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Abstract: In nature, symbiosis with arbuscular mycorrhizal (AM) fungi contributes to sustainable
acquisition of phosphorus and other elements in over 80% of plant species; improving interactions
with AM symbionts may mitigate some of the environmental problems associated with fertilizer
application in grain crops such as rice. Recent developments of high-throughput genome sequencing
projects of thousands of rice cultivars and the discovery of the molecular mechanisms underlying
AM symbiosis suggest that interactions with AM fungi might have been an overlooked critical trait
in rice domestication and breeding. In this review, we discuss genetic variation in the ability of rice
to form AM symbioses and how this might have affected rice domestication. Finally, we discuss
potential applications of AM symbiosis in rice breeding for more sustainable agriculture.
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1. Introduction

Arbuscular mycorrhizal (AM) fungi (AMF) are widely distributed symbiotic soil fungi
that utilize carbon compounds such as carbohydrates (sugars) and fatty acids produced
by plant hosts for growth and reproduction [1,2]. In return, they aid plants to acquire
and utilize nutrients such as phosphorus (as inorganic phosphate, Pi), nitrogen, and other
minerals from the soil. Particularly, the extension of AMF hyphae beyond the rhizosphere
increases the excavating surface area to enhance the absorption of water and nutrients. This
symbiotic interaction can promote plant survival across a wide range of harsh environments.
For example, AMF increase plants’ tolerance to drought, salt, heat, and cold stresses [3,4],
reduce the risk of infection by pathogenic microbes [5], and lower their accumulation of
heavy metals [6,7], which finally increases or stabilizes crop yield. In rice, direct evidence
came from the finding that pretreatment with AMF increases the percentage of ripened
grain and the 1000-grain weight [8], as well as reduces yield loss under drought stress [9].

Fossil records showed that AM symbiosis (AMS) between terrestrial plants and soil
fungi initiated approximately 450 million years ago when plants transitioned from aquatic
to terrestrial environments [10,11]. Currently, approximately 80% of land plants form
mutualistic relationships with AMF [12,13]. Although AMF were first described in as early
as 1842 [14], their roles in regulating Pi uptake in host plants were not determined until
1977 [15]. Furthermore, our understanding of the molecular mechanisms underlying AMS
has significantly improved since the 1990s [16].

The evolutionarily, ancient origin and broad host range of AMF indicate their impor-
tance for plant survival in continuously changing environments and suggest that AMS
may shape the way plants acquire nutrients during terrestrialization. Because Pi is one
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of the major nutrients for plant growth and development, the evolutionarily, ancient ori-
gin of AMS also suggests that Pi uptake might be a driving need for plants transitioned
from aquatic to terrestrial environments. Thus, the two major types of Pi absorption in
plants–direct (through root cells) and indirect (via AMS)–could be regulated by shared
mechanisms. Indeed, a conserved module involving the SPX-domain Pi sensors and PHR
(Phosphate Starvation Response) transcription factors was identified as an essential one in
plant response to Pi depletion [17–19].

Based on their importance for nutrient acquisition, AMF are a potential resource for
sustainable agriculture and plant breeding. In this review, we focus on the relationship
between AMS and genetic diversity in rice (Oryza sativa), a model cereal crop, and raise the
possibility that traits related to AMS underwent selection during rice domestication and
explore how these traits could be used in rice breeding for sustainable agriculture.

2. AMS in Diverse Rice Cultivars

Based on high-throughput genome sequencing data, rice varieties have been divided
into nine groups; indica I, indica II, indica III, Ind_Admix, aus, temperate japonica, tropical
japonica, Jap_Admix, and Intermediate [20,21]. A substantial number of genomic variations
were identified among these varieties compared to a reference genome of the Japonica
Nipponbare cultivar, including 6.5 million single-nucleotide polymorphisms (SNPs) and
1.2 million insertion/deletions (Indels) [21]. Later, de novo genome assembly of 66 repre-
sentative rice varieties produced a pan genome capturing 23 million sequence variants [22].
The rich genetic variation in rice now provides genetic resources to address its poten-
tial adaptation to different environments throughout its prolonged domestication history.
Moreover, examining these variations may shed light on the symbiotic interactions between
rice and AMF.

Evidence showing that the effect of genetic variations in symbiotic interaction with
AMF came from the discovery that upland rice displayed more positive responsiveness
to AMF inoculation (resulting in higher yield, harvest index, and spikelet fertility) than
the irrigated or rainfed lowland rice varieties [23]. This finding suggests that genotypic
variations among rice varieties and their cultivation modes account for symbiotic benefits.

An effort to identify underlying genetic element of diverse AM colonization levels
was explored by using genome-wide association analysis (GWAS) with a larger rice variety
panel composed of 334 varieties. The mycorrhizal colonization levels ranged from 21% to
89%. In addition, the genetic components in rice variations explained the 42% difference in
the interaction with AMF and led to the identification of 23 quantitative trait loci (QTLs) [24].
Aus rice varieties are known for adaption to poor soils [25], however, it was found that
aus rice varieties showed delayed AMF colonization compared to indica rice varieties, thus
demanding more detailed comparative studies on the effect of root structure on the degree
and timing of AM colonization in plants [26].

Rice plants developed three main types of roots, namely, crown roots (CRs), large
lateral roots (LLRs), and fine lateral roots (FLRs). LLRs are the most favorable root type
for AMF colonization, followed by a slower but considerable infection in CRs, and rarely
any infection in FLRs [27–29]. In rice, AMS promotes the formation of LLRs but not
CRs and FLRs, via a process that requires OsCERK1 and is independent of α/β-fold
hydrolase DWARF14-LIKE (D14L) [29]. Thus, the enlarged root system might enhance
the tolerance of rice plants against stresses such as drought or nutrient scarcity [30]. In
addition, transcriptomics data showed that each root type exhibited unique gene expression
profiles related to secondary cell wall synthesis, hormones, and transportation, revealing the
potentially distinctive functions of different root types in AMS [31]. However, whether rice
cultivars that develop many lateral roots have better nutrient benefits through symbiotic
interactions with AMF remains unconfirmed.
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3. Rice Domestication and AMS

Compared to the ancient origin of AMS 450 million years ago, rice domestication is a
relatively recent innovation estimated to have occurred only 10,000 years ago. Archeological
surveys on domestication sites and large-scale phylogenetic genome analyses of diverse rice
cultivars have begun to reveal a history of rice domestication and cultivation. Broadly, two
major domestication events defined the distribution of Asian rice varieties [32]. First, the
japonica rice was firstly domesticated from the wild species Oryza rufipogon approximately
10,000 years ago in the middle of the Pearl River region of Guangxi Province in China.
Following this event, rice cultivation gradually spread to Northeast Asia through long-term
breeding. The second event is the spread of the first domesticated japonica rice to the south
where one of the varieties entered Southeast and South Asia and introgressed into the local
wild rice varieties before spreading further to produce indica rice [32] (Figure 1).
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Figure 1. Schematic diagram of rice domestication. Ac j: ancient japonica; red curve: japonica rice is
domesticated in the Pearl River area and spreads to North China; purple curve: indica rice varieties
grow in South China; black curve: ancient japonica rice spreads to South Asia and Southeast Asia and
crosses with wild rice landraces.

The domestication of cultivated varieties from wild rice is the foundation of present
agriculture. Interestingly, the colonization rate of AMF in the wild varieties seemed to be
higher than that in their modern crop varieties [33,34], suggesting that AMF colonization
rates decreased during rice domestication (Figure 2a). For example, a population of Dongxi-
ang wild rice showed a higher AMF colonization level than the cultivated modern indica va-
riety, ZZ35, grown in the same region [35]. The recent breeding processes may have reduced
the ability of crops to interact with AMF due to the extensive application of fertilizers and
pesticides on cultivated varieties [33,34]. Differences between natural conditions and culti-
vation systems (e.g., nutrient input, resource uniformity, fungicide/insecticide/herbicide
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applications, farming, crop rotation and fallowing) could negatively affect rhizosphere
microbial communities [36].
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Moreover, plant genotype has a significant effect on rhizosphere microbial commu-
nities [37] and the artificial selection of plant host genomes during domestication could
affect their interaction with AMF or other soil microorganisms [38]. Whether modern crop
varieties lost the genes required to benefit from mutualistic interactions will be interest-
ing to study using large sequence databases [33]. Significant differences in rhizosphere
microbial components between cultivated crop varieties and their wild relatives have been
observed; however, the mechanism of this difference remains unclear [39–41]. Unravelling
these mechanisms of AMS will enable us to breed plants with improved interactions with
AMF. However, as detailed in the following sections, the traits are expected to be controlled
by multiple genetic components, underpinning highly sophisticated physiological and
metabolic interplays between the plants and fungal symbionts.
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4. Genetic Variations of Symbiotic Dialogue I: Host Signaling Molecules

The establishment of symbiosis starts before any physical contact between the sym-
bionts through the exchange of chemical signals during a pre-symbiotic stage [42,43].
Strigolactones (SLs) are a class of phytohormones secreted into the rhizosphere when plants
experience phosphorus deficiency [44–46] to regulate multiple aspects of plant growth
and development [47–49]. Then, AMF detects SLs near host plants to activate fungal
metabolism, which promotes mycelium growth and branching. This increases the chance
of physical contact with the host root and promotes the infection [50–53]. Interestingly,
variations in SL exudation have been observed in different rice varieties.

Japonica rice (Azucena) secreted higher levels of SLs compared with an indica rice
variety (Bala) [54]. Therefore, SL might be a key factor regulating AM colonization in
different rice subpopulations. Indeed, the level of AM colonization in indica rice varieties
was significantly higher than in japonica rice varieties [35]. The AMF colonization levels
of mutant plants defective in SL biosynthesis or exudation were lower compared to wild-
type [46,48,55–57], highlighting the importance of these early signals for establishing AMS.

D14L is another essential genetic determinant for AMS in rice in the presymbiotic stage,
as the d14l mutant completely lost the formation of any fungal structure [58]. D14L is a
homolog of Arabidopsis KARRIKIN INSENSITIVE2 (KAI2), a receptor for butenolides com-
pounds, karrikins, produced by the combustion of plant vegetation. Karrikin perception
promotes seed germination and seedling vigor post wildfire [59]. This receptor interacts
with the F-box protein MORE AXILLARY GROWTH 2 (MAX2) to form a heteropolymer
that mediates karrikin signal transmission [58]. Furthermore, the D14L signaling pathway
regulates photomorphogenesis and abiotic stress tolerance [60,61]. In the context of AMS,
as seen in the d14l mutant, rice d3 mutants (D3 is a homolog of MAX2) also exhibited strong
defects in AM fungal colonization, indicating that the D14L signaling pathway is critical
to AMS [57]. The putative ligand for AMS remains unknown. It is postulated that the
germinated spore extract could contain molecules structurally similar to SL and karrikins,
which act through D14L and D3 to activate AMS related gene transcription. Alternatively,
D14L senses the signal triggered by the not yet identified KAI2 ligand (KL) to induce the
transcription response required for AMS [58]. These two signaling pathways may activate
conserved downstream components to trigger symbiotic responses and might have evolved
from the much more ancient AMS signaling pathway [62]. In addition, recently, it was
verified that SL originated as an AM symbiotic signaling molecule and later evolved into
being a plant hormone [63].

5. Genetic Variations of Symbiotic Dialogue II: Host Recognition of Fungal Molecules

The recognition of microbial signals by plants, both pathogens and symbionts, involves
complex physiological responses mediated by receptor kinases on the cell surface. These
receptors are generally protein kinases with extracellular, transmembrane and intracellular
kinase domains involved in ligand sensing, or receptor-like proteins with extracellular do-
mains but no intracellular kinase domains [64]. AMF secrete two types of signal molecules
that initiate symbiosis, namely mycorrhizal lipochitooligosaccharides (Myc-LCOs) and
short-chain chitooligosaccharides (CO4/CO5) [65,66]. Different plants can distinguish the
mixed signal molecules secreted by AMF, while CO4 might be the primary signal molecule
causing symbiosis in rice [67].

The heteroreceptor complex formed between OsNFR5/OsMYR1 and OsCERK1 is
involved in recognizing AMF in rice [68]. CO4 directly combines with OsMYR1, promoting
the dimerization and phosphorylation of this complex to continue the downstream trans-
mission of the signal [68]. Knockout or silencing of OsCERK1 can reduce AMF colonization
and the formation of early infection structures in rice [69,70]. The extracellular domain of
OsCERK1 is crucial for recognizing AMF in rice. The natural variation (I118T and S/K121T)
of the second LysM motif in the OsCERK1 domain in wild rice variety Dongxiang showed
higher affinity for chitooligosaccharides [71] and provided a higher level of colonization,
which was proved using transgenic plants [35] (Figure 2b). Mycorrhizal colonization in
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osmyr1 mutants was not completely blocked, meaning that other homologous genes, such
as OsLYK1, OsLYK5, OsLYK6 or OsLYK7, may act redundantly with OsMYR1 [68]. It is
unknown whether the variation of the extracellular LysM domain of OsMYR1 influences
the colonization level of AMF in rice. Utilizing the natural variation of OsMYR1 may be an
effective way to improve the colonization rate between rice and AMF.

Effective mycorrhizal symbiosis involves active nutrient exchange between the AMF
and hosts. Hence, genes encoding transporter proteins are up-regulated to facilitate nu-
trient exchange and uptake between hosts and symbionts. The most representative genes
encoding transporter proteins that are up-regulated during AMS include PT11, NPF4.5
and OsAMT3;1, whose functions are involved in the transportation of phosphate, nitrate
and ammonium, respectively [72–74]. Among them, the transportation of phosphorus was
well-studied. For example, PT11 and PT13 are required for not only for the development of
the arbuscules but also for symbiotic phosphate uptake [72]. This seems reasonable because
the origin of PT11 can be traced back to an ancient moss ancestor [72]. In addition to this,
AMS also was found to increase plant resistance to abiotic stresses through upregulating the
expression of cation transporter genes such as OsNHX3, OsSOS1, OsHKT2;1 and OsHKT1;5
in rice, which then represses Na+ root-to-shoot movement and enhances the tolerance to
salinity [75]. However, the extensive genes expression in hosts regulated by AMS is of great
interest to be studied in future.

6. Suppression of Immunity during Symbiosis in Plants

The signaling pathways involved in plant associations with pathogens and beneficial
microbes have been explored, with many key components identified [76,77]. Although
pathogens and beneficial microbes induce a shared plant immune response, beneficial
microbes (e.g., rhizobia) are suspected to possess unidentified elicitors that trigger a weak
plant immune response [78]. These immune responses are then suppressed during symbi-
otic interactions by both symbionts and host plants via rhizobial nodulation factors and
the plant SymRK protein [79,80]. Further evidence showed that plant LYK proteins act as
receptors for fungal chitin, the rhizobial nod factor, the mycorrhizal Myc factor, and β-1,
3/1, 4-glucans [81–84]. One interesting model proposed recently is that the competition for
rice OsCERK1 by different signals (chitin that triggers immunity or the Myc factors that
induce symbiosis) regulates the output of the plant associations with fungal pathogens or
beneficial fungi [35]. In summary, plants can use membrane-localized receptors to initially
distinguish between friends and foes.

While dampening the immune response to beneficial microbes in the early stage of
infection is critical for successful symbiosis, in a later stage, inoculation with beneficial
microbes has been used as a biological control measure in agriculture to improve plant
defense responses to pathogens [85]. Previous studies have shown that AMF are involved
in improving plant systemic resistance to pathogens [86,87].

7. AMS in Rice Breeding

The current agricultural industry faces critical challenges to ensure food security for the
increasing world population while reducing fertilizer runoff to preserve the environment.
AMF promote plant growth and development by helping plants absorb nutrients from
the soil and potentially improving plant resistance to biotic and abiotic stresses. Indeed,
under field conditions, AMF inoculation increases the nitrogen content in the rice shoot
(leaf and stem) and grain. At maturity, the yield of inoculated rice was 14–21% higher than
that of uninoculated rice [88]. In another study, AMF inoculation increased grain yield by
stimulating the distribution of more nitrogen and phosphorus to the panicles, especially at
low fertilizer levels [89]. Similarly, a study showed that the rice variety with the highest
AMF colonization rate had higher phosphorus absorption and grain yield in the rotation
system, indicating that increasing the AMF colonization rate might improve rice yields in
paddy fields [90]. Therefore, the improvement of AMS in rice will be a compelling strategy
for the green agricultural production of the crop.
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Ratoon rice technology is another representative of green agriculture. Rice ratooning
is a practice of producing a second round of rice grains from the stubble left after the
first harvest. This practice was proven to be economical compared to single-season and
separate double-season rice cropping systems [91]. Several factors affect the yield of
ratoon rice includes tillering activity from the stubble, water and fertilizer management,
stubble height, plant protection measures and environmental factors (e.g., temperature
and light) [92,93]. To date, research regarding the impact of ratoon rice yield on nutrient
absorption remains limited. Typically, fertilization required for production of ratoon rice is
far reduced compared to traditional methods. Breeding ratoon rice varieties with high AM
symbiotic efficiency for improved nutrient absorption and yield will be important in rice
breeding research.

Drought is an important limiting factor in rice production. In China, rice production
uses half of the total available freshwater resources [94]. Therefore, water-saving and
drought-resistant rice varieties are highly desirable. Compared with irrigated cultivation
systems, reduced water usage encourages the establishment of a successful AMS which
helps better nutrient and water uptake [33]. AMS also reduces drought-induced reactive
oxygen species to enhance the photosynthetic efficiency under stress [95]. Therefore, AMS
has good prospects when combined with water-saving and drought-resistant rice varieties.

In China, the project of “Moving the Northern japonica rice to the South” has been
proposed to cope with the increasing demand for the high quality of japonica rice. However,
japonica rice varieties require more fertilizer input than indica, and the soil quality in the
south is poor. This demands new japonica rice varieties with efficient nutrient absorption
and use capacity [96]. AMS can play a role in japonica rice cultivation in South China
for greater nutrient use efficiency. Analysis of the OsCERK1 haplotype showed a specific
correlation between the allelic variations among different rice varieties with the colonization
levels. The substitution of the OsCERK1DY allele from Dongxiang wild rice to indica variety
ZH11 improved the colonization level and subsequent phosphorus uptake [35]. Therefore,
OsCERK1DY provides a great potential to improve nutrient use efficiency in japonica rice
in South China via improved AMS. Based on our previous work with the identification of
OsCERK1DY, a rice variety “GJDN1” was created and approved for production. The rice
variety “GJDN1” not only presents high nutrient efficiency and production in the field, but
also has increased resistance to rice blast disease.

8. Conclusions and Perspectives

Rice is an excellent model for studying the symbiotic relationship of plants with AMF.
The varying efficiency of AMS among different rice varieties might result from the species’
adaptation to different soil conditions. During rice domestication, environmental changes
such as soil fertility, were the key factors to form different rice subspecies. For example,
indica rice varieties that typically grow in the southern part of China (where soil fertility
is limited) have a stronger and more efficient interaction with AMF. Conversely, japonica
varieties that grow in the northern part of China (where the soil is fertile) seem to lose the
efficient symbiotic interaction with AMF. The key factors controlling the efficiency of AMS
between japonica and indica varieties could be characterized at the molecular levels.

Another promising genetic resources to improve AMS comes from the wild rice species.
It is expected that AMF co-existed with wild rice at least 4 million years ago. Therefore,
wild rice varieties likely harbor valuable genetic resources to maintain AMS. New cultivars
with increased colonization rates of AMF could be generated from a chromosome single-
segment substitution population, enabling higher yields with lower inputs. The breeding
process in rice using AM symbiosis includes, (1) characterization and application of highly
efficient mycorrhizal fungi, (2) using the key genes or loci regulating AM symbiosis to
breed nutrient efficient crops. Bioinformatics and genetics are powerful tools for identifying
genes required for AMS from wild species. (3) AM symbiosis was also proposed to be used
in breeding for nutrient efficiency as well as resistance to disease and other stresses.
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Finally, ratoon rice has high grain quality and is produced according to drought-
resistant, water saving cultivation practices. Ratoon rice is typically grown in paddy fields
with much less water than in conventional rice growing conditions. The limited water
condition creates a suitable environment for AMF. Therefore, ratoon rice might be a better
material for improving AMS to promote nutrient uptake in rice.
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