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Background: Cumulative evidence suggests that neuronal death including autophagy, apopto-
sis, and necrosis is closely related to the occurrence and development of cerebral ischemia– 
reperfusion (I/R) injury. Moreover, vagal nerve stimulation (VNS) is involved in many different 
neuroprotective and neuroplasticity pathways. Thus, VNS may be a novel approach for treating 
various neurodegenerative diseases. The present study aims to determine whether VNS protects 
against cerebral I/R injury in rats by inhibiting autophagy and apoptosis.
Methods: Cerebral I/R injury is induced by middle cerebral artery occlusion (MCAO) and 
VNS is carried out. Infarct volume, neurological deficit, autophagy, and apoptosis are 
examined 24 h after reperfusion.
Results: Vagal nerve stimulation decreases infarct volume and suppresses neurological 
deficit. Moreover, obvious autophagy and apoptosis are detected in rats that have undergone 
I/R, and VNS inhibits autophagy and apoptosis.
Conclusion: Vagal nerve stimulation exerts neuroprotective effects following I/R injury by 
inhibiting autophagy and apoptosis.
Keywords: vagal nerve stimulation, cerebral ischemia–reperfusion injury, autophagy, 
apoptosis

Introduction
Ischemic stroke is a highly disabling and fatal disease caused by interrupted 
cerebral blood flow.1 Presently, the only way to treat ischemic stroke is to rapidly 
restore blood flow. Tissue plasminogen activator is recognized as an effective 
method for the treatment of acute ischemic stroke but its wide application in clinical 
practice is limited due to its inadequate therapeutic time window. This approach can 
also initiate various pathological processes including oxidative stress, apoptosis, 
inflammation, and autophagy, which includes cerebral ischemia–reperfusion (I/R) 
injury.2–4

There is increasing evidence that cerebral I/R injury causes autophagy and 
apoptosis.5,6 Autophagy is a catabolic cellular process that subjects macromolecules 
and organelles to lysosomal degradation. Autophagy is considered a process with 
both positive and negative qualities, as it can potentially promote both survival and 
death in cases of cerebral I/R.7 Selected reports have shown that autophagy 
promotes ischemic neuronal death.8,9 However, others indicate that autophagy has 
a neuroprotective effect in cerebral I/R injury.10
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The primary form of cell death in the ischemic penum-
bra is apoptosis, which occurs 0.5–4 h after focal cerebral 
ischemia, and reaches its maximum value at 24–48 h.11 

Therefore, regulating autophagy and apoptosis may repre-
sent a promising treatment strategy for cerebral I/R injury.

Vagal nerve stimulation (VNS) is considered a safe and 
effective adjunctive treatment for intractable epilepsy12 

and treatment-resistant depression.13 Recent studies have 
shown that VNS is involved in neuroprotection after brain 
I/R injury.14,15 Our previous studies indicate that VNS 
prevents neuronal apoptosis in rats following cerebral I/ 
R.16,17 In many cases, autophagy and apoptosis can occur 
either simultaneously or sequentially.18 Nevertheless, 
whether VNS regulates autophagy and apoptosis in cere-
bral I/R injury is unclear. Thus, the present study aims to 
evaluate the effects of VNS on autophagy and apoptosis 
after cerebral I/R injury in rats.

Materials and Methods
Animals
Male Sprague–Dawley rats weighing 230–280 g and aged 
7–8 weeks were sourced from the Experimental Animal 
Center at Chongqing Medical University, China. Rats were 
fed in a 12-h light/dark cycle at a temperature ranging 
from 21°C–22°C with 60% humidity and were allowed 
ad libitum access to food and water. All experiments were 
carried out in strict accordance with protocols approved by 
the Institutional Animal Care and Use Committee and the 
Institutional Ethics Committee at Chongqing Medical 
University (Permit No. SCXK (Chongqing) 2007–0001) 
and the State Science and Technology Commission of 
China. All animals were treated in compliance with the 
National Research Council’s Guide for the Care and Use 
of Laboratory Animals (1996). Only 92 rats met the stan-
dards for the experiment and were randomly divided into 
four groups: the sham I/R group (n = 16), sham I/R + VNS 
group (n = 16), I/R group (n = 30), and the I/R + VNS 
group (n = 30).

Focal Cerebral Ischemia–Reperfusion 
Model in Rats
According to a previous description,18 I/R injury can be 
induced by middle cerebral artery occlusion (MCAO). 
Briefly, rats were deeply anesthetized using chloral 
hydrate (i.p., 350 mg/kg body weight) and body tempera-
ture was maintained at approximately 37°C using 
a heating lamp. The right common carotid arteries 

(CCA), the external carotid artery (ECA), and the internal 
carotid artery (ICA) were sequentially exposed via 
a midline neck incision. The right CCA was distally 
ligated and the ECA was proximally ligated to the bifurca-
tion of the ICA and ECA. A silicone-coated nylon fila-
ment (diameter, 0.34 ± 0.02 mm) was gently inserted from 
the ECA into the lumen of the ICA to obstruct the middle 
cerebral artery for 2 h. Following on, rats were reperfused 
by the withdrawal of the nylon filament. Rats in the sham 
I/R group underwent surgical exposure of the CCA and 
the ECA but the nylon filament was not inserted. During 
the surgical procedure, heart rate (HR), tail arterial pres-
sure, and blood gas concentrations were monitored as 
described in.17

Electrical Stimulation of the Right Vagus 
Nerve
After 30 min of MCAO, rats underwent right cervical 
VNS delivered by a Grass Stimulator S48 as described 
in.19 The stimulating electrodes were self-constructed 
according to a design by Smith20 and comprised two 
polyethylene-coated curved silver wires that were fixed 
1.5 mm apart by a solid bar. Under a microscope, the 
electrodes were twined around the right cervical vagus 
nerve and sutured to the sternocleidomastoid muscle.16,17 

Vagal nerve stimulation comprised 0.5 ms of 30-s square 
pulses (0.5 mA, 20 Hz) every 5 min for 1 h.19 Rats in the 
sham I/R + VNS group received stimulation without 
MCAO.

Neurological Scoring
Rats subjected to MCAO underwent neurological func-
tioning evaluation 24 h after reperfusion. A neurological 
evaluation was performed using a modified five-point 
scoring system.21

Measurement of Infarct Volume
Rats were deeply anesthetized and decapitated 24 h after 
reperfusion. Brains were rapidly removed and sectioned 
into 2-mm-thick sections using a blade. The sections were 
immersed in 2% 2,3,5-triphenyltetrazolium chloride at 37°C 
for 30 min in the dark and fixed in 4% paraformaldehyde 
(PFA) in 0.1 M phosphate-buffered saline (PBS). The stained 
slices were imaged and analyzed using Image J (v.*) software 
(National Institute of Health). Infarction volume was calcu-
lated as described in.22
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Terminal Deoxynucleotidyl Transferase 
dUTP Nick End Labeling Assay
Twenty-four hours after cerebral I/R injury, cell apoptosis 
was detected in 10-μm frozen coronal sections using 
a terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) assay using the In Situ Cell Death 
Detection Kit, POD (Roche) according to the manufac-
turer’s instructions as described in.22 Five randomly 
selected high-power fields (×400) in the ischemic penum-
bra region were imaged using a laser scanning confocal 
microscope (Leica Microsystems, Wetzlar, Germany). The 
TUNEL-positive cell numbers were totaled and averaged 
by an investigator who was blinded to the experimental 
conditions.

Immunohistochemistry
Rats were anesthetized using chloral hydrate 24 h after 
MCAO. Paraffinized sections were prepared as described 
in.23 After deparaffinization with xylene, sections were 
dehydrated by a graded series of ethanol and boiled in 
a 0.01 M citrate buffer for antigen retrieval. After blocking 
with hydrogen peroxide (3%, 15 min) and normal goat 
serum (10%, 20 min), sections were incubated with 
a rabbit polyclonal anti-cleaved caspase-3 antibody 
(1:500, Cell Signaling Technology) overnight at 4°C. 
Then, the samples were incubated with goat anti-rabbit 
immunoglobulin G (IgG) antibody for 30 min. Specific 
staining was revealed using diaminobenzidine. The num-
ber of positive cells in five visual fields within the 
ischemic penumbra was counted using a light microscope 
under high-power magnification (×400). Cell counting was 
performed by an investigator who was blinded to the 
study.

Double Immunofluorescence for the 
LC3B Gene and NeuN Protein
Twenty-four hours after reperfusion, rats were deeply 
anesthetized and perfused with 0.9% normal saline and 
4% PFA. Frozen brains were cut into 10-µm-thick coronal 
sections. The sections were permeabilized with Triton 
X-100 (0.4%, 20 min), blocked in normal donkey serum 
(0.4%, 1.5 h), and incubated with primary antibodies (rab-
bit anti-LC3B antibody [1:50, Merck Millipore] and 
mouse anti-NeuN antibody [1:50, Merck Millipore]) at 
4°C overnight. The following day, sections were treated 
with Alexa Fluor-555 donkey anti-rabbit IgG antibody (H 
+ L, 1:100; Beyotime Institute of Biotechnology) and 

fluorescein isothiocyanate-conjugated donkey anti-mouse 
IgG antibody (H + L, 1:100; Proteintech) for 1.5 h at 37° 
C, washed with PBS, and incubated with a 4,6-diamidino- 
2-phenylindole nuclear stain. Three areas in the peri- 
infarct cortex were imaged using a laser scanning confocal 
microscope (Nikon). Digital images were analyzed using 
Image-Pro Plus (v.*) software.

Western Blot Analysis
The ischemic penumbra cortex was dissected 24 h after 
reperfusion. Western blot analysis was carried out as 
described in.16 Briefly, protein was extracted, and its con-
centration was measured according to the kit instructions. 
Protein samples were placed in the polyacrylamide gel 
electrophoresis system. A Bio-Rad instrument was used 
for electrophoresis and electrotransfer, and the protein was 
successfully transferred to the polyvinylidene fluoride 
membrane. The membranes were blocked with 5% non- 
fat dried milk at room temperature for 2 h and incubated 
with rabbit anti-LC3B (1:1000; Merck Millipore), rabbit 
anti-Beclin-1 (1:1000; Proteintech), rabbit anti-Bcl-2 
(1:500; Proteintech), rabbit anti-Bax (1:600; Proteintech), 
and rabbit anti-GAPDH (1:4000; Proteintech) antibodies at 
4°C overnight. After washing, membranes were incubated 
with anti-rabbit secondary antibodies. Blots were exam-
ined using the Bio Image Analysis System and analyzed 
using Image J software.

Statistical Analysis
Experimental data are expressed in this paper as mean ± 
standard deviation. All data were evaluated for normal 
distribution prior to analysis. Data were analyzed using 
a one-way analysis of variance followed by Tukey’s multi-
ple comparison test. A p-value of <0.05 was considered 
statistically significant.

Results
Physiological Parameters
Table 1 shows that the blood pressure (BP) and HR in the 
sham I/R and I/R groups were maintained within the normal 
range during MCAO surgery. In the sham I/R + VNS and I/ 
R + VNS groups, HR and BP declined over time for the 30-s 
stimulation period but rapidly recovered near the baseline 
levels as soon as stimulation was terminated. During the 
experimental period, pH and blood gas concentrations 
(pO2, and pCO2) in all groups remained within the normal 
range. Mean BP, HR, and blood gas concentrations were 
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within the normal ranges and were not significantly different 
between groups, which is consistent with the results pre-
sented in.17

Vagal Nerve Stimulation Improved 
Neurological Scores and Decreased 
Infarct Volume After Ischemia– 
Reperfusion Injury
As shown in Figure 1, we evaluated cerebral infarct size and 
neurological deficit scores in rats 24 h after reperfusion. No 
infarction was observed in the sham I/R and sham I/R + VNS 
groups, whereas VNS significantly decreased infarct volume 
when compared with the I/R group (Figure 1A; P < 0.05). No 
neurological deficit was observed in either the sham I/R or 
the sham I/R + VNS groups. Furthermore, VNS caused 
a significant decrease in the neurological score when com-
pared with the I/R group (Figure 1B; P < 0.05), indicating 
that VNS improved the neurological deficit. The data 

indicated that VNS reversed neurological deficit and reduced 
infarct volume compared with rats with ischemic stroke.

Vagal Nerve Stimulation Downregulated 
the Expression of Autophagy-Related 
Proteins After Ischemia–Reperfusion 
Injury
To confirm the influence of VNS on autophagy, we first 
observed the expression of autophagy-related proteins dur-
ing I/R. Microtubule-associated protein 1 light chain 3 
(LC3)-II was used to detect autophagic activity.23 Beclin-1 
is also an important protein that regulates neuronal 
autophagy.23 The expression of LC3-II and Beclin-1 in the 
cortex after 24 h was measured by Western blot analysis 
(Figure 2A). Compared with the sham group, the LC3-II 
/LC3-I ratio exhibited obvious elevation in the I/R group 
(Figure 2A; P < 0.05) but VNS significantly decreased the 
LC3-II/LC3-I ratio (Figure 2A; P < 0.05). Beclin-1 

Table 1 The Physiological Parameters During the Experiment

Group Mean Blood Pressure (mmHg) Heart Rate (bp/min) PH PCO 2 (mmHg) PO 2 (mmHg)

sham I/R 90±4.1 376±9 7.39±0.02 46.9±1.2 112.7±8.9

sham I/R+VNS 87±7.2 368±11 7.39±0.01 46.4±1.0 114.8±10.7

I/R 89±4.3 372±10 7.38±0.02 46.6±0.8 109.9±9.6

I/R+VNS 85±5.5 365±12 7.38±0.02 46.0±0.9 111.7±11.8

Note: All data are shown as the mean±SD.

Figure 1 Vagal nerve stimulation improves neurological scores and decreases infarct volume after ischemia–reperfusion injury. (A) Infarct volume was measured by 
2,3,5-triphenyltetrazolium chloride staining. Obvious infarction was detected in rats who had undergone ischemia–reperfusion (I/R), and infarction was improved after vagal 
nerve stimulation. (B) A neurological evaluation was performed using a modified five-point scoring system. Obvious neurological deficit was detected in rats who had 
undergone I/R and neurological deficit improved after vagal nerve stimulation; #P < 0.05 vs sham I/R group, *P < 0.05 vs I/R group.
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expression showed significant elevation in rats that had 
undergone I/R (Figure 2A; P < 0.05). However, VNS sig-
nificantly attenuated Beclin-1 expression compared with the 
I/R group (Figure 2A; P < 0.05). Double immunofluores-
cence with LC3-II and NeuN antibodies was performed to 
determine the effect of VNS on neuronal autophagic activ-
ities after I/R injury. As shown in Figure 2B, LC3-II-positive 
cells were rarely observed in the sham I/R group, while co- 
expression of LC3-II and NeuN was observed in the 
ischemic penumbra in the I/R group. Compared with the I/ 
R group, the number of LC3-II-positive neurons was sig-
nificantly decreased after VNS (Figure 2B; P < 0.05).

Vagal Nerve Stimulation Attenuated 
Apoptosis Following Ischemia– 
Reperfusion Injury
Few apoptotic cells were found in the cortex in the 
sham I/R group. In contrast, there was a large number 
of TUNEL-positive cells in the infarct area of the right 
cortex in the I/R group. Intervention with VNS reduced 
the number of TUNEL-positive cells compared with the 
I/R group (Figure 3A; P < 0.05), indicating that VNS 
attenuated cerebral I/R injury in the cortex. We found 
that the expression of cleaved caspase-3 was 

Figure 2 Vagal nerve stimulation downregulates the expression of autophagy-related proteins after ischemia–reperfusion injury. (A) The expression of LC3-II and Beclin-1 
was measured by Western blot analysis. The expression of LC3-II and Beclin-1 was increased in rats who had undergone ischemia–reperfusion (I/R) and decreased after vagal 
nerve stimulation. (B) Double immunofluorescence for LC3-II and NeuN indicated that the number of LC3-II-positive cells was increased in rats who had undergone I/R and 
decreased after vagal nerve stimulation; #P < 0.05 vs sham I/R group, *P < 0.05 vs I/R group.
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significantly decreased following VNS, 24 h after reper-
fusion (Figure 3B; P < 0.05). Moreover, treatment with 
VNS significantly downregulated the expression of the 
pro-apoptotic protein, Bax, but upregulated the expres-
sion of the anti-apoptotic protein, Bcl-2, 24 h after I/R 
injury (Figure 3C; P < 0.05). These results indicate that 
VNS suppressed the apoptotic response after I/R injury.

Discussion
Cumulative evidence suggests that neuronal death, includ-
ing autophagy, apoptosis, and necrosis, plays a pivotal role 
in the occurrence and development of I/R injury.18,24,25 

Autophagy is a process that subjects cytoplasmic macro-
molecules and organelles in mammalian cells to lysosomal 
degradation. Furthermore, autophagy also plays an 

Figure 3 Vagal nerve stimulation attenuates apoptosis following ischemia–reperfusion injury. (A) Staining using terminal deoxynucleotidyl transferase dUTP nick end labeling 
indicated that obvious apoptosis was detected in rats who had undergone ischemia–reperfusion (I/R), and apoptosis was decreased after vagal nerve stimulation (VNS). (B) 
Immunohistochemical staining indicated that the expression of cleaved caspase-3 was increased in rats who had undergone I/R and decreased after VNS. (C) Western blot 
analysis indicated that the expression of Bax was increased in rats who had undergone I/R and decreased after VNS. The expression of Bcl-2 was decreased in rats who had 
undergone I/R and increased after VNS; #P < 0.05 vs sham I/R group, *P < 0.05 vs I/R group.
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important role in maintaining internal environmental bal-
ance and survival.26,27 In the central nervous system, 
autophagy can trigger programmed neuronal death (type- 
II death), which is different from apoptosis and is involved 
in the progression of neurodegenerative diseases, such as 
epilepsy, stroke, Alzheimer’s disease, Parkinson’s disease, 
and Huntington’s disease.28–33 In I/R injury, it is not sur-
prising that autophagy is activated to degrade toxic meta-
bolites induced by ischemic preconditioning. However, 
autophagy, which is supposed to be suppressed, is also 
activated during reperfusion.34

In the present study, we found an increased expression 
of autophagy-related proteins LC3-II and Beclin-1, indi-
cating that autophagy had been activated in I/R injury.

Apoptosis, another type of cell death, is a biomolecular 
process used by organisms to kill cells that endanger neigh-
boring cells, and also kills cells that undergo genetic damage 
or endure other types of stress.25 Apoptosis is also involved 
in various neurodegenerative diseases, such as brain trauma, 
Alzheimer’s disease, Parkinson’s disease, and Huntington’s 
disease.35–38 In I/R injury, manipulation of various molecu-
lar reactions that participate in apoptotic pathways is acti-
vated, thereby inhibiting cell/organ function and survival.25

We found that the number of TUNEL-positive cells 
and the expression of cleaved caspase-3 and Bax were 
increased, and the expression of Bcl-2 was decreased in 
rats who had experienced I/R. This suggests that apoptosis 
is activated in I/R injury.

To summarize, the prevention or reduction of autop-
hagy and apoptosis may be the first choice of treatment for 
I/R injury. For example, tetrahydroxystilbene glucoside 
may reduce the neurological score and cerebral infarct 
volume and improve neuronal damage in the ischemic 
cortex and hippocampus in mice that have undergone 
MCAO by suppressing apoptosis and autophagy.39 In 
addition, Li et al found that 002C-3 had significant pro-
tective effects against cerebral I/R injury by inhibiting 
autophagy and apoptosis.40 Therefore, finding a novel 
way to inhibit autophagy and apoptosis is a relatively 
effective strategy that can be used to suppress I/R damage.

The vagus nerve, the longest nerve in the human 
autonomous nervous system, originates in the medulla, in 
the brainstem. The fundamental function of the vagus 
nerve is to provide parasympathetic innervation to many 
organs, which in turn affects the function of the relevant 
nerve branches and target tissues/organs.41 In the central 
nervous system, VNS drives neural activity in the locus 
coeruleus, contributing to an increase in the concentration 

of norepinephrine in the hippocampus and cortex, and 
actives downstream proteins involved in many different 
neuroprotective and neuroplasticity pathways. Thus, VNS 
could be a potential adjuvant to behavioral therapy for 
neurodegenerative diseases.42–44 Recently, VNS was 
reported to reduce infarct size and neurological deficit 
and improve memory and cognition in experimental stroke 
models.45 However, the mechanism of the protective effect 
of VNS in the context of stroke remains unclear.

In the present study, we found that VNS improved the 
neurological score, decreased the infarct volume, and sup-
pressed autophagy and apoptosis following I/R injury. 
These results suggest that VNS protects against I/R injury 
by minimizing neuronal death. An existing study indicated 
that recovery from ischemic stroke could be summarized 
by the following two mechanisms: 1) a reduction in neu-
ronal death in the ischemic penumbra; 2) enhancement of 
neuroplasticity in a relatively late phase of stroke occur-
rence to improve memory, cognition, and limb function.45 

Thus, we believe that VNS improves neurological scores 
and decreases infarct volume in rats with cerebral I/R by 
inhibiting neuronal death, including autophagy and apop-
tosis. However, whether VNS can enhance neuroplasticity 
in the case of I/R injury remains undetermined.

In conclusion, we investigated the effect of VNS in rats 
with cerebral I/R injury. We found that VNS decreased 
infarct volume and suppressed neurological deficit. 
Moreover, obvious autophagy and apoptosis were detected 
in rats with cerebral I/R injury. Additionally, VNS inhib-
ited autophagy and apoptosis in our study. Thus, our 
results suggest that VNS exerts neuroprotective effects 
against I/R injury by inhibiting autophagy and apoptosis. 
However, the specific molecular mechanisms by which 
VNS inhibits autophagy and apoptosis in cerebral I/R 
injury remain unclear and must be further explored. 
Moreover, whether VNS can affect nerve regeneration 
after cerebral I/R injury also requires further investigation. 
It is also anticipated that VNS technology will be applic-
able to the clinic at a subsequent stage to further explore 
its protective effects on stroke patients.

Ethics Approval
All experiments were carried out in strict accordance with 
protocols approved by the Institutional Animal Care and 
Use Committee and the Institutional Ethics Committee at 
Chongqing Medical University (Permit No. SCXK 
(Chongqing) 2007-0001) and the State Science and 
Technology Commission of China. All animals were 
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Council’s Guide for the Care and Use of Laboratory 
Animals (1996).
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