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Abstract: A semi-exhaustive approach and a heuristic search algorithm use a fragment-based drug
design (FBDD) strategy for designing new inhibitors in an in silico process. A deconstruction recon-
struction process uses a set of known Hsp90 ligands for generating new ones. The deconstruction
process consists of cutting off a known ligand in fragments. The reconstruction process consists of
coupling fragments to develop a new set of ligands. For evaluating the approaches, we compare the
binding energy of the new ligands with the known ligands.

Keywords: computational approach; fragment-based drug design; Hsp90; protein inhibitors

1. Introduction

Rational drug design remains a challenging problem for computational methods
developed in bioinformatics and medicinal chemistry. In this sense, computational genera-
tive methods have begun to show promising results for the design problem. Principally,
computer-aided drug discovery/design (CADD) has played a significant role in developing
therapeutically important small molecules [1]. In general, the computational methods used
in research of drug development are broadly classified into two groups: (i) ligand-based
methods or (ii) structure-based methods [2].

The ligand-based methods use only ligand information for predicting activity depend-
ing on its similarity/dissimilarity to previously known active ligands. When the structural
information of the protein is sufficient, it uses structure-based approaches. In other words,
it is a simulation of the protein-ligand interactions. These interactions are essential for
biochemical functionality and are present in all biochemical roles [3]. According to the
structure-based technique, the development of a new compound consists of two stages [4].
The first one consists of the exploration of an ample conformational space representing
various potential binding modes, and the second one of obtaining an accurate prediction
of the interaction energy associated with each of the predicted binding conformations [5].
In this context, the molecular docking programs perform these tasks through a cyclical
process, in which specific scoring functions evaluate the ligand conformation. This process
is carried out recursively until converging to a minimum energy solution [5–7].

From the point of view of searching for active compounds on one or more therapeutic
targets using compound libraries, virtual screening (VS) based on molecular docking is an
efficient method to recover new successful compounds in drug discovery. On the other
hand, fragment-based drug design (FBDD) has emerged as a robust approach to identify
small molecules that bind to a wide range of therapeutic targets; this approach has led
to efficient progress in developing new drugs [8–12]. Experimental and computational
FBDD has established itself as an effective alternative to more traditional methods such as
high-throughput screening (HTS) [13,14]. However, in computational FBDD, they have
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not yet utilized the power of three-dimensional (3D) structural information for this reason.
Successful fragment making often requires co-structures of the fragments bound to their
target proteins and various biophysical and biochemical assays to track potency and efficacy.
We have incorporated molecular docking to measure the affinity for new ligands obtained
from our method.

Additionally, the binding energy of the entire molecule with the target can be consid-
ered the sum of individual binding energy between the fragments and the target. Despite
this affirmation, identifying suitable fragments that bind to the neighboring binding sites
is an obstacle. An essential advantage of the FBDD approach is that once the detailed
interaction within the pocket is experimentally validated and clearly understood, it could
provide a huge opportunity to design potent drug-like compounds [12]. The construction
of a fragment library is the first step for FBDD. Several factors should be considered, in-
cluding [12]: (i) the difference between fragments and hits or leads, wherein [15] propose a
rule-of-three (RO3) for the construction of a fragment (molecular weight is < 300, cLogP is
≤3); (ii) the size of the fragment library; (iii) structural diversity of the fragment library;
(iv) the solubility of fragments; and (v) the drug-likeness of fragments. We used the FBDD
strategy called the deconstruction-reconstruction approach (DRA) in this work, which has
gained attention in recent years [16]. The first step of DRA is to deconstruct known ligands
into several fragments obtaining a fragment library. A size of 500 to 3000 components
is recommended [17]. The second step is to reconstruct these fragments selected from
the relevant fragment library into a new scaffold. Classic guidelines should govern the
reconstruction stage, such as Lipinski’s rule of five and Veber’s rules to maintain suitable
drug-like physicochemical properties, including molecular weight and volume [18,19].
For many years the DRA has been explored, showing it being helpful for target proteins.
The main reason is that many reported ligands can provide robust data to create novel and
promising scaffolds for further development.

This work presents two computational approaches aimed to decrease the search-
ing time for potential high-quality ligands for Hsp90 inhibitors. The two approaches
use a fragment-based drug design (FBDD) strategy for designing new ligands. A semi-
exhaustive search strategy and a heuristic search algorithm that focuses on decreasing the
computational required by the first approach. We have constructed a library of several
Hsp90 ligands that have already been addressed [20–24] to evaluate our method. However,
the problem of finding acceptable ligands with a high inhibition level remains unsolved.
Currently, a database of more than 70 Hsp90 ligands [25] is available. We use this database
for the experiments.

2. Materials and Methods
2.1. Semi-Exhaustive Approach

The semi-exhaustive approach follows an FBDD technique. Mainly, we use a DRA for
the computations of new ligands. In Figure 1, we can observe the stages of the algorithm.
In the following, we explain each step:

Stage 1. Deconstruction. A set of NKL Hsp90 ligands, called known ligands (KL), is
selected for the fragmentation stage. Each ligand is cut off in sub-ligands considering the
following constraints extracted from RO3 [15]: (i) the molecular weight must be <300; (ii)
cLogP must be ≤3 ; (iii) the number of hydrogen bond donors must be ≤3 and (iv) the
number of hydrogen bond receptors must be ≤3 [26]. Let NKL be the number of known
ligands. Each ligand Li, ∀i = 1, . . ., NKL is fragmented in mi sub-ligands (fragments). Then
a total of NFL = ∑N

i=1 mi fragments are generated from KL. Then the number of sub-ligands
stored in the folder FL is NFL.

Stage 2. Duplicity and Cleaning. For each sub-ligand obtained in the first stage, NFL,
we apply a duplicity check process. The process compares each sub-ligand with the rest of
sub-ligands in the set to check if a duplication exists. For this goal, we use the Tanimoto
coefficient, where the similarity between each pair of sub-ligands is computed [27]. If there
are duplicated sub-ligands, they are deleted. Let DF be the number of duplicated sub-
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ligands, therefore the number of sub-ligands now is NSL = NFL − DF. It is important
to note that if a sub-ligand appears several times, all their copies are deleted, and just
one remains.

KL
Known
Ligands

FL
Fragmented
Ligands

Fragmentation

of Hsp90 ligands

DECONSTRUCTION 1

Duplicity Cleaning

SL
Body

SL∗
Header

SUB-LIGANDS 3

NL
New
Ligands

Reconstruction
of new Hsp90
ligands

RECONSTRUCTION 4

Duplicity Cleaning

CL
Candidate
Ligands

Molecular Docking & BE calculation

VALIDATION 6

2

5

Figure 1. Flow chart of the deconstruction-reconstruction approach applied to HSP90 ligands.

Stage 3. Sub-Ligands. The folder SL* contains all sub-ligands obtained in the previous
stage. Each sub-ligand that includes an asterisk identifier indicates that it contains a broken
bond. Another folder called SL contains each sub-ligand without the asterisk identifiers. In
this set, we have the same sub-ligands from SL*, but without the identifiers. We recall that
each of these folders contain NSL sub-ligands.

Stage 4. Reconstruction. The folder SL* contains the header of each sub-ligand,
i.e., the sub-ligand with the asterisks identifying broken bonds. The folder SL contains the
body of the sub-ligands, i.e., the sub-ligands without the asterisk identifiers.
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The process of union between sub-ligands starts taking a header from set SL* and a
body from set SL. Let consider two sub-ligands, sub-ligand A (from SL*) and B (from SL).

The body of sub-ligand B bonds into the first asterisk identifier on the header of sub-
ligand A. Then, if asterisk identifiers remain in the sub-ligand A, a random sub-ligand from
SL is coupled. This last step is repeated until no free identifiers remain in A. The process
is repeated for each sub-ligand B in SL with each sub-ligand A in SL*. Each new ligand
obtained from the union process is stored in the folder NL. Let recall that we have NSL
sub-ligands in each folder, SL* and SL, then the reconstruction process will generate N2

SL
new ligands. If a new ligand does not satisfy Lipinski’s Rule of Five [18] and Veber’s
rules [19], then it is rejected. Let RNL be the number of new ligands which are rejected,
then the total of new ligands is NNL = N2

SL − RNL.
Stage 5. Duplicity and Cleaning. As in Stage 2, a duplicity and cleaning process is

applied in the same way. Each new ligand is compared with the rest of the ligands in set
NL, checking for duplication. If so, then all the duplicated new ligands are deleted, and just
one remains. Let DNL be the number of duplicated new ligands, then the number of new
ligands now is N = NNL − DNL. Therefore the total number of new ligands obtained from
known ligands is:

N = (NFL − DF)
2 − RNL − DNL (1)

where NFL is the total fragments from KL library, DF is the number of deleted fragments
due to duplicity, DNL is the number of new ligands deleted from duplicity, and RNL is the
number of rejected new ligands.

Stage 6. Validation. The validation stage consists of computing the binding energy
(BE) of each new ligand stored in NL. The process consists in calculating the interaction
between the Hsp90 protein and a specific ligand. Then, considering several possible
docking positions, the BE is computed. If the size of a ligand is larger than the grid
specified for docking with the Hsp90, the evaluation is not possible. These ligands remain
valid but not available. From all docking positions, it considers the most negative energy.
The molecular docking software Autodock [28] is used in this stage.

Deconstruction example. The ligand PU3 is presented in Figure 2. If this ligand is
cut off (deconstruction), then a total of five sub-ligands can be obtained. In Figure 2 the
corresponding sub-ligands are presented as well.

Figure 2. (A) PU3 ligand of Hsp90 and (B) The five sub-ligands from PU3.
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The open-source software OpenBabel [29] is used to convert a ligand, from PDB
(protein data bank) format to SMILES (simplified molecular-input line-entry system) for-
mat [30]. The line notation of SMILES format allows to work the molecular representation
of the ligands in a simpler manner. The reading of files with chemical structures in this for-
mat becomes easier to handle than with PDB format. We use the SMILES format from stages
1 to 5 (deconstruction, clean/duplicity, sub-ligands/reconstruction, and clean/duplicity).
The open-source software PyMol [31] is used for the visualization.

Automated docking was used to locate new compound appropriate binding orienta-
tions and conformations into the Hsp90 binding pocket. The structure of Hsp90 used in
molecular docking was obtained from X-ray crystal data in RCSB Protein Data Bank (PDB
ID: 5LQ9). The molecular docking calculations were carried out by using the AutoDock4
software. The protein structure was prepared by removing water, adding Kollman charges
and polar hydrogen. First, the residues around 6Å of the co-crystallized ligand were
considered the binding site for docking calculations. Note that this box centered in the
co-crystallized ligand involved two characteristic regions: (i) Site 1, corresponding to
ATP-binding site and (ii) Site 2, which represents an internal region (see Figure 3). All the
molecules from the data set were docked into the active site of Hsp90. Then, a grid map
was generated by the auxiliary program AutoGrid4 using x, y, and z coordinate to find a
small but more representative grid center for the active site. The grid dimensions were set
to 45× 45× 45 points, with a grid spacing of 0.375Å. The number of docking runs was set
to 100. The population in the genetic algorithm was 150. After docking, the 100 docked
poses were clustered into groups with RMS deviations lower than 1Å. Among the entire
cluster of complexes predicted by AutoDock4, the most populated cluster conformation,
together with the lowest energy conformation for the most active compound docked to the
receptor.

Figure 3. Hsp90 co-crystalized (PDB ID: 5LQ9) with ligand in green, and superposition of BIIB021
purine derivative compound in orange.

The computation equipment used in the experiments is an Intel Core i7 with 3.2 GHz
of processing on Ubuntu 16.04.
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2.2. Heuristic Approach

We propose a heuristic-based approach to find new high-quality ligands from the
sub-ligands obtained from the deconstruction process shown in Figure 1 in reduced com-
putation times. This process works as a replacement for the reconstruction process shown
in stage 4 in Figure 1.

The objective is to reduce the time involved in the reconstruction process using a
local search approach capable of quickly constructing high-quality new ligands. Next, we
present the representation and evaluation function used in our algorithm. Also, it shows
the main structure of the local search approach and the search operators used.

2.2.1. Representation

A list of fragments represents a solution. Each solution contains a unique header and
one or more bodies. The number of bodies depends on the number of available bonds
(asterisk identifiers) in the header structure.

Figure 4 shows an example of the representation of a solution. The solution contains
the header in the first position, followed by two bodies. It uses SMILES format for the
elements in the list. In the lower area, the two-dimensional model is shown as well.

Figure 4. Representation example: A solution composed by one header and two bodies.

2.2.2. Evaluation Function

The evaluation starts checking the feasibility of the list of fragments and then evaluates
its quality. Feasibility is a filter according to the Lipinski’s rules to determine that each new
ligand is valid in a pharmacological environment [18]. Once validated, it computes the
energy of the new ligand using the AutoDock Vina [32] software and the same conditions
described in Section 2.1. The number of positions to test is considered a parameter of the
algorithm (pos).

2.2.3. General Structure

Algorithm 1 shows the structure of the local search algorithm proposed here. It
corresponds to a simulated annealing-based approach that uses two repairing operators
to generate a new ligand at each iteration. It can accept worse quality solutions based
on a probability controlled by a cooling schedule. This cooling schedule allows more
deteriorations in the early stages of the search process and reduces their acceptance at the
end of the process. The algorithm requires the parameter values for reduction factor (α)
and initial and final temperature (initial_temp and f inal_temp).

The algorithm performs a fixed number of times the whole simulated annealing
procedure. This number of repetitions is required to change the header structure of the
current solution during the process. The parameter max_tries controls the number of
repetitions. In each step, a local search process iterates from the given initial temperature
to the final temperature (lines 5 to 22). At each iteration, temperature is reduced by α factor
(line 21).
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Algorithm 1 Simulated Annealing Algorithm

1: BestLigand← ∅;
2: while (tries < max_tries) do
3: current_temp← initial_temp;
4: CurrentLigand← generate_initial_ligand();
5: while (current_temp > final_temp and not stuck) do
6: NewLigand← Change (CurrentLigand);
7: if ( f (NewLigand) ≤ f (CurrentLigand)) then
8: CurrentLigand← NewLigand;
9: NewLigand← Swap (CurrentLigand);

10: if ( f (NewLigand) ≤ f (CurrentLigand)) then
11: CurrentLigand← NewLigand;
12: end if
13: else
14: if (rand(0, 1) < exp(( f (NewLigand) − f (CurrentLigand))/current_temp))

then
15: CurrentLigand← NewLigand;
16: end if
17: end if
18: if ( f (CurrentLigand) ≤ f (BestLigand)) then
19: BestLigand← CurrentLigand;
20: end if
21: current_temp← α·current_temp;
22: end while
23: end while

Each simulated annealing process incorporates a stuck criterion to reduce the com-
putational effort dedicated to exploring local search neighborhoods. The parameter stuck
controls the number of iterations without improvement. Variable BestLigand stores the
best solution found during the whole process (line 1). Simulated annealing starts each
iteration from a new random solution (line 4). To select a high-quality initial solution, a
competition between random ligands is performed. The description of this procedure is
presented in Section 2.2.4.

The approach implements two movements: change and swap. At each iteration, the pro-
cess searches for the best combination of bodies for a given header. Hence, the first move-
ment selects a random body from the solution and changes it by a different body available
in the library (line 6). If the movement generates an improvement in the energy of the cur-
rent ligand, a second movement is applied to evaluate the distribution of these bodies in the
available bonds of the header (line 9). Movements are explained in Sections 2.2.5 and 2.2.6.

The algorithm performs the simulated annealing cooling scheme to accept worsening
solutions only during the use of the change operator (line 14). It is expected that this
operator generates more significant changes in the structure of solutions, and hence, it is
allowed to generate deteriorations in some possible ligands as well.

2.2.4. Initial Solution Generation

In this step, the algorithm performs a competition between random solutions. First,
it generates a solution choosing its header structure from the available ones. From its
available nb bonds, the algorithm selects nb bodies to complete a new ligand. The selection
of these bodies is random.

2.2.5. Change Movement

This movement consists of changing one of the bodies in the current solution. A ran-
dom body from the current solution is selected and replaced by a new random body.
To reduce the neighborhood of this movement, we use the Tanimoto indicator to determine
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the similarity between bodies. A Tanimoto similarity higher than 0.0 defines that two
bodies belong to the same neighborhood.

Figure 5 shows an example of the application of this movement. An input ligand
and its corresponding output are in the upper and lower part, respectively. Each one is
shown with its SMILES format and its two-dimensional representation. Moreover, it also
shows the two-dimensional structure of both corresponding ligands on the right of the
figure. In this example, the first body is replaced by a new body randomly selected using
its Tanimoto similarity neighborhood from the SL set.

Figure 5. Change movement example.

2.2.6. Swap Movement

This movement changes the order of the locations of bodies in the available header’s
bonds. This step occurs after applying the change operator to the bodies. The goal of this
movement is to improve the quality of the solution only if a promising new ligand was
found. It is important to remark that the movement is not applied if the current solution
contains only one body. Figure 6 shows an example of the use of this movement. It shows
the same information as in Figure 5. This input ligand corresponds to the output ligand
obtained in the change movement example. The movement only changes the location of
two bodies, but this can lead to essential changes in the final ligand structure. It shows
these changes in the right part of Figure 6 with the two-dimensional representation of the
resulting ligands.

Figure 6. Swap movement example.
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3. Results

An Hsp90 ligand library with 70 components is selected and used [25]. As a prelimi-
nary check, we evaluate the binding energy (BE) for each ligand. The BE is the best binding
energy from 25 docking positions. The worst energy level found is 9.2, and the best one is
−11.3. Two ligands (a hydroxy-indazole and an amino-quinazoline) reach the best value.
The average BE is −9.2, and the 92% of ligands in the library have energy levels lower than
−6.9 and closer to 40% lower than −10.

The experiment design is the following: (i) it considers eight groups of ligands (eight
different KL libraries), where each one has a different number of ligands, (ii) for each group,
the semi-exhaustive process obtains a new ligand library, (iii) for each group, the heuristic
approach obtains a new ligand library, and (iv) the BE is computed for each new ligand
from both libraries.

Each ligand from the KL library belongs to a particular family: (A) resorcinol, (B)
hydroxy-indazole, and (C) “others” (including aminothienopyridine, 6-hydroxyindole,
7-imidazopyridine, 2-aminopyridine, adenine, 7-azaindole, aminopyrrolopyrimidine, ben-
zamide, and aminoquinazoline). For more details see Tables 1–3.

Table 1. Hsp90 inhibitors: resorcinol [25].

Id SMILES BE

M01 CCNC(=O)c1noc(-c2cc(Cl)c(O)cc2O)c1-c1ccc(OC)cc1 -7.9
M02 CCNC(=O)c1[nH]nc(-c2cc(Cl)c(O)cc2O)c1-c1ccc(OC)cc1 -8.0
M03 CCNC(=O)c1noc(c2cc(Cl)c(O)cc2O)c1c3ccc(C[NH+]4CCOCC4)cc3 -7.6
M04 O=c1[nH]nc(-c2cc(Br)c(O)cc2O)n1-c1ccccc1F -8.1
M06 CCc1cc(-c2n[nH]c(C)c2-c2ccccc2F)c(O)cc1O -8.7
M07 O=c1[nH]nc(-c2ccc(O)cc2O)n1-c1ccccc1F -8.3
M09 COc1ccc(-c2c(-c3ccc(O)cc3O)n[nH]c2C)cc1 -8.3
M10 CN(Cc1ccco1)C(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2F)c(O)cc1O -9.6
M11 Cc1ccccc1-n1c(-c2cc(C(=O)N(C)Cc3cccs3)c(O)cc2O)n[nH]c1=O -8.9
M12 CCCCN(C)C(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2F)c(O)cc1O -9.1
M13 Oc1cc(O)c(-c2ccnn2-c2ccccc2Cl)cc1CCc1ccccn1 -9.7
M14 CCCN(C)S(=O)(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2F)c(O)cc1O -8.6
M15 CC(C)N(C)S(=O)(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2F)c(O)cc1O -8.9
M25 CC(C)N(C)S(=O)(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2Cl)c(O)cc1O -8.1
M26 CCCN(C)C(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2C)c(O)cc1O -8.4
M27 Cc1ccccc1-n1c(-c2cc(C(=O)N(C)Cc3ccccc3)c(O)cc2O)n[nH]c1=O -9.3
M28 CCCCCCN(C)C(=O)c1cc(-c2ccnn2-c2ccccc2C)c(O)cc1O -9.0
M29 Cc1cccc(CN(C)C(=O)c2cc(-c3n[nH]c(=O)n3-c3ccccc3C)c(O)cc2O)c1 -10.5
M30 Cc1ccccc1-n1c(-c2cc(C(=O)N(C)CC3CCCO3)c(O)cc2O)n[nH]c1=O -8.7
M31 CCCCN(C)C(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2)c(O)cc1O -9.3
M32 Cc1ccccc1-n1nccc1-c1cc(C(=O)N(C)Cc2ccco2)c(O)cc1O -9.2
M33 Cc1ccccc1-n1c(-c2ccc(O)cc2O)n[nH]c1=O -8.2
M34 O=c1[nH]nc(-c2ccc(O)cc2O)n1-c1ccccc1Cl -8.1
M35 CCc1ccccc1-n1c(-c2ccc(O)cc2O)n[nH]c1=O -8.2
M36 CCCN(C)C(=O)c1cc(-c2n[nH]c(=O)n2-c2ccccc2F)c(O)cc1O -9.0
M61 CCNC(=O)c1noc(-c2cc(C(C)C)c(O)cc2O)c1-c1ccc(C[NH+]2CCOCC2)cc1 -8.2
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Table 2. Hsp90 inhibitors: hydroxy-indazole [25].

Id SMILES BE

M08 Cc1n[nH]c2cc(O)c(-c3ccnn3-c3ccccc3)cc12 -8.7
M37 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc5c(c4)OCO5)cc23)c1 -11.3
M38 C[NH+]1CCC(c2ccc(N(C)C(=O)c3cc4c(CCC(C)(C)C)n[nH]c4cc3O)cc2)CC1 -9.2
M39 CCCCN(C)C(=O)c1n[nH]c2cc(O)c(C(=O)N(C)c3ccc(N4CCOCC4)cc3)cc12 -9.0
M40 CN(Cc1ccc(Cl)cc1)C(=O)c2cc3c(Cc4ccccc4)n[nH]c3cc2O -10.6
M41 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)Cc4ccccc4)cc23)c1 -10.5
M42 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)Cc4ccc(Cl)cc4)cc23)c1 -10.4
M43 Oc1cc2[nH]nc(Cc3ccccc3)c2cc1-c1ccnn1-c1ccccc1 -9.7
M44 Cc1ccc(N(C)C(=O)c2cc3c(Cc4cccc(C)c4)n[nH]c3cc2O)cc1 -10.8
M45 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N5CCOCC5)cc4)cc23)c1 -10.7
M46 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccccc4)cc23)c1 -10.5
M47 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N5CCCCC5)cc4)cc23)c1 -10.9
M48 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N(C)C)cc4)cc23)c1 -10.4
M49 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N5CC[NH2+]CC5)cc4)cc23)c1 -10.7
M50 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N5CCN(C)CC5)cc4)cc23)c1 -10.1
M62 CO[C@H]1CCN(C(=O)c2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N5CCOCC5)cc4)cc23)C1 -8.4
M63 CO[C@H]1CCCN(C(=O)c2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N5CCOCC5)cc4)cc23)C1 -9.5
M64 CN(C(=O)c1cc2c(C(=O)N3CCCC3)n[nH]c2cc1O)c1ccc(N2CCOCC2)cc1 -9.9
M65 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(N5CCOCC5=O)cc4)cc23)c1 -10.3
M66 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4ccc(F)cc4)cc23)c1 -10.7
M67 COc1cccc(N(C)C(=O)c2cc3c(Cc4cccc(C)c4)n[nH]c3cc2O)c1 -10.8
M68 Cc1cccc(Cc2n[nH]c3cc(O)c(C(=O)N(C)c4cccc(C)c4)cc23)c1 -11.0
M69 CN(C(=O)c1cc2c(cc1O)[nH]nc2C(=O)N1CCOCC1)c1ccc(N2CCOCC2)cc1 -10.3

Table 3. Hsp90 inhibitors: “others” [25].

Id SMILES BE

M05 COc1ccc(-c2c(C#N)c(N)nc3sc(C(N)=O)c(N)c23)cc1OCCCC(=O)O -8.4
M17 N#Cc1ccc(N2CCN(CCCc3c[nH]c4cc(O)c(C#N)cc34)CC2)cc1 -8.7
M18 Brc1cnc2[nH]cnc2c1C(=O)NC1c2ccccc2-c2c(-c3cnc4ccccc4c3)cccc21 4.7
M24 Nc1cc(C(=O)NC2c3ccccc3-c3c(-c4nc5ccncc5[nH]4)cccc32)ccn1 -4.5
M60 C#CCCCn1c(Cc2cc(OC)c(OC)c(OC)c2Cl)nc2c(N)nc(F)nc21 -8.0
M19 c1cnc2[nH]ccc2c1C(=O)N[C@@H]1c2ccccc2c2c1cccc2c1[nH]c2c(n1)cc(cc2)F 4.2
M20 O=C(NC1c2ccccc2-c2c(-c3nc4ccncc4[nH]3)cccc21)c1ccnc2[nH]ccc12 0.2
M58 Cc1cnc(Cn2ccc3c(Cl)nc(N)nc32)c(C)c1Cl -9.0
M59 COc1c(C)cnc(Cn2cc(C#CCC(C)(C)O)c3c(Cl)nc(N)nc32)c1C -6.9
M21 Cc1nn(-c2ccc(C(N)=O)c(N[C@H]3CC[C@H](O)CC3)c2)c2cccc(-c3cnc4ccccc4c3)c12 9.2
M22 Cc1cn(-c2ccc(C(N)=O)c(N[C@H]3CC[C@H](O)CC3)c2)c2c1C(=O)CC(C)(C)C2 -10.8
M23 Cc1cn(-c2ccc(C(N)=O)c(NC3CCC(=O)CC3)c2)c2c1C(=O)CC(C)(C)C2 -10.9
M51 Nc1nc(C(=O)N2Cc3ccc(O)cc3C2)c2ccccc2n1 -11.0
M52 Nc1nc(C(=O)N2Cc3ccccc3C2)c2cc(O)ccc2n1 -10.5
M53 C[NH+]1CCN(S(=O)(=O)c2ccccc2-c2ccc3nc(N)nc(C(=O)N4Cc5ccccc5C4)c3c2)CC1 -7.7
M54 CNCc1ccccc1-c1ccc2nc(N)nc(C(=O)N3Cc4ccccc4C3)c2c1 -11.3
M55 Nc1nc(C(=O)N2Cc3ccccc3C2)c2cc(-c3cc(F)c(F)cc3CCc3nnn[nH]3)ccc2n1 -10.8
M56 Nc1nc(C(=O)N2Cc3ccccc3C2)c2ccccc2n1 -11.0
M71 Cc1ccc2nc(N)nc(C(=O)N3Cc4ccccc4C3)c2c1 -11.0

The criterion for defining the groups is to keep diversity between the ligands, ex-
cept group 8, where the selection is from the two main families (resorcinol and hydroxy-
indazole). For instance, group 1 contains a ligand from the resorcinol family, a ligand from
the hydroxy-indazole family, and three ligands from others. As the number of ligands
increases in the groups, the diversity remains. The main goal of the groups definition is
that every ligand belongs at least to one group. For each group, the number of ligands from
the resorcinol and hydroxy-indazole families together is similar to the number of ligands
from “others”. Group 8 is the exception, where there are no ligands from “others”. Figure 7
shows the Tanimoto matrix indicating the similarity level between ligands in the library
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grouped by families. We can observe that there is a high similarity between ligands from
the same family. A low similarity between ligands from different families can be observed
as well. As mentioned before, the incorporation of each ligand in a group is focused in
keeping a high diversity in terms of similarity.

Table 4 presents the eight groups representing the KL libraries for the experiments.

Figure 7. Tanimoto similarity matrix

Table 4. Groups for the experiment. Each ligand belongs to some family [25]. The ligand structure
specification is in Tables 1–3. The bold, cursive or underlined ligand belongs to the resorcinol,
hydroxy-indazole or “others” family respectively.

Group KL Library

1 M61, M08, M17, M24, M60

2 M35, M36, M69, M70, M17, M24, M60, M05, M18, M19

3 M01, M02, M03, M37, M38, M39, M17, M24, M60, M05, M18, M19, M20, M21,
M59

4 M31, M32, M33, M34, M65, M66, M67, M68, M17, M24, M60, M05, M18, M19,
M20, M21, M22, M51, M58, M59

5 M04, M06, M07, M09, M10, M40, M41, M42, M43, M44, M17, M24, M60, M05,
M18, M19, M20, M21, M22, M23, M51, M52, M53, M58, M59

6
M25, M26, M27, M28, M29, M30, M48, M49, M50, M62, M63, M64, M17, M24,
M60, M05, M18, M19, M20, M21, M22, M23, M51, M52, M53, M71, M54, M55,
M58, M59

7
M11, M12, M13, M14, M15, M25, M26, M27, M45, M46, M47, M48, M49, M50,
M62, M63, M17, M24, M60, M05, M18, M19, M20, M21, M22, M23, M51, M52,
M53, M71, M54, M55, M56, M58, M59

8
M61, M01, M02, M03, M04, M06, M07, M09, M10, M11, M27, M28, M29,
M30, M31, M32, M33, M34, M35, M36, M08, M37, M38, M39, M40, M41, M42,
M43, M44, M45, M50, M62, M63, M64, M65, M66, M67, M68, M69, M70
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Table 5 shows the results of the semi-exhaustive approach performance. It shows the
number of known ligands (KL), the best binding energy obtained from KL, the number
of fragments (sub-ligands) generated, the number of new ligands (NL), the best binding
energy from NL, and the total computational time for each group.

Interestingly, the semi-exhaustive approach always obtained new ligands that show
better binding energy than the best in the corresponding KL library. We can confirm that
the deconstruction-reconstruction method can generate high-quality new ligands for the
Hsp90. The semi-exhaustive approach obtains a minimum improvement of around 1% for
group 8 and a maximum of 40% for group 1. Moreover, it obtains an average improvement
of around 16% on binding energy.

From Table 5 it is also interesting to notice that the number of new ligands and the
execution time do not necessarily grow exponentially according to the size of the KL library
of each group. As expected, this is due to the semi-exhaustive nature of the approach and
its duplicity and cleaning stages. Group 1 required only 89.1 minutes to obtain a total of 581
new ligands reconstructed from a library of 5 known ligands. Meanwhile group 8 required
around to 3,660 minutes to obtain 51,514 new ligands from a group of 40 known ligands.

The execution time increases with the number of new ligands, but the binding energy
does not show the same behavior. Probably, it is because the process can reconstruct new
high-quality ligands from fragments available in ligands belonging to different families,
but not necessarily from a large KL library.

Figure 8 shows the structure of the best new ligand obtained by the semi-exhaustive
approach in each group. For simplicity, Table 6 shows each structure in the SMILES format.

Table 5. The number of known ligands (# KL), the best binding energy (BBEKL) of known ligands,
the number of fragments (# SL), the number of new ligands (# NL), the best binding energy (BBENL)
of new ligands and the computational time (TS) in minutes for each group with the semi-exhaustive
approach.

G # KL BBEKL # SL # NL BBENL TS

1 5 −8.7 25 581 −12.2 89.1
2 10 −10.6 48 2061 −12.8 276.8
3 15 −11.3 81 5848 −12.4 815.9
4 20 −11.0 95 7861 −13.0 1092.2
5 25 −11.0 114 12,266 −12.6 1515.7
6 30 −11.3 153 10,163 −12.9 2730.4
7 35 −11.3 177 28,910 −13.0 3546.9
8 40 −11.3 237 51,514 −11.4 3661.7

Table 6. New ligands with best binding energy using the semi-exhaustive approach.

G New Ligand (SMILES)

1 [C@H]1(N[C@@H]2[C@@H](N)N=C(F)N[C@H]2N1NC1c2ccccc2c2ccccc12)
[C@@H]1Nc2ccncc2N1

2 C(=O)(c1ccnc2[nH]ccc12)NC1c2ccccc2c2ccccc12
3 c1(ccc(N)cc1NC1c2ccccc2c2ccccc12)NC1c2ccccc2c2ccccc12
4 c1(ccc(cc1NC1c2ccccc2c2ccccc12)N1CCCN1)NC1c2ccccc2c2ccccc12
5 C(=O)([SH](O)(O)c1ccccc1)NC1c2ccccc2c2ccccc12
6 c1(ccc(cc1NC1c2ccccc2c2ccccc12)N1CCCN1)NC1c2ccccc2c2ccccc12
7 c1(ccc(cc1NC1c2ccccc2c2ccccc12)[C@@H]1NNNN1)NC1c2ccccc2c2ccccc12
8 [C@H]1(ONC(=C1[C@@H]1NNc2cc(O)ccc12)c1cc2[C@H](C)NNc2cc1O)

[C@@H]1NNc2cc(O)ccc12
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Figure 8. New ligand structures with the best binding energy obtained with the semi-exhaustive
approach for each group.

Table 7 summarizes the results obtained by the heuristic search approach. It shows the
average best binding energy, the standard deviation, and the best binding energy obtained
from five executions using different random seeds. It also shows the average computational
time and standard deviation of these executions.

Interestingly, the best binding energy obtained by the heuristic algorithm is always
close to the results obtained by the semi-exhaustive approach.

The heuristic approach shows a stable behavior in terms of execution time. For group 8,
five executions can take around 200 min, 6% of the time required by the semi-exhaustive ap-
proach. An advantage of the heuristic approach is being able to work with large KL libraries.
This method can be used as an explorative supporting system before the application of the
semi-exhaustive or exhaustive version of the first approach.

Figure 9 shows the structure of the best new ligand obtained with the heuristic
approach in each group. For simplicity, Table 8 shows each new ligand structure in the
SMILES format. Figure 10 shows the eight best docking position obtained for each group
by the semi-exhaustive approach and the heuristic search approach.
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Table 7. The best binding energy (BBEKL) of known ligands, the best binding energy (BBES
NL) and the

computational time (TS) in minutes with the semi-exhaustive approach, the average binding energy
(ABENL), the best binding energy (BBEH

NL) and the average computational time (TH) in minutes for
each group with the heuristic search approach. The binding energy equal or lower than the obtained
by the semi-exhaustive approach is shown in bold.

G BBEKL BBES
NL TS ABENL ± σ BBEH

NL TH ± σ

1 −8.7 −12.2 89.1 −12.04 ± 0.3 −12.4 76.2 ± 20.2
2 −10.6 −12.8 276.8 −12.00 ± 0.1 −12.3 104.1 ± 44.8
3 −11.3 −12.4 815.9 −11.98 ± 0.3 −12.4 66.1 ± 27.9
4 −11.0 −13.0 1092.2 −12.10 ± 0.3 −12.4 65.1 ± 11.6
5 −11.0 −12.6 1515.7 −11.86 ± 0.9 −12.8 72.4 ± 25.9
6 −11.3 −12.9 2730.4 −12.08 ± 0.4 −12.7 74.8 ± 19.9
7 −11.3 −13.0 3546.9 −11.92 ± 0.9 −12.8 61.8 ± 49.9
8 −11.3 −11.4 3661.7 −10.80 ± 0.5 −11.4 44.3 ± 18.2

Table 8. New ligands with best binding energy using the heuristic search approach.

G New Ligand (SMILES)

1 Clc1ccc(CN2CCNCC2)cc1
2 CN(NC1c2ccccc2-c2ccccc21)c1cnc2ccccc2c1
3 NCc1cc2c(NNC3c4ccccc4-c4ccccc43)c[nH]c2cc1O
4 Cc1cn(-c2ccnc3[nH]ccc23)c2c1C(=O)CC(C)(C)C2
5 Cc1cccc(-c2nc3cc(F)ccc3[nH]2)c1
6 CNc1ccc(-c2ccnc3[nH]ccc23)cc1-c1ccccc1C
7 CNc1cc(NC2c3ccccc3-c3ccccc32)c(C)c(N2CCCCC2)c1Cl
8 c1ccc(-c2ccccc2)cc1

Figure 9. New ligand structures with the best binding energy obtained with the heuristic search
approach for each group.
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Figure 10. Best docking position for each new ligand obtained by (A) semi-exhaustive approach and
(B) heuristic search approach.

4. Discussions

According to the results, the best binding energy from each group shows an im-
provement compared to the best energy from the known ligands library (−11.3). Group
8 obtained the worst improvement, while groups 4 and 7 got the highest improvements
using the semi-exhaustive approach. We can hypothesize that the variety of the group in
terms of the families to which the known ligands belong can influence the binding energy
improvement. We can observe that the binding energies obtained in the experiments of
group 8 are of lower quality compared to groups 4 and 7. Group 8 is composed exclusively
by ligands from the two leading families, while groups 4 and 7 consider ligands from all
families. Then, a high variety of fragments and new ligands can be expected during the
deconstruction and reconstruction processes. Group 1 obtained the best improvement with
an increment of 40% between the best binding energy of the known ligands and the new
ligands. Group 8 obtained the worst improvement with just 1%. According to the new
ligands obtained with the semi-exhaustive approach, groups 4 and 6 got the same new
ligand. However, the binding energy is quite different because the computation of the
binding energy uses an approximation method. The final value is not necessarily the same
but close. All ligands obtained with the semi-exhaustive approach are structurally similar.
A 67% presents slight structural variations.

The heuristic approach obtains high-quality results with low computational times.
This approach can be used for studying more extensive and diverse KL libraries. If the new
ligands have promising results, then it can be explored exhaustively with the first approach.

According to the computational time, the trend is linear, as we can observe in Figure 11
with the semi-exhaustive approach. However, the computational time with the heuristic
search is lower. This result is significant because it allows us to explore a higher number of
known ligands.

It is essential to notice that the presented approaches are computational strategies that
aim to decrease the search time of new high-quality ligands. Hence, only computational
tools have validated the results obtained. A biological evaluation will be part of the future
work.
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Figure 11. Computational time for each group.

5. Conclusions

This work presents a semi-exhaustive approach and a heuristic search algorithm based
on the deconstruction-reconstruction method for drug design for the Hsp90 inhibition.
The results are promising, looking at a future work where we can explore larger set of
ligands. The critical point is that the reconstruction algorithm is a stage where we can
use several computational techniques, generating a high level of diversity of new ligands.
An important challenge is that the problem can scale quickly. This could be addressed
using multi-core programming or GPU computing.

The focus explored in this work is obtaining a more significant number of ligands
and getting a higher quality of the new ligands by using combinatorial methods. Another
critical point is to propose an improved reconstruction process that generates even more
diverse molecular structures than the ones developed in this work. An intuitive idea leads
us to think that ligands with various combinatorial structures can induce new ones with
higher quality in terms of binding energy. This approach can scale to other aspects and
other pathologies.

The deconstruction-reconstruction method allows generating high-quality new lig-
ands based on fragments. Independently of the reconstruction technique, the results show
that it is always possible to find promising new ligands. Furthermore, our experiments
show that the binding energy obtained with the heuristic search is close to the semi-
exhaustive approach. However, the computational time used with the heuristic approach
is considerably lower than the semi-exhaustive. Then, we recommend the use of heuristic
search techniques for finding promising new ligands. These techniques allow obtaining
high-quality binding energy in acceptable computational times.
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