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Sumithion, a synthetic organophosphate, is widely used as an agricultural insecticide and for control of tiger bug
(Cicindela spp.) in larval rearing for aquaculture. An experiment was conducted to examine the effects of su-
mithion on embryological and larval development of zebrafish Danio rerio. Fertilized egg (n = 100) and larvae (n

ZEb;aﬁSh = 100) were exposed to six concentrations of sumithion (0, 0.1, 0.2, 0.4, 0.8 and 1.6 mg L.~ ') in three replicates.
E:;v;}:) LCso values for embryos and larvae were calculated by probit analysis. The 24 h LCs, value of sumithion for

embryo was 0.235 (0.079-0.428) mgL~'. Increasing sumithion concentrations decreased hatching success and
increased embryonic mortality. In embryos, sumithion induced several malformations including immature yolk
sac, dark yolk sac, yolk sac bud, broken eggshell and notochord, unhatched eggs. Larval LCs, values at 24, 48
and 72 h of various doses of sumithion exposure were 0.620 (0.436-0.963), 0.475 (0.302-0.801) and 0.341
(0.177-0.617) mgL~?, respectively. Various physical deformities, including edema, notochord deformity, yolk
sac damage, body arcuation, lordosis and black pigmentation on the yolk sac were evident in response to dif-
ferent concentrations of sumithion. The results of the current study indicate that sumithion exerts developmental
toxicity to zebrafish embryos and larvae. It is expected that current findings will increase sensitivity about the
toxic effect of sumithion in early development, as well the possibility of similar actions induced by other in-

secticides and pesticides.

1. Introduction

Indiscriminate use of pesticides and insecticides for increased crop
produciton in Bangladesh [1] has increased sharply, from applications
of 7350 metric ton (MT) of such agents in 1992 to 45,172 metric ton
(MT) in 2010 [2]. These pesticides and insecticides reach the aquatic
environment through surface runoff, spray drift, precipitation or direct
deposition [3]. Among several types of pesticides and insecticides, the
organophosphate pesticide sumithion, O, O Dimethyl O-(3-methyl-4
nitrophenyl) is used extensively in Bangladesh. It has been reported
that 0.02 pg/L of sumithion was found in the water of Biwa Lake in
Japan [3]. It is applied for the control of a viariety of insects and pests
in rice, vegetables, fruits, cereals, cotton etc. [5]. In addition, it is also
used in public health program to control flies, mosquitos and cock-
roaches. In addition, it is used to eliminate tiger bug (Cicindela spp.) in
aquaculture ponds, although sumithion is reportedly toxic fish and
other aquatic organisms [6]. The pesticides and insecticides in aquatic
environments can affect aquatic organisms through neuro-behavior and
other physiological mechanisms [7-12], resulting in sharp reductions of
fish production. For these reasons, the study of toxicity of pesticides and
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insecticides on aquatic organisms like fish is critically important.

Pesticides and insecticide toxicity can be assessed by the quantita-
tive study of early development in aquatic organisms [13,14]. Fish
embryos and larvae are extremely sensitive to environmental pollutants
[13], which can result in morphological changes, and such biomarkers
can be used to assess the influences of pollutants on aquatic animals
[15]. Negative effects of bioactive materials like buprofezin (5-100 mg
L™ 1) and endosulfan (96 h LC50 0.22 mg L™ ') on early juvenile stages
of fish have been measures, e.g. the reduced hatching success of African
catfish embryos [16,17]. Similarly, cypermethrin (400 pgL.~!) caused
quantifiable malformations to embryos and larvae of zebrafish [18] and
banded gourami [13].

The zebrafish (Danio rerio) is a small cyprinid fish from the Ganges
and Brahmaputra river basins in India, Bangladesh and Myanmar [19].
This is an aquarium fish species, and an increasingly popular and ver-
satile laboratory. In the research field of genetics, neurophysiology,
biomedicine and developmental biology, this fish species is universally
used as vertebrate model animals [20,21]. Several studies reported that
this fish species also used as model animal to study the impacts of en-
vironmental threats [22-24]. Embryos of this fish are comparatively
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big, strong and clear, and rapid embryonic development [25]. This fish
is also patently parallel to mammalian models and human toxicity
testing, exhibiting a diurnal sleep cycle with similarities to mammalian
sleep behavior [26]. It has been reported that sumithion (1.0 mg L™H
altered the blood glucose level and histo-architecture intestine in adult
zebrafish [27,28]. Although there are some studies on toxicity of su-
mithion in fish species [10-14], no studies have focused on the toxicity
of sumithion on early development of zebrafish. Therefore, the present
study was intended to assess the toxicity of sumithion on embryonic
and larval zebrafish. The findings of this investigation will be useful for
the understanding of negative aquatic enviornmental impacts of pesti-
cides and insecticides, especially on fishes. It may be possible to save
fishes by controlling environmental pollution by pesticides and in-
secticides, and by refining the strategies for use of sumithion in larval
rearing aquaculture ponds.

2. Materials and methods
2.1. Collection of experimental fish

Wild-type adult zebrafish were collected from different ponds
neighboring to the Faculty of Fisheries building, Bangladesh
Agricultural University. Total length and weight of fishes ranged from 3
to 5 cm and 0.7-1.2 g, respectively. The fishes were reared in the
aquaria and fed twice a day on a commercially prepared diet. The water
quality parameters, such as temperature (30 = 05°C), pH
(7.52 = 0.09), dissolved oxygen (6.08 = 0.19 mg L™Y, free CO,
(6.38 + 0.48 mg L™') and total alkalinity (194.25 + 9.95 mg L™ ")
were recorded to be in the optimum range during the rearing period.
The Animal Welfare and Ethical Committee, Bangladesh Agricultural
University approved the experimental procedures used in this study.

2.2. Collection of pesticide

The organophosphate Sumithion 50EC, O, O Dimethyl O-(3-methyl-
4-nitrophenyl) was used in this experiment. It is availbale locally in
liquid form as a commercial insecticide with 500 g L™ " of fenitrothion
as the active ingredient. The selected concentrations of sumithion were
prepared as per EC percentage and carefully transferred into test bowls
containing de-chlorinated tap water.

2.3. Collection of fertilized eggs

Collected fishes were stocked in six aquaria in equal numbers (50)
per each aquarium. The ratio of male and female (1:1) was maintained.
Some marble with plastic Petri dishes and artificial trees were placed on
the bottom of each aquarium. The zebrafish were spawned early in the
morning and eggs were deposited in between the gaps of marbles in the
plastic Petri dishes. Just after spawning, fertilized eggs were collected
from the Petri dishes using eye-droppers in this study.

2.4. Effects of sumithion on embryonic and larval development

A total of 100 fertilized egg were distributed into 18 prior arranged
sets of plastic bowls containing six different concentrations of su-
mithion (0, 0.1, 0.2, 0.4, 0.8 and 1.6 mg L™Y), each of which executed
with three replicates. The different concentrations of pesticide were
renewed at every 24 h intervals to maintain the same concentrations
during the study period. Dead embryos were identified as white opaque
color and not responding to agitation of water by plastic spoon. The
incubation duration and hatching success were noted for control and all
treated groups. Dead embryos were counted and recorded after 24 h of
exposure. Similarly, 100 larvae were exposed in 18 previously-prepared
sets of plastic bowls containing six different concentrations of su-
mithion (0, 0.1, 0.2, 0.4, 0.8 and 1.6 mg L™ Y each with three re-
plicates. Records of mortality of larvae were made at logarithmic time
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Table 1

Toxicity of sumithion on the embryo of zebrafish (n = 100 embryos).
Concentrations (mg/ Incubation Number of dead Hatching
L) period (h) embryos at 24 h Success (%)
0.0 45.10 9.0+1.6 91.50
0.1 52.30 33.0 = 2.6* 83.50
0.2 55.30 47.0 = 3.2* 66.50*
0.4 54.00 53.0 = 5.6* 48.50%
0.8 58.30 77.0 = 7.5% 21.50*
1.6 66.10 97.0 £ 6.0* 3.50*
LC50 value 0.235 (0.079-

0.428)

* Significance level (p < 0.05).
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Fig. 1. The linear transformation and relationship of probit of concentrations of
sumithion used to determine LCs, values for embryos after 24 h of exposure to
sumithion.

intervals (24, 48, 72, and 96 h) from the beginning of the exposure.
Deformities of embryos and larvae were perceived and snapped at 6 h
and 12 h intervals, respectively under a microscope (MICROS MCX 100,
Austria) connected with a digital camera (Magnus analytics, Model-
MIPS) in a computer.

2.5. Data analysis

Data of hatching and mortality of embryos and larvae were pre-
sented as mean * standard deviation (SD). The LCso values were cal-
culated using probit analysis. Data were analyzed by one-way analysis
of variance (ANOVA) followed by Tukey’s post-hoc test to assess the
statistical significance of differences among responses to treatments.
Statistical significance was set at the p < 0.05 level. Statistical analyses
were performed using PASW Statistics 18.0 software (IBM SPSS
Statistics, IBM, Chicago, USA).

3. Results
3.1. Toxicity of sumithion to embryos of zebrafish

With increasing concentrations of sumithion, the incubation periods
were extended in the embryonic development of zebrafish. There was a
significant (p < 0.05) increase in mortality of embryos and significantly
(p < 0.05) decrease in hatching success in response to increasing su-
mithion concentrations (Table 1). The 24 h LCsq values of sumithion for
zebrafish embryo was 0.235 (0.079-0.428) mgL’l. Fig. 1 showed the
linear transformation of percentage mortality of embryos and con-
centrations of sumithion. Several deformities, such as immature yolk
sac, dark yolk sac, yolk sac bud, broken eggshell and notochord, un-
hatched eggs etc. were observed in embryos after exposure to different
concentrations of sumithion (Fig. 2). Although few abnormalities were
observed in in 0.2 mg L™ ! of sumithion, most of the abnormalities were
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Fig. 2. Deformity observed in embryos of zebrafish exposed to sumithion. a. normal embryo after 12 h of exposure to 0 mg L.~' of sumithion; b. lack of somite
formation after 30 min of exposure to 0.2 mg L™ ! of sumithion; c. immature yolk sac after 2 h and 30 min of exposure to 0.2 mg L' of sumithion; d. yolk sac
damaged after 2 h and 15 min of exposure to 1.6 mg L.~ ! of sumithion; e. yolk sac bud/snowball after 2 h and 30 min of exposure to 0.8 mg L.~ ' of sumithion; f. shield
after 4 h of exposure to 0.2 mg L™ ! of sumithion; g. unhatched segmentation after 5 h of exposure to 0.2 mg L-1 of sumithion; h. dark yolk sac after 5 h and 15 min of
exposure to 1.6 mg L™' of sumithion; i. swelling/pustule after 5 h and 30 min of exposure to 0.4 mg L™' of sumithion; j. yolk sac elongated shape after 11 h of
exposure to 1.6 mg L™ ! of sumithion; k. egg shell broken and yolk sac damaged after 11 h of exposure to 1.6 mg L™ ! of sumithion; 1. dead egg after 24 h of exposure
to 1.6 mg L' of sumithion.
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Table 2
Toxicity of sumithion on the larvae of zebrafish (n = 100 larvae).

Concentrations (mg/ Number of dead  Number of dead =~ Number of dead

L) larvae at 24 h larvae at 48 h larvae at 72 h
0.0 3.0+0.6 7.0 £0.6 10.0 £ 1.6
0.1 7.0+ 1.6 13.0 1.6 20.0 = 2.6
0.2 13.0 = 4.0* 20.0 * 4.0* 33.0 + 3.6*
0.4 27.0 £ 4.6* 37.0 = 4.6* 47.0 = 6.
0.8 56.0 + 7.6* 63.0 + 7.6* 70.0 = 5.6*
1.6 88.0 + 1.4* 93.0 + 1.4* 98.0 = 1.6*
LC50 value 0.620 (0.436- 0.475 (0.302- 0.341 (0.177-
0.963) 0.801) 0.617)
* Significance level (p < 0.05).
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Fig. 3. The linear transformation and relationship of probit of concentrations of
sumithion used to determine L.Cs, values for larvae after (a) 24, (b) 48 and (c)
72 h of exposure to sumithion.

found when exposed to 0.4-1.6 mg L™ ! of sumithion. No abnormalities
were observed after exposure to less than 0.2 mg L™ ! concentrations of
sumithion.

3.2. Toxicity of sumithion to larvae of zebrafish

Mortality of larvae at 24, 48 and 72 h increased significantly
(p < 0.05) in response to increasing concentrations of sumithion
(Table 2). The 24, 48 and 72 h LCs( values of sumithion for zebrafish
larvae were 0.620 (0.436-0.963), 0.475 (0.302-0.801) and 0.341
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(0.177-0.617) mgL "%, respectively. The linear transformation of per-
centage mortality of larvae and concentration of sumithion are showed
in Fig. 3a, b and c for 24, 48 and 72 h, respectively. Abnormalities were
also evident in zebrafish larvae, for example deformed and broken
notochord, uninflated swim bladder, yolk-sac edema, pericardial sac
edema, body arcuation, lordosis, scoliosis and irregular caudal region
after exposure to various concentrations of sumithion (Fig. 4). Most of
the deformities in larvae were found when exposed to 0.4 to 1.6 mg L ™!
of sumithion. There was no noticeable malformation in larvae exposed
to < 0.4 mg L' concentrations of sumithion.

4. Discussion

Extensive usage of pesticides and insecticides are problematic be-
cause of their unsafe effects on non-target organisms like fish. Hence we
observed a range of impacts of sumithion to embryos and larvae of
zebrafish. The incubation time, hatching rate and survivability of em-
bryos and larvae were affected after exposure to different concentra-
tions of sumithion. A variety of serious developmental embryonic and
larval deformities were recorded during the study period.

In the present investigation, the hatching success remarkably de-
creased with increasing concentrations of sumithion. Earlier reports
showed that pesticides have negative impacts on the hatchability of
several fishes. For example, there was a significant decrease in hatching
rate of zebrafish embryos after exposure to different concentrations of
dimethoate [29] and alphamethrin [30]. Similar results were reported
in common carp embryos [31] and turbot eggs [32] after exposure to
different concentrations of diazinon. Significant decreases in hatching
success were also reported in the embryos of common carp exposed to
pyrethroid deltamethrin [33], cypermethrin [34], cyhalothrin [35] and
cyperkill [36]. Similarly, for African catfish embryos, lowered hatching
rate was witnessed after exposure to various concentrations of bupro-
fezin [17] and endosulfan [16]. Reduced hatchability might be en-
dorsed to the hindered development of embryos as an important effect
of the toxicant. It may be due to inhibition of the tetraspanib cd63 gene
that caused deficiency in secretion of proteolytic enzymes essential for
controlling of the chorion [37].

The prolonged incubation period observed after exposure to su-
mithion in the present study may be because of lowered oxygen or
troubles of enzyme responsible for hatching. Usually, the chorion is
digested by the proteolytic hatching enzyme secreted from hatching
gland cells of embryo during the normal hatching process of fish em-
bryos. Protease structure and function might be disrupted due to tox-
icants which block the pore canals of the chorions, resulting in oxygen
shortages for the development of embryos [38]. Consequently, with
increasing concentrations of sumithion significantly increased the
mortality of embryos and larvae of zebrafish. Remarkably, the per-
centage of mortality was higher in embryos than larvae, indicating that
embryos are more sensitive to sumithion toxicity to than are zebrafish
larvae. The sensitivity of embryos and larvae to toxicants usually varies
in a species-dependent fashion [30,39]. In the present study, the LC50
value at 24 h of sumithion for embryo was 0.235 mg L™, while the
LC50 values of sumithion for larvae at 24, 48 and 72 h were 0.620,
0.475 and 0.341 mg L™, respectively. Similar results were reported for
toxicity of deltamethrin for common carp larvae [33], rainbow trout fry
[40], European catfish fingerlings [41] and spirlin (Alburnoides bi-
punctatus) larvae and fingerlings [42].

Several deformities in the embryos and larvae of zebrafish were
evident after exposure to different concentrations of sumithion, espe-
cially in higher concentrations (Figs. 2 and 4). Similar deformities were
reported in zebrafish embryos and larvae exposed to different con-
centrations of cypemethrin [18], in African catfish following exposure
to buprofezin [17], in banded gourami when exposed to chlorpyrifos
[13] and in stinging catfish when exposed to sumithion [14]. It has
been reported that different heavy metals exposure also causes defor-
mities of larvae of zebrafish [43]. The present study is also supported by
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Fig. 4. Deformity observed in larvae of zebrafish exposed to sumithion. a. normal larvae; b. yolk sac ulceration (YSU) and heart damage (HD) after 36 h of exposure
to 0.4 mg L™ ! of sumithion; c. lesion/ulceration of caudal region after 36 h of exposure to 0.8 mg L ™! of sumithion; d. end tail shortening and malformation after 36 h
of exposure to 0.8 mg L™ ! of sumithion; e. swollen yolk sac (SYS), swollen and discontinuous yolk sac (DYS) after 48 h of exposure to 1.6 mg L™ ! of sumithion; f.
uninflated swim bladder (USB), yolk sac edema (YSE), blood hemorrhage (BH) after 60 h of exposure to 0.8 mg L™ ! of sumithion; g. black pigmentation on yolk sac
and unlooped heart after 72 h of exposure to 0.8 mg L ™! of sumithion; h. pericardial sac edema (PSE), lower jaw shortening (LJS), yolk sac edema (YSE) after 60 h of
exposure to 1.6 mg L' of sumithion; i. head malformation (HM) and spine scoliosis after 84 h of exposure to 0.4 mg L ™! of sumithion; J; notochord abnormalities
after 84 h of exposure to 0.8 mg L™ ! of sumithion; k. lordosis and irregular caudal region after 96 h of exposure to 0.4 mg L™ ! of sumithion; 1. deformed posterior part

of body and tail ulceration after 96 h of exposure to 0.4 mg L™ ! of sumithion.

previous results on zebrafish exposed to malathion [44], fipronil [45],
acetofenate [46], cartap [47], bifenthrin [48], chlorpyrifos [49,50] and
endosulfan [51]. Formation of edema in embryos and post-hatch larvae
was increased with increasing concentrations of sumithion, possibly be
due to failure of osmoregulation associated with pesticide accumula-
tions, or perhaps resulting from down regulation of pkt7 (a critical
regulator of slc2a 10/glut 10) and wwox genes [52]. Other deformities
like spinal curvature (lordosis, kyphosis and scoliosis) seen commonly

in zebrafish embryos and larvae exposed to toxicants might result from
differential accumulation of toxicants and lack of neuromuscular co-
ordination. Moreover, spinal curvature might be the consequence of
decreased collagens in the spinal column, changing amino acid com-
position [53] or due to down regulations of pkt7 gene, a critical reg-
ulator of wnt signaling [54].

The present conclusion is that dose-dependent toxic effects of su-
mithion on zebrafish greatly influence hatching success, survival and
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incubation period, and that sumithion also induces embryonic and
larval physical malformations. Because contamination with sumithion
is potentially harmful to aquatic environments, agricultural pesticide
and insecticide use should be very carefully considered. Our study
confirms that zebrafish have potential as a model animal to evaluate the
developmental harmfulness of environmental pollutants. Further stu-
dies are recommended for understanding how sumithion affect juvenile
and possibly adult zebrafish in the long-term of toxicity.
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