms and reduced neuronal excitability in the basolateral 
amygdala (71).

While studies showing immune restoration with PTSD treat-
ment suggest a psycho-neuro-immune relationship, it is not pos-
sible to determine if treatment impacted the PTSD disorder to, 
in turn, lessen the extent of inflammation, or if the restoration of 
immune balance led to PTSD psychological improvement. SSRIs, 
by modulating serotonin levels, may be influencing immune 
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function since serotonin has been shown to be an immune modu-
lator (72–74). There remains a need for studies to determine the 
associations between improvements in PTSD clinical status and 
the immune rebalancing.

Despite the availability of psychological and pharmacological 
treatments for PTSD, approximately half of combat Veterans do 
not respond favorably to treatments (75). Therefore, studies need 
to be expanded to assess if PTSD treatment responsiveness or 
resistance is associated with a respective immune rebalancing or 
resistance to rebalancing. If the pro-inflammatory state contrib-
utes to PTSD, and if inflammation-skewed leukocytes of PTSD 
subjects still retain plasticity, then there is the opportunity for 
immune redirection as an additional PTSD treatment approach. 
Such immune rebalancing approaches have become more 
common in treating inflammation-associated diseases, such as 
rheumatoid arthritis or type 1 diabetes, and as treatments for 
cancer (76–79).

The plasticity of immune T-cells and monocytes provides opti-
mism that the inflammation-skewed immune state in patients 
with PTSD can be rebalanced. This rebalancing could be driven 
by the composition of the cytokine milieu (80, 81). Inflammatory 
Th17 cells share a common lineage with inhibitory Treg cells, and 
their plasticity is evident by examples of one phenotype differen-
tiating from the other (82). Although cytokines have been widely 
used to define immune plasticity, a pharmaco-immunological 
approach may be a more practical means by which to attain 
immune rebalancing. For example, the STAT3 inhibitor STA-21 
was effective in restoring immune balance in a mouse model 
of inflammatory arthritis (80). Studies in both mouse models 
and in humans have shown vitamin D metabolites can restore 
immune balance in several different clinical conditions (83–86). 
These alternative agents could be used in future clinical studies to 

restore immune balance in Veterans and civilians, with the goal of 
tempering the clinical course of their PTSD.

COnCLUSiOn

The interconnections between immune imbalances and PTSD 
are becoming better defined, but much is left to be resolved. It is 
clear that PTSD is associated with a pro-inflammatory state but 
whether this contributes to the symptoms of PTSD or whether 
it is a consequence of disease has yet to be clarified. There is, 
however, increasing evidence that hyperinflammation is not only 
a biomarker for PTSD but increases the risk of PTSD following 
trauma. This is important to enable identification of those at risk 
for PTSD that could, for example, result from military combat 
exposure. It could also expose new opportunities for prevention 
and treatment of PTSD. Immune modulating approaches are 
accepted means of treating various disorders such as autoimmune 
diseases. Unraveling the psycho-neuro-immunological interplay 
in PTSD is an ongoing challenge that could results in effective 
means to prevent and to treat PTSD.
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