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Abstract

Background

Although poor standing posture is a known cause of low back pain, the mechanisms

involved are unclear. The aim of this study was to clarify the kinetic and posture angle fea-

tures of standing posture that might influence low back pain.

Methods

Sixty-seven young men were enrolled in this cross-sectional case-control study and were

categorized according to whether they did or did not have low back pain. Habitual standing

posture was assessed in each group, using a three-dimensional motion analysis system,

force plates, and a spinal mouse. Kinetic and posture angle factors were compared between

participants with and without low back pain. The relationship between specific features of

standing posture and low back pain was analyzed using logistic regression.

Results

The intervertebral disc compressive force and the low back moment were significantly

greater in the group with low back pain than in the group without low back pain. The interver-

tebral disc compressive force was the factor most strongly associated with low back pain

during static standing.

Conclusions

Logistic regression analysis identified intervertebral disc compressive force as an indepen-

dent variable associated with low back pain. This finding suggests that increased interverte-

bral disc compressive force may promote development of low back pain in standing posture.
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Introduction

Low back pain is one of the most common health complaints in Japan, Europe, and the United

States and is the most frequently occurring occupational health problem. As a major cause of

work absenteeism, low back pain incurs substantial economic and social costs [1–3]. A compli-

cated array of anatomical factors, in addition to psychosocial factors and aspects of the work-

place environment, are reported to trigger low back pain [4,5]. Habitual poor standing posture

may be a risk factor for low back pain in the workplace [6]. Studies of the relationship between

back pain and standing posture in the sagittal plane have indicated that posture deviating from

the neutral position increases the risk of developing low back pain [7–9].

Poor posture can exert a large mechanical load on the low back. Previous studies have

reported that the intervertebral disc compressive force increases with trunk flexion [10–12].

Furthermore, uneven pressure on the intervertebral discs has been reported when the lumbar

vertebrae are in a flexed or an excessively extended position [13]. Thus, poor posture may lead

to low back pain from a mechanical point of view.

Previous studies on the relationship between standing posture and low back pain have

examined pelvic asymmetry [14] and postural changes [15] in standing position but the influ-

ence of low back load on the development of low back pain during standing remains unclear.

The aim of this study was to identify the kinetic and posture angle features of standing pos-

ture that determine the presence or absence of low back pain.

Materials and methods

Study design and setting

This cross-sectional case-control study was conducted between August 2014 and August 2015.

The study protocol was approved by the institutional review board of the International Univer-

sity of Health and Welfare. All participants provided written informed consent.

Participants

The participants were 67 male university students with a mean age of 23.9 ± 3.3 years, a mean

height of 172.7 ± 6.2 cm, and a mean weight of 65.2 ± 7.9 kg.

Inclusion and exclusion criteria

Participants with and without low back pain were identified using a questionnaire on low back

pain [16,17], the Roland-Morris Disability Questionnaire (RDQ) [18,19], and the Keele STarT

Back Screening Tool (SBST) [20]. Participants with low back pain were defined as those who

scored 1 point or higher on the RDQ and had had low back pain for 3 consecutive months or

longer. Participants without low back pain were defined as those who scored 0 on the RDQ.

Those participants who scored 4 points or more on the SBST were defined as having psychoso-

cial low back pain and were excluded (Fig 1). To exclude low back pain due to lumbar radicu-

lopathy, those with lower limb symptoms were excluded on the basis of their SBST responses.

This left 64 participants available for inclusion in the study (Table 1).

Experimental setup

Standing posture was measured using a three-dimensional (3D) motion analysis system with

10 infrared cameras (Vicon MX, Vicon Motion Systems Ltd., Oxford, UK), two force plates

(AMTI, Watertown, MA), and a spinal mouse (Idiag AG, Fehraltorf, Switzerland). The force

plates and the 3D motion analysis apparatus each had a sampling frequency of 100 Hz (Fig 2).

Low back load and low back pain during standing
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Experimental conditions

Measurements were taken while standing with the feet placed a shoulder width apart on sepa-

rate force plates and looking at an eye-level target located 5 m ahead. Habitual standing pos-

ture was measured for 10 s using a Vicon motion capture camera. Measurements of standing

posture using a spinal mouse were made immediately after the Vicon measurements. The

interval between each measurement was 1 min, and repeated stepping motions (i.e., walking in

place) were performed between measurements. The measurements were done three times in

total.

Infrared reflective markers (diameter 14 mm) were placed on the body in the following

locations: top of the head, seventh cervical vertebra, tenth and twelfth thoracic vertebrae, fifth

lumbar vertebra, sacrum, manubrium, xiphoid process, side of the head, acromion process,

medial epicondyle of the humerus, lateral epicondyle of the humerus, radial styloid process,

ulnar styloid process, iliac crest, anterior superior iliac spine, posterior superior iliac spine, hip

joint, greater trochanter, medial and lateral sides of the knee, medial malleolus, lateral

Fig 1. Flow of participants through the trial.

https://doi.org/10.1371/journal.pone.0208877.g001

Table 1. Demographic characteristics of the study population.

All (n = 64) Without low back pain (n = 42) With low back pain (n = 22)

Age, years 23.9 (3.3) 23.9 (3.3) 24.2 (3.1)

Height, cm 172.8 (6.1) 172.4 (6.1) 173.4 (6.3)

Body weight, kg 65.3 (7.9) 64.6 (7.4) 67.2 (8.8)

Data are shown as the mean (standard deviation).

https://doi.org/10.1371/journal.pone.0208877.t001

Low back load and low back pain during standing
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malleolus, first metatarsophalangeal joint, fifth metatarsophalangeal joint, and calcaneus. All

markers were applied by the same examiner.

A spinal mouse was used to measure the spinal curvature angle [21]. This is a small hand-

held device that measures the curvature of the spine through the motion of two wheels along

the spinal column. It was placed along the line of the spinal column, starting at the spinous

process of the seventh cervical vertebra and finishing at the third sacral vertebra, the location

of which was confirmed by palpation and marked with an infrared reflective marker. Spinal

curvature data were transmitted wirelessly to a personal computer and analyzed using dedi-

cated analysis software. All spinal mouse measurements were performed by the same

examiner.

Data analysis

The joint angle and internal joint moment were calculated according to the method described

by Katsuhira et al. [22] using the marker positions obtained by the motion capture system and

the ground reaction force data obtained from the two force plates. An analysis program was

created using the Vicon BodyBuilder 3D motion analysis software (Vicon) and Visual3D ver-

sion 5 (C-Motion Inc., Germantown, MD). The coordinate and ground reaction force data

obtained were low-pass filtered at 6 Hz and 18 Hz, respectively, and used to create a 13-link

segment model. The model consisted of head, trunk, and pelvis and bilateral upper arms, fore-

arms, thighs, shanks, and feet (Fig 3). The joint angle was calculated using Euler angles based

on the coordinate system defined on each body segment. The joint moment was calculated

from the coordinate values of the infrared reflective markers and the ground reaction forces by

inverse kinetic analysis using the Newton–Euler method. For the inverse dynamics analysis,

Fig 2. Experimental setup.

https://doi.org/10.1371/journal.pone.0208877.g002
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the body segments were each regarded as a rigid body and a link segment model was used. In

addition to the coordinate position of the joint and the ground reaction force data, the bary-

centric position, body mass ratio, and moment of inertia of each body segment were required

for calculation of the joint moment. Anthropometric parameters for mass, center of mass, and

moment of inertia for each segment were obtained from reports by Winter et al. [23], Okada

et al. [24], and Jorgensen et al. [25], respectively.

Because low back pain is reported to occur frequently between the 4th and 5th lumbar ver-

tebrae [26], the rotational center of the low back moment was taken between the 4th and 5th

lumbar vertebrae in this study.

Calculation of intervertebral disc compressive force

In addition to the low back moment, the intervertebral disc compressive force between the 4th

and 5th lumbar vertebrae was used as an index of the low back load. This force was calculated

Fig 3. The 13-link segment model and position of infrared reflective markers.

https://doi.org/10.1371/journal.pone.0208877.g003
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using the method described by Yamazaki et al. and Hasegawa et al. (Eq 1) [22,27,28]:

Intervertebral disc compressive force

¼ 20 jExtensionmomentj or 13 jFlexionmomentj

þ8 jSide flexionmomentj

þ23 jRotation momentj

þGravitational force acting on COG of HAT � cos y

ð1Þ

where θ is the trunk angle and HAT means “Head, Arms, Trunk”. The moment arm between

the intervertebral disc and the muscle was defined as the distance from the intervertebral disc

to the rectus abdominis muscle when the low back flexion moment occurred and as the dis-

tance from the disc to the erector spinae muscles when the low back extension moment

occurred. The intervertebral disc and the moment arm to each muscle band were described in

a previous study [25].

The muscle tension exerted by the paraspinal muscle group was estimated by multiplying

the calculated absolute value of the moment applied to the 4th and 5th lumbar vertebrae by the

reciprocal of the moment arm, and calculating the gravitational force from the mass of the

HAT. After calculation, the forces applied to the 4th and 5th lumbar vertebrae were decom-

posed in accordance with the trunk angle (θ), and the combined forces were taken as the inter-

vertebral disc compressive force (Eq 1).

Calculation of spinal curvature angle

The spinal mouse and dedicated software (Spinal mouse ver. 3.32, Idiag AG) were used to cal-

culate the spinal curvature angle from the shape of the spinal column and the angle formed by

a line perpendicular to the line connecting the upper and lower spinous processes and the

adjacent perpendicular. Positive spinal curvature angles indicate kyphosis, whereas negative

values indicate lordosis. The curvature of the thoracic vertebrae represents the curvature of the

spinal column from the first thoracic vertebra to the 12th thoracic vertebra, that is, the sum of

the 11 segmental angles between T1–T2 and T11–T12. The lumbar curve angle represents the

curvature of the spinal column from the T12 to the S1, that is, the sum of the 6 segmental

angles between T12–L1 and L4–L5 [21].

Statistical analysis

For the 3D motion analysis and spinal mouse data, the average value of three trials from each

participant was analyzed. Joint moment and intervertebral disc compressive force were nor-

malized by body weight. Logistic regression analysis was then used to identify the parameters

affecting low back pain. Effect size was calculated using Pearson’s r, with effect size values

interpreted as 0.10 “small,” 0.30 “medium,” and 0.50 “large” [29]. The presence or absence of

low back pain was designated as the dependent variable, and the measured parameters were

used as independent variables. Univariate analysis with the unpaired t-test was performed for

all variables to select those that predicted low back pain. This was to select independent vari-

ables for further analysis, rather than to show significant differences between the groups. Odds

ratios and 95% confidence intervals (CIs) were calculated using multivariable (stepwise) logis-

tic regression analysis. Forward selection of variables was performed using the likelihood ratio.

Variable selection was conducted using the probability distribution of the likelihood ratio sta-

tistic based on maximum biased likelihood estimate. The level of significance was set at 5% for

both cases. A Pearson’s product moment correlation coefficient | r |> 0.9 confirmed that there

was no correlation between the independent variables. We evaluated the predictive

Low back load and low back pain during standing
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performance of the model by assessing its discrimination (ability to classify correctly). This

was measured using the area under the receiver operating characteristic curve (AUC). An area

of 1 represents a perfect prediction, while an area of 0.5 represents a completely random pre-

diction. A rough guide for classifying the accuracy of a diagnostic test is the traditional aca-

demic point system, with AUC values of 0.90–1 taken as “excellent,” 0.80–0.90 as “good,”

0.70–0.80 as “fair,” 0.60–0.70 as “poor,” and 0.50–0.60 as “fail” [30].

Results

Comparison of kinetic and posture angle parameters in participants with

and without low back pain

The mean ± standard deviation RDQ score in the group with low back pain was 1.41 0.85.

Unpaired t-tests revealed no significant differences in height, weight, or posture angle parame-

ters between participants with and without low back pain (Table 2). Among the kinetic param-

eters, the values for intervertebral disc compressive force and low back moment (flexion/

extension) were significantly higher in the group with low back pain than those in the group

without low back pain (Table 3).

Logistic regression analysis

Unpaired t-tests revealed significant differences between participants with and without low

back pain only for the low back flexion and extension moments and intervertebral disc com-

pressive force. Therefore, we performed logistic regression analysis using these parameters as

independent variables, with the presence or absence of back pain as the dependent variable.

Table 2. Comparison of posture angle parameters between participants with and without low back pain.

Without low back pain With Low back pain P-value Effect size (r)
Head angle (deg) Flexion/extension Extension+ -12.63 (10.07) -10.92 (7.27) 0.482 0.10

Side bending Right side+ 0.74 (2.25) 1.28 (2.27) 0.37 0.12

Rotation Right side+ 1.51 (3.57) 3.97 (3.71) 0.393 0.32

Spinal curvature (deg) Thoracic curvature Kyphosis + 46.99 (6.67) 48.44 (7.72) 0.438 0.10

Lumbar curvature Lordosis- -20.3 (6.44) -21.65 (8.74) 0.485 0.09

Trunk angle (deg) Flexion/extension Extension+ 5.16 (3.02) 5.06 (2.91) 0.899 0.02

Side bending Right side+ 0.04 (1.16) 0.01 (1.73) 0.937 0.01

Rotation Right side+ -0.31 (2.57) -0.26 (2.70) 0.938 0.01

Pelvic tilt Anterior- -7.23 (5.18) -8.54 (5.30) 0.344 0.12

Right hip angle (deg) Flexion/extension Flexion+ -0.44 (6.56) 1.59 (6.45) 0.242 0.15

Adduction/abduction Abduction+ 1.62 (2.29) 0.69 (2.49) 0.139 0.19

Rotation Outward+ -3.6 (6.61) -0.51 (4.76) 0.056 0.26

Left hip angle (deg) Flexion/extension Flexion+ -0.84 (6.66) 1.82 (5.84) 0.119 0.21

Adduction/abduction Abduction+ 2.02 (2.22) 1.79 (3.39) 0.747 0.04

Rotation outward+ -0.4 (5.84) -2.8 (6.02) 0.128 0.20

Right knee angle (deg) Adduction/abduction Flexion+ -2.07 (5.44) -2.69 (5.82) 0.672 0.05

Left knee angle (deg) Adduction/abduction Flexion+ -3.3 (5.38) -2.61 (5.98) 0.641 0.06

Right ankle angle (deg) Dorsal/plantar Dorsal+ 1.43 (8.25) 0.41 (1.47) 0.568 0.09

Left ankle angle (deg) Dorsal/plantar Dorsal+ 1.49 (8.21) 0.56 (1.82) 0.604 0.08

Data are shown as the mean (standard deviation).

https://doi.org/10.1371/journal.pone.0208877.t002
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Only intervertebral disc compressive force was selected as a variable (odds ratio = 2.308;

Table 4). The chi-square test of the model was significant at P< 0.01 (P = 0.002).

The ROC curve was determined based on the presence or absence of low back pain and the

value of the intervertebral disc compressive force, resulting in an AUC of 0.702. The cutoff

value was 8.529 (sensitivity 72.7%, false positive rate 33.3%; Table 5). To confirm the superior-

ity of the logistic regression equation using only the intervertebral disc compressive force, we

performed logistic regression analysis using only the low back flexion and extension moment

and then calculated the AUC. We found that the p-value in the logistic regression was larger

than that using only the compressive force and that the AUC of the low back flexion and exten-

sion moment dropped below 0.7.

Table 3. Comparison of kinetic parameters between participants with and without low back pain.

Without low back

pain

With low back pain P-value Effect size (r)

Intervertebral disc compressive force (N/kg) 8.22 (0.79) 9.07 (1.38) 0.012 0.35

Low back moment (Nm/kg) Flexion/extension Flexion+ 0.18 (0.06) 0.23 (0.08) 0.008 0.33

Side bending Right side- -0.01 (0.05) 0 (0.06) 0.388 0.09

Rotation Right side- -0.01 (0.01) -0.02 (0.01) 0.514 0.45

Right hip moment (Nm/kg) Flexion/extension Extension+ 0.11 (0.06) 0.1 (0.06) 0.411 0.08

Adduction/abduction Abduction- -0.05 (0.05) -0.06 (0.06) 0.223 0.09

Rotation Outward+ -0.01 (0.02) -0.02 (0.02) 0.321 0.24

Left hip moment (Nm/kg) Flexion/extension Extension+ 0.16 (0.07) 0.16 (0.05) 0.727 0.00

Adduction/abduction Abduction- -0.04 (0.05) -0.07 (0.07) 0.083 0.24

Rotation Outward + 0 (0.01) -0.01 (0.02) 0.545 0.30

Right knee moment (Nm/kg) Flexion/extension Flexion- -0.09 (0.08) -0.09 (0.09) 0.894 0.00

Left knee moment (Nm/kg) Flexion/extension Flexion- -0.07 (0.07) -0.04 (0.08) 0.159 0.20

Right ankle moment (Nm/kg) Dorsal/plantar Plantar+ 0.26 (0.09) 0.23 (0.08) 0.164 0.17

Left ankle moment (Nm/kg) Dorsal/plantar Plantar+ 0.22 (0.08) 0.19 (0.07) 0.189 0.20

Data are shown as the mean (standard deviation).

https://doi.org/10.1371/journal.pone.0208877.t003

Table 4. Results of logistic regression analysis.

B SE P OR 95% CI

CF 0.836 0.321 0.009�� 2.308 1.229–4.333

Constant -7.828 2.782 0.005��

CF: intervertebral disc compressive force. B: unstandardized coefficients. SE: standard error. OR: odds ratio. CI: confidence interval

��: P< 0.01

https://doi.org/10.1371/journal.pone.0208877.t004

Table 5. Cutoff value and AUC.

Cutoff value Sensitivity (%) False positive rate (%) AUC

CF 8.529 72.7 33.3 0.702

CF: intervertebral disc compressive force

https://doi.org/10.1371/journal.pone.0208877.t005
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Discussion

Comparison of low back load parameters in participants with and without

low back pain

In this study, the intervertebral disc compressive force and low back moment about three axes

were used as indices of low back load. Nachemson et al. [10], Schultz et al. [11], and Wilke

et al. [12] measured this parameter invasively by inserting a pressure gauge directly into the

lumbar intervertebral disc while the participant was in a comfortable standing posture.

Nachemson et al. reported values of 0.56 MPa to 0.97 MPa, Schultz et al. reported a value of

0.27 MPa, and Wilke et al. reported a value of 0.50 MPa. These values are equivalent to about

486 N to 1746 N based on a cross-sectional area of 1800 mm2 for the vertebral body. The mean

intervertebral disc compressive force in the present study was 598.4 ± 114.1 N in the group

with low back pain and 524.5 ± 73.8 N in the group without low back pain, which is equivalent

to about 0.33 ± 0.06 MPa and 0.29± 0.04 MPa. The value of intervertebral disc compressive

force obtained in this study was within the range reported in the previous studies.

Among the low back load indices, the intervertebral disc compressive force and low back

moment were significantly larger in the group with low back pain than in the group without

low back pain. The weight of the upper body is included in the computation of the compressive

force on the intervertebral disc, and thus affects the magnitude of this force. In the present

study, however, the value of the intervertebral disc compressive force was normalized by body

weight. Moreover, no significant difference in height or weight was found between the groups

with and without low back pain. These findings suggest that the increased intervertebral disc

compressive force in the group with low back pain was a result of altered posture. However,

there were no significant between-group differences in alignment of the trunk and pelvis or in

the joint angles and joint moments of the lower limbs, so it was not possible to identify the

cause of the increased intervertebral disc compressive force.

Features of standing associated with the presence or absence of low back

pain

Logistic regression analysis was performed using the presence or absence of low back pain as

the dependent variable and intervertebral disc compressive force and low back moment

(flexion/extension) as the independent variables, which differed significantly between par-

ticipants with and without low back pain. The results of the logistic regression analysis sug-

gested that the intervertebral disc compressive force contributed to the presence of low back

pain.

This analysis revealed that for every 1 N/kg increase in intervertebral disc compressive

force, the risk of low back pain increased by about 2.3-fold. In this study, intervertebral disc

compressive force was calculated by multiplying the low back moment about three axes by the

reciprocals of each moment arm and summing these values to estimate the muscle tension.

Using this method, the low back load can be expressed as an increase in the moment about

each axis, regardless of the collapse of the posture in either direction.

However, in the logistic regression analysis, the low back moment (flexion/extension) was

not identified as a determining factor in the presence or absence of low back pain. This may be

because the intervertebral disc compressive force is determined not only by the uniaxial

moment but also by the combined effects of the multiple axis moments.

The poor posture of the participants with low back pain was diverse in nature, and the

intervertebral disc compressive force was thought to increase because of the complicated
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association of the moment about each axis, which would affect the likelihood of complaints of

low back pain.

The results of this study confirm that individuals with low back pain have higher interverte-

bral disc compressive force during standing than their counterparts without low back pain.

Even though the intervertebral disc compressive force during static standing was small, the

increase in this force appeared to contribute to low back pain.

This study has several limitations. First, no women consented to participate in the study,

so all the participants were young men. Therefore, it is unclear whether these results are gener-

alizable to other populations, such as women and middle-aged or elderly individuals. To

improve the usefulness of this research, the study population should be expanded in future

studies. Second, all participants in this study had low average RDQ scores. To further clarify

the characteristics of posture in low back pain, it is necessary to accumulate participants with

different levels of RDQ scores. Third, because the kinetic parameters measured in this study

were obtained via inverse dynamics calculations using a 3D motion analysis device and force

plates, the intervertebral disc compressive force is an estimated value. McGill et al. [31] evalu-

ated agonist and antagonist muscle activity using electromyography and calculated interverte-

bral disc compressive force considering co-contraction of the trunk muscles. However, the

equations we used did not take co-contraction into account. In other words, when co-contrac-

tion of the trunk muscles occurred, it is possible that we underestimated the compression

force of the intervertebral disc. Therefore, it is necessary to validate this method against other

low back load estimation methods. Moreover, it may not directly reflect the shape of the inter-

vertebral disc or biological characteristics, such as physiological changes. In addition, although

intervertebral disc thickness has been reported to vary diurnally, measurements in this study

were taken only during a limited period on a certain day. Fourth, this study did not examine

alleviation of low back pain, so we could not determine whether back pain would be improved

by a reduction in the intervertebral disc compressive force. This question should be examined

by interventional studies in the future.

Conclusions

This study aimed to identify the kinetic and posture angle features of static standing that affect

low back pain. Intervertebral disc compressive force was found to be higher in participants

with low back pain, and logistic regression analysis revealed disc compressive force as an inde-

pendent variable determining the presence or absence of low back pain.
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