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Characterizing the normal function(s) of the protein α-Synuclein (aSyn) has the potential
to illuminate links between Parkinson’s disease (PD) and diabetes and also point
the way toward new therapies for these disorders. Here we provide a perspective
for consideration based on our discovery that aSyn normally acts to inhibit insulin
secretion from pancreatic β-cells by interacting with the Kir6.2 subunit of the ATP-
sensitive potassium channel (K-ATP). It is also known that K-ATP channels act to inhibit
brain dopamine secretion, and we have also shown that aSyn is a normal inhibitor
of dopamine synthesis. The finding, that aSyn modulates Kir6.2 and other proteins
involved in dopamine and insulin secretion, suggests that aSyn interacting proteins
may be negatively impacted when aSyn aggregates inside cells, whether in brain or
pancreas. Furthermore, identifying therapies for PD that can counteract dysfunction
found in diabetes, would be highly beneficial. One such compound may be the multiple
sclerosis drug, FTY720, which like aSyn can stimulate the activity of the catalytic
subunit of protein phosphatase 2A (PP2Ac) as well as insulin secretion. In aging aSyn
transgenic mice given long term oral FTY720, the mice had reduced aSyn pathology
and increased levels of the protective molecule, brain derived neurotrophic factor (BDNF)
(Vidal-Martinez et al., 2016). In collaboration with medicinal chemists, we made two non-
immunosuppressive FTY720s that also enhance PP2Ac activity, and BDNF expression
(Vargas-Medrano et al., 2014; Enoru et al., 2016; Segura-Ulate et al., 2017a). FTY720
and our novel FTY720-based-derivatives, may thus have therapeutic potential for both
diabetes and PD.
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We and others have shown that aSyn protein has important normal functions that
are associated with its ability to interact with other molecules in a chaperone-like
manner (Jenco et al., 1998; Jensen et al., 1999; Ostrerova et al., 1999; Jo et al., 2000;
Murphy et al., 2000; Souza et al., 2000; Hashimoto et al., 2002; Seo et al., 2002; Kim
et al., 2004; Acosta-Martinez and Levine, 2007; Martinez et al., 2007; Klegeris et al.,
2008; Gorbatyuk et al., 2010b; Aoki and Li, 2011; Jin et al., 2011; Oaks and Sidhu,
2011; Bartels et al., 2014; Lautenschläger et al., 2018). Over the years, our laboratory
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has identified several aSyn-interacting proteins and organelles.
These include: tyrosine hydroxylase, also called tyrosine
3-monooxygenase (EC 1.14.16.2) (TH), the rate limiting
dopamine biosynthetic enzyme that localizes on vesicles
and mitochondria with aSyn (Perez et al., 2002; Jin et al.,
2007; Alerte et al., 2008); the next enzyme in the dopamine
biosynthetic pathway, aromatic amino acid decarboxylase,
AADC, also called dopa decarboxylase (Tehranian et al.,
2006); the catalytic subunit of protein phosphatase 2A
(PP2Ac) (Peng et al., 2005; Lou et al., 2010); and the 14-3-
3ζ adapter protein, which also localize to mitochondria to help
regulate dopamine synthesis at that organelle (Wang et al.,
2009).

With normal aSyn function(s) in mind and knowing that aSyn
normally interacts with and regulates many other molecules,
we long ago hypothesized that a loss of aSyn function could
be especially detrimental to dopaminergic neurons in a manner
to contribute to nigral PD pathology (Perez and Hastings,
2004; Porras and Perez, 2014). We have tested this hypothesis
in multiple models over the years. These include using aSyn
lentivirus in mice, brains from familial PD and Dementia
with Lewy Bodies (DLB) subjects, cell free assays, and aSyn
transgenic mice where we confirmed that TH and PP2A activities
become dysregulated when aSyn aggregates (Alerte et al., 2008;
Wu et al., 2012; Farrell et al., 2014). This demonstrates an
important normal role for soluble aSyn in the regulation
of key aSyn-interacting molecules. Others have also shown
that sustaining normal aSyn levels contributes significantly to
neuronal viability, further solidifying a major role for soluble
aSyn in optimal brain health (Gorbatyuk et al., 2010a; Kanaan
and Manfredsson, 2012; Benskey et al., 2016; Collier et al.,
2016).

A lesser known function of aSyn is our discovery that the
protein is highly expressed in pancreatic beta cells where it
interacts with Kir6.2 on insulin secretory granules, acting to
downregulate insulin secretion (Geng et al., 2011). In data
from co-immunoprecipitation experiments we show that aSyn
and Kir6.2 interact with each other in the pancreas and in
islet cell cultures, as can be appreciated in Figure 1. The
methods used for these experiments are detailed in our figure
legend. In this same paper, striking immunohistochemical
images generated by Drs. Geng and Drain confirm near perfect
overlapping localization of aSyn not only with Kir6.2, but also
with Sur1, Insulin, and C peptide in beta cells (Geng et al.,
2011).

The aSyn/Kir6.2 interaction becomes more intriguing because
in brain, neuronal Kir6.2 is found in axons and dendrites (Patel
et al., 2011; Trimmer, 2015) where it plays an active role in
the downregulation of dopamine secretion (Avshalumov and
Rice, 2003; Bao et al., 2005; Shi et al., 2008; Patel et al., 2011;
Trimmer, 2015). It remains unknown if Kir6.2 and aSyn interact
and colocalize on neurotransmitter secretory vesicles in a manner
to downregulate dopamine secretion similar to its effects on
Kir6.2 in insulin secretory granules. Still, this possibility and
other cumulative findings lead us to propose that a loss of
aSyn/Kir6.2 interactions that may occur when aSyn aggregates
could produce over-secretion of insulin and dopamine, although

this remains largely unexplored. This possibility has further
implications because there are multiple emerging lines of
evidence supporting links between type 2 diabetes mellitus
(T2DM) and PD comorbidity (Hu et al., 2007; Driver et al., 2008;
Cereda et al., 2011, 2013; Palacios et al., 2011; Schernhammer
et al., 2011; Kotagal et al., 2012; Aviles-Olmos et al., 2013; Santiago
and Potashkin, 2013; Marcelo et al., 2014; Zhang and Tian, 2014;
Santiago et al., 2017; Foltynie et al., 2018), as has been recently
been confirmed (De Pablo-Fernandez et al., 2018).

In this regard, protein misfolding and insulin resistance
are common to both T2DM and PD (Athauda and Foltynie,
2016). In diabetes, this protein misfolding implicates the islet
amyloid polypeptide protein (IAPP, also known as amylin),
which is a short peptide that is packaged and secreted along
with insulin from pancreatic beta cells (Moore and Cooper,
1991). IAPP/amylin plays a role in glycemic regulation and is
known to adopt abnormal conformations that can permeabilize
synthetic vesicles in a pore-like manner akin to findings for aSyn
protein (Anguiano et al., 2002). This has led some to propose
that IAPP/amylin oligomers may act in a prion-like manner
in the pancreatic islet cells of diabetics to spur disease onset
and/or progression, as some data tend to support (Mukherjee
et al., 2015, 2017). In addition, cross-seeding of aSyn and
IAPP/amylin has been shown to accelerate the aggregation
of both of these aggregation prone proteins (Horvath and
Wittung-Stafshede, 2016), raising the possibility that aSyn may
accumulate among the amyloids in pancreatic beta cells. This
was recently confirmed in pancreatic tissues from subjects with
synucleinopathies (Martinez-Valbuena et al., 2018). In addition,
there is evidence that in nigral dopamine neurons of individuals
with idiopathic/sporadic PD, there is a dysregulation of miR-
126, a microRNA involved in the regulation of insulin/IGF-
1/phosphatidylinositol-3-kinase (PI3K)/AKT and extracellular
signal-regulated kinase (ERK) signaling (Kim et al., 2014; Briggs
et al., 2015). Further, it is well-appreciated that insulin signaling
contributes significantly to normal brain function and becomes
dysregulated in neurodegeneration (Bomfim et al., 2012; Bamji-
Mirza et al., 2014; Gao et al., 2015). Together these findings
provide strong support for an association between T2DM and PD
in which aSyn may play a pivotal role.

It is well-established that aSyn misfolding contributes to
PD as well as to other synucleinopathies, such as DLB and
multiple system atrophy (MSA) (Galvin et al., 2001; Goedert,
2001; Trojanowski and Lee, 2003). It has further been shown
that aSyn oligomerization, to form preformed fibrils (PFF),
can induce a prion-like spread of aSyn and cell death in PD
models (Volpicelli-Daley et al., 2011, 2014; Dryanovski et al.,
2013; Polinski et al., 2018). Also, aSyn PFF uptake in vitro and
in vivo is modulated specifically by the LAG3 receptor, which
has been shown to contribute to pathological aSyn transmission
(Mao et al., 2016). Moreover, LAG3 has also been implicated in
autoimmune diabetes (Bettini et al., 2011; Zhang et al., 2017),
providing further evidence for potential overlap between diabetes
and PD.

It is also becoming accepted that aSyn plays a role in inducing
innate and adaptive immunity in PD (Allen Reish and Standaert,
2015), arising, at least in part, by aSyn activating microglial
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FIGURE 1 | Co-immunoprecipitation (Co-IP) of Kir6.2 with aSyn from pancreas (A) and from pancreatic islet cell cultures (B,C). (A) Anti-aSyn antibody (BD
Biosciences, Cat # BD610787) was used to immunoprecipitate aSyn protein from mouse pancreatic tissue extracts. Immunocomplexes are characterized on
immunoblots using anti-Kir6.2 (Santa Cruz Biotechnology, Cat # sc-11228) and anti-aSyn (Santa Cruz Biotechnology, Cat # sc-7011-R) antibodies. Equivalent
aliquots of the initial input of each extract (Input) were analyzed. Homogenates in which secondary antibody only was used (SO-IP) served as a negative control.
Both aSyn and Kir6.2 were co-immunoprecipitated with the anti-aSyn antibody (Syn Co-IP). (B) Binding interactions between Kir6.2 and aSyn are also seen in a
representative Co-IP experiment using mouse islet cells grown in culture. Immunoblots were reacted with anti-aSyn antibody (Santa Cruz Biotechnology, Cat #
sc-7011-R; in B and C, bottom panel) or anti-Kir6.2 antibody (Santa Cruz Biotechnology, Cat # sc-20809, H55; in B and C, top panel). Both Kir6.2 and aSyn are
present on immunoblots in initial homogenates (Input), and were enriched after anti-aSyn antibody Co-IP (Syn-1, BD 610787; Syn IP). Specificity was confirmed
using pre-adsorbed Syn-1 antibody (Pre), which efficiently reduced levels of protein that were co-immunoprecipitated. (C) Binding interactions between Kir6.2 and
aSyn in a representative experiment using mouse islet cells also show the presence of Kir6.2 and aSyn in the initial homogenate (Input) as well as in the Co-IP
performed using the anti-Kir6.2 antibody (Santa Cruz Biotechnology, Cat # sc-20809, H55; Kir6.2 IP), with specificity demonstrated in a Co-IP using pre-immune
serum + beads (Pre). Molecular weights, determined from pre-stained standards, are shown on the left. Data from Geng et al. (2011) reprinted with permission
obtained from the Copyright Clearance Center.

cells, which stimulates neuroimmunity (Sanchez-Guajardo et al.,
2013). A role for aSyn in metabolism has also been reported
in the Thy1 promoter parkinsonian A53T mice, where aSyn
pathology was found to drive metabolic abnormalities in that PD
model (Rothman et al., 2014). Inflammation and activated innate
immunity have been shown to play a role in the pathogenesis
of T2DM (Pickup, 2004) and inflammation is known to be
common in diabetes and other metabolic disorders (Hotamisligil
et al., 1993; Zhong et al., 2017). Based on these findings,
it thus would be prudent to evaluate parkinsonian mouse
models for potential overlapping pathology related to PD and
T2DM.

First described by James Parkinson in the early 1800s, it
is remarkable to find that in his initial description of the
disorder that was later named after him, he was among
the first to suggest that the “shaking palsy” may be caused
by “compression of the brain, or dependent on partial
exhaustion of the energy of that organ” (Parkinson, 2002). This
suggests that Parkinson himself had anticipated a potential
role for metabolic dysregulation in brain as contributing to
the disease pathology. Yet, even 200 years later the scientific
community continues to search to identify the cause for
PD and for successful therapies that will counteract PD
pathology.

In our search to identify protective therapies for PD, we
began studying FTY720 (fingolimod, Gilenya), a Food and
Drug Administration approved therapy for the demyelinating
brain disorder, multiple sclerosis (Brinkmann et al., 2010).

We first evaluated FTY720 based on its ability to stimulate
PP2A activity (Oaks et al., 2013; Vargas-Medrano et al.,
2014). This is because our research had revealed that aSyn
is a normal stimulator of PP2A catalytic subunit activity
(Peng et al., 2005), and that PP2A activity is significantly
diminished in vivo if aSyn becomes insoluble and accumulates
in Lewy bodies (Wu et al., 2012; Farrell et al., 2014). Later,
others showed that FTY720 stimulates the expression of the
protective molecule BDNF in vitro and in vivo (Deogracias
et al., 2012). Thus, we began testing FTY720 in aging
parkinsonian aSyn A53T transgenic mice and found that the
mice not only tolerate long term FTY720 treatment, but also
have behavioral improvement, increased BDNF expression, and
reduced Lewy body-like aSyn pathology when compared to
transgenic littermates treated with a vehicle control solution
(Vidal-Martinez et al., 2016). In control experiments Vidal-
Martinez et al. (2016) also show that blocking BDNF signaling
accelerates aSyn aggregation that is reversed by co-delivering
FTY720 with the TrkB blocker, ANA-12. Moreover, in addition
to being able to improve both glial and neuronal cell functions
(Balatoni et al., 2007; Miron et al., 2008; Kim et al., 2011;
Gao et al., 2012; Vargas-Medrano et al., 2014; Cipriani et al.,
2015; Segura-Ulate et al., 2017b), FTY720 has been shown
to have potent anti-diabetic activity including an ability to
stimulate insulin secretion (Fu et al., 2001; Yang et al.,
2003; Kendall and Hupfeld, 2008; Zhao et al., 2012; Moon
et al., 2013). Remarkably, insulin itself can stimulate dopamine
release (Stouffer et al., 2015; Sulzer et al., 2016), confirming

Frontiers in Molecular Neuroscience | www.frontiersin.org 3 December 2018 | Volume 11 | Article 465

https://www.frontiersin.org/journals/molecular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-11-00465 December 20, 2018 Time: 17:18 # 4

Vidal-Martinez et al. Alpha-Synuclein, Diabetes, and Parkinson’s Disease

related effects on insulin and dopamine in brain and pancreas
that are highly relevant to PD and T2DM. In addition, there
is compelling evidence that dopamine itself is produced within
beta cells of the human pancreas, where it becomes packaged
along with insulin and acts to negatively regulate insulin secretion
(Simpson et al., 2012). Future studies will be required to
determine if aSyn binding to Kir6.2 occurs in brain to modulate
dopamine similarly to its effects on insulin release. Additional
studies to assess potential benefits of our novel FTY720-derivative
compounds in pancreatic beta cells and neurons are also
required. Cumulatively, the findings concerning the comorbidity
of diabetes with PD, and the overlapping interactions between
aSyn and key regulatory molecules in brain and pancreas open the
door to further explore potential novel therapies that may benefit
both disorders that affect a large percentage of our rapidly aging
population, worldwide.
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