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A B S T R A C T   

This work proposes an agent-based model to analyze the spread processes of the COVID-19 epidemics in open 
regions and based on hypothetical social scenarios of viral transmissibility. Differently from other previous 
models, we consider the environment to be a multi-region space in which the epidemic spreads according to the 
dynamics and the concentration of agents in such regions. This paper suggests that software agents can provide a 
more suitable model for individuals, and their features, thus showing the influence of civil society in the context 
of pandemic management. This is achieved by modeling an individual as an agent with a wide range of features 
(health condition, purchasing power, awareness, mobility, professional activity, age, and gender). The model 
supports the design of populations and interactions akin to real-life scenarios. Simulation results show that the 
proposed model can be applied in several ways to support decision-makers to better understand the epidemic 
spread and the actions that can be taken against the pandemic.   

1. Introduction 

Currently, the world is experiencing the coronavirus disease (COVID- 
19) pandemic: an acute respiratory syndrome, caused by the SARSCoV-2 
virus. According to the World Health Organization (WHO), the rapidly 
growing outbreak of COVID-19 was originated from the city of Wuhan, 
Hubei Province, China in December 2019 [1]. On January 2020, the 
pathogen was identified, human-to-human transmission was reported 
soon after, and by April 2020 the outbreak had become the COVID-19 
pandemic [1]. 

The virus that causes COVID-19 spreads easily among people, and 
more continues to be discovered over time about how it spreads. Data 
has shown that it spreads mainly from person to person among those in 
close contact (within about 6 feet, or 2 m). Although most people with 
COVID-19 have mild to moderate symptoms, the disease can cause se-
vere medical complications and lead to death. The unavailability of 
diagnostic reagents for COVID-19, along with changes in surveillance 
intensity and case definitions, puts an overwhelming pressure on 
healthcare systems [2]. 

During the pandemic, there are multiple priorities, including the 
need to understand the disease spreads. This is important to prevent 
further transmission and optimize patient care. In fact, there is a large 
scientific literature on modeling epidemic spread. The susceptible- 

infectious-susceptible (SIS) and the susceptible-infectious-recovered 
(SIR) are the most extensively studied models [3]. However, such ana-
lytic models are not well suited to represent COVID-19 since they: (i) 
assume individuals to be homogeneous and well mixed in the pop-
ulations, and; (ii) neglect individuals heterogeneous social interactions 
and mobility patterns. 

When modeling the spread for COVID-19, individuals cannot be 
treated as homogeneous. For instance, older adults are more likely to get 
severely ill from COVID-19. Moreover, adults of any age with some 
medical conditions (e.g. cancer, diabetes, coronary artery disease, car-
diomyopathies and hypertension) are also more likely to get severely ill 
from COVID-19. In addition, the diversity of human mobility patterns 
and individual behaviors have a significant influence on the spreading 
processes of infectious diseases [4]. COVID-19 is highly contagious [9], 
which has forced governments worldwide to implement policies to 
reduce the spread of the infection, such as lockdown, closure of nones-
sential commerce and educational institutions [10]. 

In this paper, we present an agent-based model (multi-agent system) 
to simulate and analyze the dynamics of COVID-19 infectious process. A 
multi-agent system is an organization of autonomous agents interacting 
with each other within a shared environment [5]. Agents are hetero-
geneous entities used to model different individuals. The environment is 
the virtual representation of spaces (or regions) in which agents are 
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located. Lastly, interaction is the motor dynamics in a multi-agent sys-
tem – it models the interaction between agents and between an agent 
and the environment. 

Differently from other works on modeling COVID-19 spread dy-
namics, the proposed model is able to represent individuals’ heteroge-
neity, environmental diversity and social interaction. An agent has 
several features to express age, comorbidities, disease presentation 
(asymptomatic, mild or severe) among others. The environment can be 
divided into regions with specific purposes (e.g. commerce, educational, 
open public space), providing different constraints in social interactions, 
i.e. providing semantics to limit social contact – it overcomes the 
simplification of the “one agent may randomly contact all”, since, in 
reality, it is most likely that an individual may not get in contact with 
just anyone. On the other hand, an individual is more prone to get a close 
contact with a co-worker, with someone who goes to the same store, or 

someone who lives in the same residence, etc. These interactions are 
delimited by environment regions and agent features. 

Also, the proposed model allows for the specification of constraints 
or rules for agents and interactions. For instance, it is able to model the 
conscious use of masks or the adoption of social distancing policies. 
These external restraints affect the COVID-19 contagious process and 
they are not well represented in existing works. Such works deal with 
binary solutions, i.e. lockdown or not, masks or not. They are not able to 
model targeted social distancing policies (e.g. stores may open, but 
educational facilities should close; some may use masks, while others 
may not). The proposed agent, environment and interaction design al-
lows such specifications. 

We validated the proposed agent-based model by simulating two 
different scenarios: with and without the use of social distancing policy. 
The simulations intended to follow the evolution of the susceptible, 
infected, deceased, and recovered population in each proposed scenario. 
From the experimental results we found that the proposed agent-based 
model is suited to describe the COVID-19 epidemics spread with indi-
vidual, social and regional parameters. The results also show that not all 
of the susceptible agents in the simulation are infected due to the 
mobility of agents. 

The remainder of this paper is structured as follows. Section 02 
presents related work research on investigating and developing epide-
miological models. Section 03 introduces the proposed model, including 
the aspects and attributes that define the behavior of the agents and the 
environment. Next, we present the model implementation, which pre-
sents the procedures used for to develop the simulator that uses the 
proposed model. The experimental results describe the evaluation, 
consistency, and validation of two experiments t. Finally, we present the 
conclusions for this work. 

2. Related work 

Epidemiological models try to reproduce the dynamics of an 

Fig. 1. Multi-agent modeling flowchart - [16].  

Fig. 2. Classification of the attributes according to their respective aspects for the elaboration of the matrix that stores the agents’ attributes in the model.  
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epidemic spread in terms of the evolution of the total number of infec-
ted, susceptible, deceased, and recovered subjects over a given period of 
time. Such models intend to provide relevant information to investigate/ 
predict the behavior of the pandemic and they are usually based on a set 
of ordinary differential equations or stochastic modeling. In the 
following subsections we present works that aim to model the dynamics 
of the COVID-19 spread, dividing them into two categories: analytical 

models and agent-based models. 

2.1. Analytical model studies 

According to Ref. [6], an analytical model is primarily quantitative 
or computational in nature and represents the system in terms of a set of 
mathematical equations that specify parametric relationships and their 

Fig. 3. Attributes and hypotheses related to the agents’ age and professional activity classification.  

Fig. 4. Attribute classification process and agent attributes matrix elaboration.  
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associated parameter values as a function of time, space, and/or other 
system parameters. Equations that are defined in the model must pro-
vide a precise representation of the system and environment to meet the 
purpose of the model. This is done by modeling the underlying phe-
nomena to predict or assess how well the system performs. 

Several works ([7–10]) on modeling the COVID-19 epidemic dy-
namics use the Susceptible-Exposed-Infectious-Removed (SEIR) Model, 
but with limited scope. The work in Ref. [7] makes several simplifica-
tions regarding the dynamics and the complexity of the relationships 
among individuals. The work in Ref. [8] shows that restrictions to 
population mobility, including closing schools, cancelling presential 
meetings and embracing remote work should be considered to lower 
transmission rates. Their work analyzed the epidemic in Wuhan, China. 
The work in Ref. [9] analyzed the data available at the Tracking 
COVID-19 initiative of the Center for Systems Science and Engineering 
at Johns Hopkins University and their results show that the recovery 
time parameter is almost independent from the epidemic region/-
country, whereas the infection and mortality rates are more dependent 
on the region/country. 

The work presented in Ref. [10] used the SEIR-HC model, an evo-
lution of the SEIR model with two different social circles. To better 
explore the transmission dynamics of COVID-19, a two-step optimiza-
tion method was applied in order to estimate the parameters of the 
SEIR-HC model. Consequently, the results on the propagation behavior 
of COVID-19 were consistently reproduced, even without sufficient 
observation data. 

The work in Ref. [11] is based on the SIR model, and it tried to 
characterize the similarities and differences between the propagation 

behaviors of the COVID-19 pandemic in several countries, highlighting 
the heterogeneous character of the propagation of this pandemic in 
Brazil. The relevant contribution of that work consists in using the global 
average of the infection rates, recovery time and mortality rate of this 
pandemic. 

To evaluate the spread dynamics of COVID-19 in a ship, the work in 
Ref. [12] made an adjustment to the data by applying a gamma proba-
bility distribution together with the earlyR package to estimate the 
reproductive number of the pandemic (R0) of its initial phase. However, 
that work presented some limitations due to the limited number of in-
dividuals in the population on board, the high transmissibility of 
COVID-19 and the rapid increase in the number of infected cases, which 
consequently contributed to a significant drop in the proportion of the 
susceptible population. 

In [13], a Bats-Hosts-Reservoir-People (BHRP) transmission network 
model was developed to simulate the potential transmission from the 
source of infection (probably bats) to human infection. The research 
focused on the transmission of the Huanan Seafood Wholesale Market 
(reservoir), simplifying the Reservoir-People (RP) transmission network 
model. Thus, the study was very limited and the initial reproductive 
number of the pandemic (R0) was calculated based on the RP model to 
assess the transmissibility of SARS-CoV-2. 

The study conducted by Ref. [14] proposes the SIDARTHE model, 
which discriminates between infected individuals depending on 
whether they were diagnosed and the severity of their symptoms. The 
distinction between diagnosed and undiagnosed individuals is impor-
tant because the former are usually isolated and therefore less likely to 
spread the infection. With the results obtained, the model demonstrated 

Fig. 5. Quantification of the risk of infection of COVID-19 according to the methodological note of the work [25].  

B.M. Castro et al.                                                                                                                                                                                                                               
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that restrictive social distancing measures should be combined with 
generalized testing and contact tracing to end the COVID-19 pandemic. 

In general, the main disadvantages of analytical studies used to 
model COVID-19 dynamic spread are that: they assume population size 
is constant, meaning that those models do not consider the mobility of 
people; they assume individuals are homogeneous, which means that 

models neglect the heterogeneous social interaction, the mobility pat-
terns and the different behavior of individuals. In this sense, agent-based 
models in which agents may be modeled as different individuals and 
may be mobile, tend to be more adequate for representing the COVID-19 
dynamics. 

Table 1 
Scores assigned to each aspect of agents’ attributes. 

Fig. 6. Example of environment model - without social distancing (left) and with social distancing (right). Red agents are infected.  

B.M. Castro et al.                                                                                                                                                                                                                               
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2.2. Agent-based model studies 

Agent-based models are composed of societies of software agents 
that are able to interact with each other. A software agent (or just agent) 
is a computer program which works toward goals (as opposed to discrete 
tasks) in a dynamic environment (where change is the norm), without 
continuous direct supervision or control, and exhibits a significant de-
gree of flexibility [15]. According to Ref. [5], an agent is defined by the 
following properties: (ii) autonomy (agents perform most of their ac-
tions without direct interference from human agents or other compu-
tational agents, having total control over their actions and internal 
state); (ii) social ability (ability to solve certain problems or for other 
convenience, interact with other agents, to complete the resolution of 
their problems, or to assist other agents); (iii) reactivity (perceive and 
react to changes in the environment in which they are inserted), and; (iv) 
proactivity (ability to deliberate instead of just reacting in response to 
changes in their environment. Fig. 1 (from Ref. [16]) illustrates how an 
agent interacts and reacts to the environment it is immersed in. 

Some characteristics of an agent-based model include [5]: each agent 
can act autonomously within the modeling environment; there are no 
complex equations or formulations that control the global model; they 
are capable of modeling complex systems in which they incorporate 
variables that are difficult to implement by analytical models, and; the 
data and results are decentralized. Agent-based models have been used 
in several applications, such as urban traffic intensity [17,18], simula-
tion of anti-terrorism actions [19], evacuation simulations [20] and 
multi-criteria decisions in the financial market [21,22]. 

Agent-based models have also been used to model pandemic dy-
namics. The works in Refs. [23,24] describe the state-of-the-art in 
epidemiological computing and state that agent-based systems can 
significantly contribute in applications in this area. They discuss some of 
the main problems in epidemiology, which can be solved using 

agent-based techniques and their challenges. 
In [25], the authors define a database that seeks to quantify the risk 

of infection by COVID-19, according to the various attributes of pro-
fessional activity, purchasing power, mobility (proximity among people) 
and other attributes. That work can be used as a methodological basis for 
the distribution of these attributes among agents and for the parame-
trization of infection, recovery time and death probabilities of the 
agents. 

The work in Ref. [26] presents an agent-based model to simulate the 
spread of the influenza pandemic (new H1N1) in Egypt, in which agent 
interactions took place in a space-time context. The proposed model 
involves different types of parameters such as: attributes of the social 
agent, distribution of Egypt’s population, and patterns of agent inter-
action. In addition, the proposed model was used to measure the effec-
tiveness of different control strategies to intervene in the spread of the 
pandemic. 

In [27], the authors present an agent-based model that demonstrates 
that geographic characteristics defined by the purchasing power can 
affect the health of individuals. The effects arise from complex inter-
dependent processes in which individuals interact with each other and 
their environment and in which both individuals and environment adapt 
and change with time. However, traditional epidemiological studies and 
statistical regression approaches are unable to examine these dynamic 
processes. 

The work in Ref. [28] developed an agent-based model to evaluate 
the spread dynamics of COVID-19 in a given population of agents. The 
behavior of each individual was characterized by a set of simple rules, 
which considered their basic interactions (their degree of autonomy). 
Each agent was configured with different mobility requirements and 
infection probability. Thus, several possible scenarios could be tested to 
obtain the behavior profile of the pandemic. However, this work does 
not include the recovery of agents in the model. In this sense, once an 

Fig. 7. Input parameters’ interface.  
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agent was infected, it could infect other agents indefinitely. It also lacks 
important individual parameters, such as age, economic conditions, 
profession and level of awareness. These parameters influence the ac-
tions (i.e the mobility, interactions, etc) of agents and they are important 
to provide more accurate scenarios of the pandemic spread. It also only 

considered just one environment in the model, which is far from the 
reality of the affected societies. 

This work presents an agent-based model to analyze the spread 
processes of the COVID-19. It differs from the above-mentioned studies 
since it considers the existence of different regions in the environment 

Fig. 8. Setup’s interface of weights and agents’ infection, deceasing and recovering probabilities.  

Fig. 9. Illustration of the application of rule 1 - infection of agents.  
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(e.g. home, work, commerce site, school) and some specific character-
istics in the current scenario (e.g. social distancing, awareness). 

3. The proposed model 

This section presents our proposed agent-based model to analyze the 
spread processes of the COVID-19 epidemics in open regions and based 
on hypothetical social scenarios of viral transmissibility. We borrowed 
the notions of simple rules of movement, proximity among the agents, 
probability of infection and evolution of the states (or stages) of the 
disease in the agents from the work in Ref. [28]. 

However, the proposed model implements several other important 
characteristics of COVID-19 epidemic spread scenarios. It models 

exogenous control measures to reduce spread (social distancing pol-
icies), it also models physiological and socioeconomic differences be-
tween individuals in the same population. Therefore, each agent has its 
own: (i) probability of contracting the disease; (ii) rules of movement; 
(iii) recovery time, and; (iv) probability of death. Moreover, the pro-
posed approach allows for agents to move between different types of 
region in the environment, with different infection exposures. We un-
derstand that these notions bring the model closer to COVID-19 real-life 
scenarios. 

We considered epidemic spread in several regions (limited parts of 
the agent environment), in which there is a variable number of agents at 
time t. Each individual agent is in one of four states: susceptible; infec-
tious; recovered, or; deceased. A susceptible agent can enter the 

Table 2 
Probability of presence of agents in a given area (or environment) within the model.  

Index Area Heath workers Essential workers Regular workers Students 

without social 
isolation 

with social 
isolation 

without social 
isolation 

with social 
isolation 

without social 
isolation 

with social 
isolation 

without social 
isolation 

with social 
isolation 

1 Circulation area 35% 45% 35% 45% 40% 80% 45% 80% 
2 Home and 

industry 
15% 10% 40% 25% 45% 15% 15% 15% 

3 Medical facility 45% 45% 15% 30% 5% 5% 5% 5% 
4 Workplace and 

school 
5% 0% 10% 0% 10% 0% 35% 0%  

Index Area Retirees Inactives Domestic 

without social 
isolation 

with social 
isolation 

without social 
isolation 

with social 
isolation 

without social 
isolation 

with social 
isolation 

1 Circulation area 45% 65% 60% 65% 45% 75% 
2 Home and industry 30% 20% 15% 10% 35% 20% 
3 Medical facility 15% 15% 20% 25% 5% 5% 
4 Workplace and 

school 
10% 0% 5% 0% 15% 0%  

Fig. 10. Application of rule 2 - movement of agents between the areas (or environments) of the model. Rule 3 - Agent Deceasing and Recovering.  
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infectious state when infected by infectious individuals. After a period of 
time, the infectious individuals will either recover due to the body im-
munity or pass away, entering the deceased state. The agents in recov-
ered state are assumed not to be infected any more. Every change in state 
depends on a given average probability. 

3.1. Agent and environmental parameters 

We initiated the modeling by defining scenario parameters, i.e. those 
parameters that will be use to discriminate different agents and regions 

in the environment. These are the basic initial parameters that should be 
set to define the distribution of the population, and include physiolog-
ical and socioeconomic aspects. The parameters are described below: 

3.2. Agent parameters 

Age: this parameter is important since most of the people who evolve 
to the acute form of the disease and, thus pass away, are of higher ages. 

Physical health: this parameter is important since it models the 
existence of medical preconditions and comorbidities, which increase 

Fig. 11. Application of rule 3 - death or recovery of agents.  

Fig. 12. Entries that the user must configure (according to the region to be analyzed) for processing.  
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the probability of an agent to develop an acute form of the disease. 
Mobility: this parameter is important since the disease is trans-

missible through proximity to contaminated agents, and the more mo-
bile an agent is, the more likely it is to get infected. 

Professional activity: this parameter indicates which type of re-
gions the agent may be at (e.g. an agent who is a receptionist or a 
physician has a higher probability to go to a hospital or clinic - thus 
being more exposed to infection - instead of being an agent who is an 
architect, with lower probability to go to a more exposed region). 

Purchasing power: this parameter is important since it defines if the 
agent is more likely to have access to prevention items (e.g. masks, 
running water to wash hands) or treatment in private medical facilities. 

Awareness: the agent’s degree of awareness may make it less sus-
ceptible to the infection. Agents with higher levels of awareness have 
more social empathy (e.g. wear masks, avoid crowds, wash their hands). 
In the proposed model, an agent with 4 or less years of age inherits the 
value for this parameter from its parents, as it is not able to discern about 
this condition. 

3.3. Environmental parameters 

Type risk: this parameter is important since it is used to differentiate 
the risk of infection for each region (e.g. a hospital, a shopping, a factory 

plant may present more risk than a home or private office). 
Crowd level: this parameter is important since it defines the allowed 

concentration of agents in a given region. The more crowded a region is, 
the higher its infection risk. 

The set of the values used in the proposed model for the parameters 
presented above were based on the score and on the database presented 
in Ref. [25]. That work poses an a relevant contribution, consisting of a 
methodological panel of risk scores for COVID-19 depending on the 
attributes of individuals in a population, whose quantification was done 
by crossing a series of data from different sources and databases. Fig. 2 
shows the possible values to the proposed model different attributes. 

It is known that some attributes are co-related, such as professional 
activity and mobility. For instance, if an agent gets “essential” as the 
professional activity value, it may not have its mobility restricted. The 
co-relations adopted in this work is shown in Fig. 3. Other assumptions 
about the model parameters include: (i) any agent can be considered 
inactive or domestic, regardless of their age; (ii) agents from 0 (zero) to 3 
years of age are always classified as inactive or domestic; (iii) agents 
under 18 and over 3 years of age are classified as students (except for 
those previously classified as inactive or domestic); (iv) agents over 90 
years of age can only be classified as inactive, domestic or retired; v 
health, essential or normal work agents must have constant mobility; vi 
retired, domestic and students agents must have intermittent mobility; 
(vii) inactive agents or agents that are 90 years of age or older must have 
restricted mobility; (viii) agents that are 90 years of age or older have 
comorbidities; (ix) agents under 4 years of age are healthy, and; (x) 
health workers have high awareness. 

The age of an agent is the main driver for the probabilistic distri-
bution of other parameters. Hence, it is important to analyze the pop-
ulation age pyramid of the simulated scenario case to properly 
randomize the parameter value distribution among the agents. Fig. 3 
shows an example of parameter value distribution according to a pop-
ulation age pyramid. As for the purchasing power attribute, its values 
were distributed according to the data provided in Ref. [25]. Fig. 4 
shows the detailed process of classifying the attributes. 

3.4. Quantification and classification of attributes 

The attributes define the behavior rules of the agents within in the 
model. In the same way as [25], we assigned a scale from 0 to 100 for the 
scores, according to the aspects attributed to the agents described in 
Fig. 2. Thus, it is known that for higher scores, the agent is more prone to 
present a behavior that corroborates his infection of the pandemic. Fig. 5 
presents the quantification of the risk of infection by COVID-19 estab-
lished in Ref. [25]. 

Based on the scoring procedure illustrated by Fig. 5 and the database 
published in Ref. [25], the distribution of scores among the attributes is 
presented in Table 1. The risk of infection score is based on the age 
attribute and the professional activity attribute. 

3.5. Infection probability, recovery time and mortality of agents 

This work uses the range of values established by the work [29] to 
calculate the probability of infection (β), recovery time (Trec) and mor-
tality rate (γ) based on the weights assigned to agents according to the 
classification of their attributes. The probability of infection (β) ranges 
from 0 to 0.3. For each agent n, fees were calculated using the following 
equations: 

βn =
age(n) + activity(n) + mobility(n) + awareness(n)

4
(1)  

Trecn =
physical  health(n) + purchasing  power(n) + awareness(n)

3
(2)  

γn =
physical  health(n) + purchasing  power(n)

2
(3) 

Table 3 
Input of the percentages of agent population distribution for the classification of 
their respective.  

General 
Parameters: 

Value Unity Purchasing 
power: 

% Number 
of Agents 

Number of 
Agents 

500 Num. up to 1/2 
minimum 
wage 

4.92% 49 

initial Number 
of Infected 

1 Num. from 1/2 to 1 
minimum 
wage 

13.33% 133 

Models 
Iteration 

150 days from 1 to 2 
minimum 
wage 

39.36% 394    

from 2 to 3 
minimum 
wage 

16.10% 161    

from 3 to 5 
minimum 
wage 

11.60% 116 

Professional 
activity: 

% Number 
of Agents 

from 5 to 10 
minimum 
wage 

8.27% 83 

Healthcare 
Professional 

3.20% 32 from 10 to 20 
minimum 
wage 

4.07% 40 

Essential 
Workers 

10.40% 104 above 20 
minimum 
wage 

2.35% 24 

Regular 
Workers 

47.60% 476    

Students 20.50% 205 Awareness: % Number 
of Agents 

Retirees 6.00% 60 Low 20% 200 
Inactives 4.40% 44 intermediate 45% 450 
Domestics 7.90% 79 high 35% 350          

Physical 
Health 

% Number 
of Agents 

Mobility:a % Number 
of Agents 

Athletes 9.00% 90 

Restricted 5.20% 52 Healthy 29.00% 290 
Constant 64,40% 644 Sedentary 43.00% 430 
Intermittent 30.40% 304 Comorbidity 19.00% 190  

a The percentages presented for the mobility attribute were based on the 
classification of the agent’s professional activity. 
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To calculate the value of β, first the average score for the agent is 
obtained, i.e. it follows a linear relationship between the average score 
obtained by each agent. The recovery time parameter (Trec), was 
established periods from 10 to 21 days. Thus, the lowest average score 
obtained among agents will receive the Trec for ten days and the highest 
average score will receive the Trec for 21 days. So, it follows a linear 
relation for the other average scores. We chose the range from 10− 4 a 
10− 2 for the γ. 

3.6. Environment modeling 

The proposed model considers four different regions in the agent 
environment. The main idea is to model high-level types of region: (i) 
circulation areas; (ii) homes and factories; (iii) workplaces and schools, 
and; (iv) medical facilities. Fig. 6 presents an example of the environ-
ment and its four regions (blue for circulation; green for homes; magenta 
for workplaces, and red for medical facilities). 

The initial position of each agent in the environment is randomly 
determined. The actual position is represented by a coordinate. The 
mobility function of an agent is driven by its professional activity 
attribute and the social distancing policy adopted. This means that, for 
each professional activity, there will be a probability distribution of the 
presence of these agents in one of the environment regions. The details 
of such function are also presented in Section 4. 

4. Model implementation: the M2CovidSim 

To validate the proposed model, we developed a simulator in 
MATLAB named M2CovidSim to simulate a hypothetical epidemic 
spreading in a finite region environment, as shown in Fig. 6. Its user’s 
interfaces are presented in Figs. 7 and 8. Our implementation was based 
on [28], and defined three main rules of movement. 

Fig. 13. Evolution of the multi-region scenario by iteration T, with social distancing policy.  

Fig. 14. (a) Typical response curve of the model in terms of the evolution of the number of susceptible, infected, deceased and recovered. (b) evolution curve of the 
number of infected by iteration of the 50 (fifty) processes of the model. 
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4.1. Rule 1: infection 

At the beginning of the agent-based simulation, all agents are posi-
tioned in the environment and one given agent is randomly chosen to be 
in the infected state. This is the patient zero. The infection rule uses the 
Euclidean distances among agents, which are compared to infection 
distance R defined by the simulation designer. 

First, the model calculates the cluster of nearby agents of an agent 
(set of agents whose distance is lower or equal to R). We separate the 
non-infected (susceptible or recovered) agents in the cluster and we 
analyze the infection probability (β) for each of those agents. The 
infection probability calculation algorithm uses the type risk of the re-
gion in which the agent is. It also uses the social distancing policy, if 
determined. Once β of the non-infected agents in the cluster has been 
defined, the algorithm generates a probability Pc ∈ [0, 1], as a random 
number [0; 1] for each non-infected agent. If the Pcn of a certain agent is 
smaller than its βn, it will go to the infected state, otherwise it will 
remain in its current state. Fig. 9 illustrates the application of this rule. 

4.2. Rule 2 - agent movement 

The movement of an agent is determined by a probability calculated 
using the agent state. Equation (4) shows the movement probability of a 
susceptible or recovered agent and Equation (5) shows the movement 
probability for infected agents. 

PMn =
mobility(i)

100
(4)  

PMi =
mobility(i)⋅awareness(i)

100
(5) 

In each simulation interaction, the agent movement algorithm gen-
erates a random number RPn ∈ [0, 1], for each agent. If, for a given 
agent, this number is lower than PMn, the agent will move, otherwise it 
will keep its position. 

A movement indicates that an agent will switch regions. If an agent 
moves, the algorithm generates a random number from 1 to 4. This 
number represents the four existing regions in the environment: (1) 
circulation area; (2) home and industry; (3) medical facilities, and; (4) 
workplace and school. The function that generates this random number 
uses the restrictions imposed for an agent to be in one of the specified 
regions, which are determined by its professional activity and the social 
distancing policy, if determined. Table 2 presents the percentages 
defined in this work. 

Fig. 15. Consistency/similarity evaluation matrix between the response curves 
of the number of infected of the processes of the model with social isolation. 

Fig. 16. Boxplot analysis of the number of infected by iteration of the model 
response curves. 

Fig. 17. (a) Graph with the averages per iteration of the number of infected agents in the model. (b) Statistical analysis of iterations containing the peak of the 
response curves. (c) Statistical analysis of the maximum number of infected agents at the peak of the curves. 
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After choosing the next region of an agent, its (x, y) relative position 
within the new region is randomly defined (given that it needs to be in 
the designated region). Fig. 10 shows the application of the movement 
rule. 

Each agent has its recovery time (Trec) and mortality rate (γ) deter-
mined through Equations (2) and (3), respectively. From the moment a 
given agent n is infected, an algorithm computes the number of itera-
tions in which the agent will be affected by the disease. 

In each simulation iteration, this number is compared to the agent 
recovery time (Trec). When they are equal, the algorithm generates the 
mortality probability of the agent, a random number MP. If MP is lower 
than (γ), the agent goes to the deceased state, otherwise it goes to the 
recovered state. Whenever an agent enters the deceased state, it will not 
comply with any rule anymore. On the other hand, a recovered agent 
continues to comply with the movement rule. Fig. 11 shows the appli-
cation of the agent deceasing and recovering rule. 

5. Experimental results 

We validated our proposed model in two different scenarios, to show 
its applicability and sensitivity (precision of the susceptible, infected, 
recovered and deceased number of agents in the scenario). It is impor-
tant to mention that the model sensitivity evaluation allows for the 
assessment of the model parameters and to plot the statistical results. 

5.1. Experiment 1: hypothetical scenario with social distancing 

The first experiment modeled a hypothetical scenario with 500 in-
habitants. The parameters were configured as shown in Fig. 12 and 
Table 3. The professional activity and purchasing power distributions 
were extracted from Ref. [25]. We also used a hypothetical population 
age pyramid. 

This scenario used the distribution of infection rates (β), agent 

Fig. 18. Evolution of the multi-region scenario by iteration T, without social distancing policy.  

Fig. 19. (a) Typical response curve of the model in terms of the evolution of the number of susceptible, infected, deceased and recovered. (b) evolution curve of the 
number of infected by iteration of the 50 (fifty) processes of the model. 
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Fig. 20. Consistency/similarity evaluation matrix between the response curves of the number of infected of the model processes without social distancing.  

Fig. 21. (a) Graph with the iteration averages of the number of infected agents in the model. (b) Statistical analysis of iterations containing the peak of the response 
curves. (c) Statistical analysis of the maximum number of infected at the peak of the curves. 
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recovery time (Trec), and mortality rate (γ) of agents, from Ref. [29]. The 
environment was modeled as a square with sides of 2000 points. The 
four environmental regions were defined as follows: 

Xcirculation ∈ [0 2000] and Ycirculation ∈ [1000 2000]; Xhome ∈ [250 
2000] and Yhome ∈ [0 1000]; Xschool ∈ [0250] e Yschool ∈ [250 1000]; 
Xmedical ∈ [0250] and Ymedical ∈ [0250]. 

The infection distance R was set to R < = 1, and it was applied a 
social distancing policy. This scenario was processed 50 times to eval-
uate the model sensitivity and the relevance of the parameters. Fig. 13 
presents the typical evolution of the scenario. Fig. 14 (a) presents a 
typical model response to the evolution of the numbers of susceptible, 
infected, deceased and recovered and Fig. 14 (B) the response curves of 
the number of infected per simulation run. 

We performed an evaluation of the Shape Factor for the 50 response 
curves. This factor (Equation (6)) aims to evaluate the degree of con-
sistency/similarity between two different response curves of the model. 
It varies from 0 to 1 (0 stands for no consistency/similarity, and; 1 stands 
for consistency/similarity of the answers). Observing Equation (6), we 
have the evaluation between the response curves of processes j and j + 1, 
being φj the vector that defines the infection curve of process j and t the 
transposed vector. 

SF(j,j+1) =

⃒
⃒
⃒φt

j ⋅ φj+1

⃒
⃒
⃒

2

(
φt

j ⋅ φj
)

⋅
(

φt
j+1 ⋅ φj+1

) therefore j ∈ [1, 2, 3,…, 50] (6) 

Then, a matrix (Fig. 15) was elaborated to compare the results ob-
tained, whose main diagonal has a unit value (SF(j; j)). This matrix aims 
to assist in the evaluation of the outliers processes regarding the response 
trend of the model. 

The figure shows that executions 9,11,22,25,26,43,46,47 and 50 are 
characterized as outliers. Such outliers are characterized by the inability 
of the initial infected agent to infect any other agent due to its move-
ments, thus promptly terminating the COVID-19 propagation. These 
executions reveal the influence of the infection distance parameter and 
of the environment size in the simulation. 

Fig. 16 shows the sensitivity analysis of the executions, without the 
outliers. It shows that the curve ascendancy and descendant shape de-
pends on the movement of infected agents. The recovery time also in-
fluences the descendant shape of the curve. 

The analysis also allows us to evaluate the average number of 
infected agents per iteration, including the iteration in which the highest 
number of infected agents occurred (see Fig. 17). It shows that the peak 

response occurred around iteration 75, with response interval between 
iterations 65 and 82. The highest number of coexisting infected agents 
was 142, with a response interval between 131 and 157 agents. The 
model predicts that, for this scenario with social isolation, there will be a 
probability of infection of the population around 13%–16% at the peak 
of the response curve. 

5.2. Experiment 2: hypothetical scenario without social distancing 

The second experiment did not consider social distancing policy. 
Thus, the movement rule was changed, as shown in Table 2. The changes 
increased the crowdedness of both home and industry, and workplace 
and school regions. This experiment used the same parameters as the 
first experiment. Fig. 18 presents a typical evolution of the scenario in 
the model without the application of social isolation. This scenario was 
also executed 50 times. Fig. 19 shows a typical evolution of the response 
of the number of susceptible, infected, deceased and recovered agents 
for this scenario. 

This scenario presented only 4 outliers (executions 3, 6, 8 and 45 in 
Fig. 20). There were less outliers than experiment 1 due to the higher 
probability of movement and the non-decrease behavior of the infection 
rate β. In other words, without social distancing the COVID-19 epidemic 
does not cease prematurely. 

The analysis also allows us to evaluate the average number of 
infected agents per iteration, including the iteration in which the highest 
number of infected agents occurred (see Fig. 21). It shows that the peak 
response occurred around iteration 46, with response interval between 
iterations 42 and 52. The highest number of coexisting infected agents 
was 274, with a response interval between 260 and 286 agents. The 
model predicts that, for the scenario without social isolation, the prob-
ability of population infection will be around 52%–57% at the peak of 
the response curve. 

6. Discussion 

The results presented in the two experiments reveal the potential of 
agent-based modeling to provide relevant information on COVID- 19 
pandemic prevention and coping strategies. This is reflected in the 
sensitivity analysis of the model responses both with and without social 
distancing policy. 

The evolution in the number of susceptible, infected, deceased and 
recovered agents (Figs. 14 and 19) are similar to the responses of 
deterministic models such as SIR, SEIR and others based on differential 
equations ([7–10]). The results also did not present outliers between 
iterations 60 and 80, meaning that the results were consistent in the 
period of higher incidence of the pandemic spread. 

The results show that social distancing policies leads to a longer 
period for the stabilization of the pandemic spread, when compared to 
the scenario without social distancing. The scenario with social 
distancing showed a more flattened, longer period curve than without 
social distancing. 

It is also important to mention the role of the infection rate β, the 
recovery time Trec, the size of the regions and the infection distance R in 
the model. These parameters allow the experiment designer model more 
accurately real-world scenarios of a given population. 

Since the designer can model the population (agent parameters), the 
surrounding environment (environment model) and the infection pa-
rameters, it is possible to use the proposed model to aid decision-makers 
apply public policies. The simulation results can provide evidence for 
the effectiveness and the impacts of such policies (e.g. social distancing, 
closing schools and lockdown) in the social dynamic of the epidemic 
spread. For instance, a scenario of hospital overload and high shortage of 
healthcare resources can be tested - agents that are not healthcare 
workers will not be able to move to medical facilities. Social empathy 
actions (e.g. wearing masks), therapeutic actions or even vaccination 
can be modeled using the given parameters. These may lower the 

Fig. 22. Reproductive number curves for the model without (red) and with 
(blue) social distancing policy. 

B.M. Castro et al.                                                                                                                                                                                                                               



Computers in Biology and Medicine 136 (2021) 104645

16

infection rates or increase recovery time. Since the model provides the 
age parameter, the effects of vaccination scheduling can also be tested. 

Another feature of the proposed model is the estimation of the 
reproductive number (Re), which determines the potential for a virus to 
spread under certain conditions. If it is greater than 1, each infected 
individual is able to transmit the disease to at least one more individual, 
disseminating the virus. On the other hand, if it is less than 1, fewer 
individuals become infected and the infection recedes. This is a well- 
known concept in deterministic models such as SIR, SEIR and others 
based on differential equations. The proposed model tallies the infection 
rate for each agent and thus, Re could be computed as the average 
infection rate for all agents in the pandemic period. Fig. 22 presents the 
reproductive number curve for both experiments ((a) and (b) without 
social distancing. 

It can be noticed that with social distancing, the pandemic tends to 
be more enduring, but with much smaller amplitudes. The reproductive 
number Re begins to show a value less than 1 (one) at iteration 40 for the 
model with social distancing and, at iteration 20 without. 

7. Conclusion 

The COVID-19 pandemic has challenged the scientific community to 
make efforts in the search for an adequate treatment for the cure. While 
this goal is not achieved, many governments have adopted measures to 
prevent and control the spread of the virus. Thus, mathematical and 
computational tools provide relevant information for social, political 
and economic decision-making that permeates the strategies to combat 
the pandemic. 

In this paper, we have presented an agent-based model to analyze the 
spread processes of the COVID-19 epidemics in open regions. The pro-
posed model incorporates aspects of social dynamics through simple 
rules based on statistical principles. From these models, a diversity of 
scenarios and hypotheses can be modeled to obtain the conditions of 
coexistence, habits and behaviors that need to be avoided and that 
corroborate the spread of the virus. We tested the proposed model in two 
different scenarios and our study indicates that two ways can help to 
suppress epidemics spread in: (1) acting on prevention techniques to 
reduce the infected possibility of individuals, and; (2) restricting in-
fectious individuals enter the regions. 

The model presented here is adaptable and flexible to the pandemic 
phenomenology, serving not only for the propagation modeling of 
COVID-19, but also as another tool for epidemiological modeling and 
decision making. Its use can bring benefits to society in terms of control 
of planned action, economy and employment of human resources. 
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