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The present study was undertaken to analyze prognostic and genetic inter-

actions between type 2 diabetes and metastatic colorectal cancer. Patients’

survival was depicted through the Kaplan–Meier product limit method.

Prognostic factors were examined through the Cox proportional-hazards

regression model, and associations between diabetes and clinical-pathologic

variables were evaluated by the v2 test. In total, 203 metastatic colorectal

cancer patients were enrolled. Lymph nodes (P = 0.0004) and distant

organs (> 2 distant sites, P = 0.0451) were more frequently involved in

diabetic patients compared with those without diabetes. Diabetes had an

independent statistically significant negative prognostic value for survival.

Highly selected patients with cancer and/or diabetes as their only illness(es)

were divided into three groups: (a) seven oligo-metastatic patients without

diabetes, (b) 10 poly-metastatic patients without diabetes, and (c) 12

poly-metastatic diabetic patients. These groups of patients were genetically

characterized through the Illumina NovaSeq 6000 (San Diego, CA, USA)

platform and TruSigtTMOncology 500 kit, focusing on genes involved in

diabetes and colorectal cancer. Gene variants associated with diabetes and

cancer were more frequent in patients in group 3. We found that type 2

diabetes is a negative prognostic factor for survival in colorectal cancer.

Diabetes-associated gene variants could concur with malignancy, providing

a rational basis for innovative models of tumor progression and therapy.
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1. Introduction

Diabetes is a diffuse disease in Western countries. In

Europe, about 10% of adults live with diabetes: the

highest prevalence is recorded in Germany (14.2%)

while the lowest in Ireland (4.4%). A prevalence of

about 14% in adults is documented in the USA. These

data account for more than 100 million people

affected by diabetes in Western countries. About 90%

have type 2 diabetes (T2D), the remaining type 1 [1].

Well-known risk factors for developing T2D are low

socioeconomic status, older age (> 65 years), male sex,

and obesity. On the other hand, type 1 diabetes (T1D)

is equally distributed between different genders and its

prevalence increases north of the equator, as the lower

the temperature is and the longer the cold seasons last.

Hyperglycemia is the most common sign of diabetes

influencing micro- and macro-vascular generalized

damages with subsequent acute (ketoacidosis and

hyperosmolar syndrome) and chronic complications

(nephropathy, neuropathy, vasculopathy, etc.) [2].

However, the etiopathogenesis of diabetes is heteroge-

neous. T2D is a complex poly-genic disease resulting

from multiple defects or variants (largely with small

effect size) in pathways involved in glucose metabolism

regulation interacting with lifestyle and environmental

exposures [3]. T1D is an autoimmune disease against

pancreatic beta-islets [4]. Involved genes include HLA

(histocompatibility leukocyte antigens) and regulators

of tolerance and immune responses (IL-2R, CCR7, IL-

10, HORMAD2, etc.). On the other, maturity onset

diabetes of the young (MODY) is a monogenic disease

where pathogenic mutations in specific genes (GCK,

HNF1A, HNF4A, etc.) have been identified [5]. In this

case, the genetic assessment can guide both diagnosis

and appropriate therapy. Diabetes is one of the fea-

tures of the so-called “Metabolic Syndrome” that is a

cluster of metabolic and hormonal factors having a

central role in the initiation and recurrence of many

Western chronic diseases, including cancer, and is con-

sidered the world’s leading health problem in the com-

ing years [6]. Moreover, it was shown that metabolic

syndrome is correlated with a higher risk of colorectal

adenoma, especially in old (≥ 50 years) male patients,

potentially benefiting from behavioral interventions in

preventing the development of colorectal cancer

(CRC) [7]. Interestingly, previous studies evidenced a

correlation among T2D and the occurrence and clini-

cal outcome of CRC [8–10].
The latter is the third most common cancer in Wes-

tern countries, as in 2018 about 1.8 million people

received a diagnosis of CRC and 881 000 died. The

male/female ratio is 1.42, with an incidence peak at

65 years [11]. Interestingly, in the last decade, in low/

middle-income countries, the incidence is increasing,

while in high-income ones both the incidence and mor-

tality are decreasing because of risk-factor reduction

(particularly smoking and red meat consumption) and

amelioration through screening tests and treatments.

Notably, it is estimated that about half of CRCs could

be attributable (and consequently avoidable) by life-

style. Well-known risk factors are vitamin D defi-

ciency, diet high in animal fat and low in vegetables

and fruits, smoking, diabetes, obesity, and Helicobac-

ter pylori infection [12–14]. The etiopathogenesis of

CRC resides in the accumulation of gene mutations

prompting progressive genetic trajectories from normal

mucosa to adenocarcinoma, with a fully malignant

phenotype able to produce distant metastases

(“Vogelstein model”) [15].

Most T2D patients develop beta-cells insulin

impaired secretion and/or resistance associated with an

IGFs (insulin-like growth factors) serum compensatory

release. In epidemiologic and pragmatic point of views,

about 20% of CRC patients have T2D and, con-

versely, diabetes is a well-known risk factor for CRC

development and progression [16].

The present study was undertaken to analyze the

prognostic role of T2D in advanced CRC and to gen-

erate hypotheses on the genetic links existing between

these two diseases through a regulated and rigorous

genotype/phenotype correlation.

2. Materials and methods

2.1. Patient management and selection

This study was officially approved by the Scientific

Directorate on November 11, 2020 (TIMA 25/20). The

prognostic role of T2D in a selected series of 203

patients was analyzed. Patients were managed at the

SSD (Struttura Semplice Dipartimentale) of Innovative

Therapies for Abdominal Metastases of the Istituto

Nazionale Tumori di Napoli, IRCCS “G. Pascale” and

at the University of Campania “L. Vanivitelli” accord-

ing to the ESMO (European Society of Medical

Oncology) guidelines [17]. Oligo-metastases were

defined as one to three lesions per organ with a maxi-

mum tumor diameter smaller than 70 mm and no sin-

gle lesions more than 25 mm diameter; otherwise, the

disease was defined as poly-metastatic [18,19]. Patients

with Performance Status (PS) ECOG (Eastern Cooper-

ative Oncology Group) ≥ 2, age > 80 years, and life

expectancy < 3 months were excluded to avoid nega-

tive prognostic interferences. To avoid unexpected and
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unpredictable prognostic influences, patients bearing

BRAF mutated tumors were not included in this

cohort. The study was conducted according to the

standards set by the Declaration of Helsinki. All

patients gave written informed consent before treat-

ments and genetic assessments.

2.2. Patients follow-up

All patients were monitored with total body computed

tomography (tbCT) scan and CEA (Carcino-Embryonic

Antigen) every 3 months. RECIST (Response Evalua-

tion Criteria In Solid Tumors v. 1.1) [20] were applied

to classify radiologic responses. Complete response

(CR) was defined as complete remission of all lesions

on tbCT. Partial response (PR) was defined as at least

a 30% reduction in the sum of target lesions diameters.

Progressive disease (PD) was defined as an increase in

the sum of target lesions diameters of at least 20%. All

changes between 30% decrease and 20% growth were

defined as stable disease (SD). Disease control (DC)

was the sum of CR+PR+SD.

2.3. Tumor specimens, NGS (next-generation

sequencing), and genotype/phenotype

correlation

Formalin-fixed and paraffin-embedded (FFPE) tissue

specimens of metastases (biopsies or resected lesions)

from CRC were collected from selected patients. Three

groups were identified: (a) oligo-metastatic patients

having cancer has the only illness, (b) poly-metastatic

patients having cancer and T2D as the only illnesses,

(c) poly-metastatic non-T2D patients having cancer as

the only illness. Thus, patients with hypertension and/

or other cardiovascular diseases, chronic infections,

autoimmune, or inflammatory diseases, other cancers,

were excluded from genetic characterization. Informed

consent to perform genetic assessments was obtained

from all patients. Microdissection of tumor cells in

serial sections of 10 µM was performed under a mor-

phological control for each tissue specimen. The

MGF03-Genomic DNA FFPE One-Step Kit, accord-

ing to the manufacturer’s protocol (MagCoreDiatech,

Diatech Lab Line, Jesi, Italy), was applied to isolate

DNA; its quality was assessed using the FFPE QC Kit

(Illumina, San Diego, CA, USA). Libraries were con-

structed through the TruSigtTMOncology 500 kit that is

a robust and comprehensive genomic profiling per-

formed in NGS and targeting 523 cancer-relevant

genes (the complete list is reported in Fig. S1). The

study focused on genes shared by T2D and cancer:

CCND2, CDKN1B, CDKN2A, CDKN2B, CENPA,

EML4, ID3, HNF1A, IGF1, IGF2, IGF1R, INSR,

IRS1, IRS2, and TCF7L2 (Table S1). The assay is able

to detect indels, small nucleotide variants (SNVs),

splice variants, copy-number/structural variations, and

gene fusions. An Illumina NovaSeq 6000 platform was

used to perform sequencing.

2.4. Diabetes definition

Patients classified as T2D were all over 40 years, did

not require insulin administration, and were initially

diagnosed according to the American Diabetes Associ-

ation criteria (casual plasma glucose concentration

≥ 200 mg�dL�1 or fasting plasma glucose

≥ 126 mg�dL�1 or 2-h glucose ≥ 200 mg�dL�1 after the

Oral Glucose Tolerance Test) [21,22].

2.5. Statistical analyses, study design, and data

presentation

Overall survival (OS) was the primary outcome and

was assessed from the diagnosis of advanced disease

until death from CRC (cancer-specific survival).

Progression-free survival (PFS) was not considered as

a study objective for the following reasons: (a) the

vital status is a more solid and reliable outcome to

analyze, (b) treatments and radiologic evaluations were

heterogeneous. Data were extracted from an internal

electronic database reporting clinical records of meta-

static CRC patients. The enrolment of patients was

limited to the last 5 years to avoid any prognostic

influences of therapeutic, diagnostic, and methodologi-

cal changes occurring physiologically over time in clin-

ical practice. With a test power of 80%, an alpha

value of the I-type error of 5%, a 1-year survival of

80% (in unselected mCRC patients), a hazard ratio

(HR) of 0.62 between the two clinical settings (T2D vs

non-T2D patients), the minimum required sample size

was 36 in the T2D arm and 160 in the non-T2D arm.

The statistics applied for a sample size calculation was

a chi-square-based algorithm for proportions compar-

ison available in MEDCALC
� 9.3.7.0 software (MedCalc

Software Ltd, Ostend, Belgium). Subsequently, a two-

tailed log-rank test with an alpha value of the I-type

error of 5% was applied to verify statistical signifi-

cance at univariate analysis. OS was depicted through

the Kaplan–Meier product limit method. Dichoto-

mized prognostic factors (covariates) were the follow-

ing: age (< 65 vs ≥ 65), gender (male vs female),

response to first-line chemotherapy (disease control vs

no diseases control), RAS mutations (mutated vs non-

mutated), side (left vs right), metastatic involvement

(1 site vs > 1). Their prognostic interactions on OS
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were examined through multivariable analyses based

on the Cox proportional-hazards regression model.

The estimate of the survival probability according to

covariates were expressed through the HRs intended

as the risk of death, at any time, for a patient with the

risk factor present compared to a patient with the risk

factor absent (given both patients identical for all

other covariates). HRs were reported in univariate and

multivariable analyses with 95% confidence intervals

(CIs). Statistical analyses and Kaplan–Meier curves

were performed using the MEDCALC
� 9.3.7.0 and Excel

software. Associations between T2D and clinical and

pathologic variables were evaluated by the v2 test.

P < 0.05 was considered statistically significant.

2.6. Bioinformatics analysis

The Illumina TruSight Oncology 500 bioinformatics pipe-

line was used to analyze and interpret sequencing results.

The coverage in the target region and the generated reads

were above the manufacturer’s threshold (1509 and

> 100 millions, respectively). The human reference gen-

ome to align sequences was GRCh37 (http://www.ncbi.

nlm.nih.gov/projects/genome/assembly/grc/human/index.

shtml) by applying the Burrows-Wheeler Aligner tool

with default parameters [23]. Genetic variants were inter-

sected with GENCODE, ICGC-PCAWG, dbNSFP,

COSMIC, 1000Genomes, CancerMine, ClinVar, OncoS-

core, CIViC, and CBMDB databases to assess their clini-

cal significance. Variants were removed in case of global

minor allele frequency < 1% after filtering with

unmatched normal datasets. Variants prioritization was

done according to the four-tiered structure of the

ACMG/AMP [24]. The study was focused on variants of

CCND2, CDKN1B, CDKN2A, CDKN2B, CENPA,

EML4, ID3, HNF1A, IGF1, IGF2, IGF1R, INSR, IRS1,

IRS2, and TCF7L2 genes (see above). No known “patho-

logic” variants were found according to ACMG/AMP

prioritization (strong or potential clinical significance,

Tier 1 or 2); however, variants were also manually ana-

lyzed to exclude false negatives. The reported variants are

“benign” or “unknown.”

Variants were reported with the consequent protein

change. In specific cases (i.e. 50 UTR or intron variant),

variants were reported with the genomic change (c.).

The Phenolyzer tool was used to reveal relationships

between any “seed” genetic variants and “secondary”

ones. Phenolyzer adds insight into prioritization and

interpretation of genetic variants. It interrogates and

connects some crucial gene-disease databases (OMIM,

Orphanet, ClinVar, Gene Reviews, and GWAS Catalog)

and prioritizes genes on the basis of updated scientific

knowledge (sharing of biological pathways or gene

family, gene–gene transcriptional regulation, protein–
protein interactions, etc.). Results are expressed through

a score system (see the end of each bar in the specific

graph) and a network visualization picture that provides

readers with an intuitive panoramic view of the weighted

interactional context (the legend is reported in Fig. S2).

The https://phenolyzer.wglab.org/ open access site was

accessed on June 1, 2021. The following parameters

were used to study genes interaction: disease/phenotype,

colorectal cancer; seed genes interaction, DisGeNET

database and GAD (Genetic Association Database);

gene scores interaction, GHS (Gene Haploinsufficiency

Score), and GIS (Gene Intolerance Score). However, for

a complete methodology description of this computa-

tional tool, see Yang et al. [25].

3. Results

3.1. Clinicopathologic characteristics of the

selected series

In all, 203 mCRC patients were studied and 41 were

affected by T2D. Clinicopathological characteristics of

patients and tumors according to the presence of T2D

are shown in Table 1. More than half of the patients

were older than 65 years (53.2%). Genders were quite

equally distributed (48.2% male; 51.8% female).

Although not significant, there was a prevalence of obe-

sity in T2D patients (17.0% vs 6.7% in not diabetic

patients). G3 grading tumors were predominant

(85.7%) and 64% of tumors derived from the right

colon. The largest part of our series had pT3 tumors

(40.8%) at initial pathologic staging. Sixty-three percent

of patients had metastases to locoregional lymph nodes.

There was a significant association between lymph

nodes involvement and T2D (P = 0.0004). RAS status

assessed on primary resected tumors or biopsies from

metastases was available in all cases. Most tumors were

KRAS mutant and NRAS wildtype (56.6%) without

differences between T2D and not T2D.

3.2. Relationships between T2D, tumor burden,

and response to therapy

Since both initial metastatic involvement and response

to first-line therapy are clinical factors with crucial

prognostic information, their association to T2D was

explored. Interestingly, T2D patients were more sus-

ceptible to develop high metastatic involvement (> 2

sites, P = 0.0451). Similarly, oligo-metastatic disease,

although not significant (P = 0.0762), was more fre-

quent in not T2D (15.4%) compared to T2D patients
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(4.8%). The most applied first-line chemotherapy was

based on chemotherapy (fluoropyrimidines, oxaliplatin,

and/or irinotecan) plus bevacizumab (53.2%). T2D

was associated with poor response to first-line

chemotherapy (P = 0.0103) and a smaller cumulative

number of therapy lines (P < 0.0001) (Table 2).

3.3. Toxicity and treatment exposure

Since the prognostic power of T2D could be due to

hypothetic higher toxicity and/or lower doses of

chemotherapy compared to not diabetic patients, we

analyzed the side effects and treatment exposure in the

studied cohort (Tables S2 and S3). Interestingly, no sta-

tistically significant differences were found. Neutropenia,

asthenia, and diarrhea were the most common G3/G4

adverse events (21 in not T2D, 6 in T2D patients) in

first- and second-line therapies. A capecitabine-induced

coronary artery vasospasm resolved with a 25% dose

reduction was registered in a T2D patient. Overall,

chemotherapy was reduced in 55 patients (42 not T2D

and in 13 T2D patients); in both clinical settings, most

of the dose reductions (32/42 in not T2D and in 9/13

T2D patients) were caused by hematological toxicity

≥ G2. Chemotherapy delays lasting more than 2 weeks

occurred in 29 not T2D and 10 T2D patients.

3.4. Prognostic impact of T2D in mCRC patients

The prognostic role of T2D was explored in 203

mCRC patients with PS ECOG 0–1, life expectancy

> 3 months and age < 80 years. After a median

follow-up of 28 months, there were 90 deaths.

Kaplan–Meyer curves for OS showed a clear detri-

mental effect of T2D (Fig. 1). Median survivals for

Table 1. Clinicopathological characteristics according to the

presence or not of T2D. pT, pathological staging of primary tumor

according to AJCC; F, female; LN, lymphnodes; M, male; mut,

mutant; MS, microsatellite; wt: wildtype.

Characteristic

T2D

PaNo Yes

Age

< 65 75 20

≥ 65 87 21 0.7764

Gender

M 73 25

F 89 16 0.0692

Body-mass index

Normal (18.5–24.9) 68 12

Overweight (25–29.9) 83 22

Obese (≥ 30) 11 7 0.0714

Grading

G1/G2 21 8

G3 141 33 0.2856

Side of primary tumor

Left 59 14

Right 103 27 0.7869

pTb

pT1/pT2 30 7

pT3 68 15

pT4 47 18 0.3345

LN involvementb

0 50 3

1–3 62 14

> 3 33 19 0.0004

RAS status

KRAS mut-NRAS wt 90 25

KRAS wt-NRAS wt 69 14 0.3963

KRAS wt-NRAS mut 2 1

KRAS mut-NRAS mut 1 1

MS status

Stable 146 37

Unstable 5 1

Unknown 11 3 0.9706

a

P at chi-square test.
b

The row sum does not correspond to the total number of patients

because some of them (22) did not receive surgical removal of pri-

mary tumor.

Table 2. Tumor burden and response to first-line chemotherapy

according to the presence or not of T2D. CR, complete response;

CT, chemotherapy; EGFR, epidermal growth factors; NA, not

assessable.

Characteristic

T2D

PaNo Yes

Metastatic involvement

One site 32 6

Two sites 62 9

> 2 sites 68 26 0.0451

Oligo-metastatic disease

Yes 25 2

No 137 39 0.0762

Type of first-line CT

CT 18 8

CT + anti-EGFR drugs 54 12

CT + bevacizumab 88 20 0.3380

Best response to first-line CT

CR, PR or SD 92 15

PD 55 23 0.0103

NA 15 3

No. of chemotherapy lines

One 16 17

Two 17 13

> 2 127 10 < 0.0001

a

P at chi-square test. The row sum does not correspond to the total

number of patients because three did not receive chemotherapy

(for personal reasons).
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OS (mOS) were 9.6 and 17.3 months for T2D and not

T2D patients, respectively (P = 0.0197 at log-rank

test; HR: 2.01; CI: 1.11–3.64). At multivariate analy-

sis, adjusted for age (< 65 years vs ≥ 65 years), gender

(male vs female), side of primary tumor (left vs right),

metastatic involvement (one site vs multiple sites), and

response to first-line chemotherapy (disease control vs

no disease control), T2D (T2D vs not T2D) main-

tained an independent prognostic value (P = 0.0226).

HRs with CIs for each covariate are shown in

Table 3.

3.5. Genetic characterization of poly-metastatic

patients

We tested genetic variants of genes involved in T2D

(CCND2, CDKN1B, CDKN2A, CDKN2B, CENPA,

EML4, ID3, HNF1A, IGF1, IGF2, IGF1R, INSR,

IRS1, IRS2, TCF7L2) in 12 pmCRC patients with

T2D and 10 pmCRC patients without diabetes (both

had cancer as exclusive comorbidity) to address their

involvement in CRC progression (see Materials and

methods for patient selection). In addition, a very

clean clinical model of seven omCRC patients having

only one metastatic lesion (liver or lung) and, similar

to the previous 22 characterized patients, cancer as the

only illness, was characterized.

Genetic results of benign or unknown genetic vari-

ants (according to the four-tiered structure of the

AMP/ACMG) of the above-cited genes included in the

TrusightOncologyTM 500 panel are reported in Table 4.

The analysis is descriptive and hypothesis-generating.

A score representing the sum of the variants revealed

in each patient was built. The arithmetic means of this

cumulative score in (a) om, (b) pm not T2D, and (c)

pm T2D patients were, respectively: 3.1, 5.1, and 11.0.

According to Phenolyzer tool, the most important and

interrelated genes were: CDKN1B, IGF1R, and

TCF7L2 (Fig. 2). Interestingly, among these high-

priority genes, TCF7L2 variants were never present in

omCRC patients.

4. Discussion

We previously reported that T2D patients were more

prone to experience CRC distant recurrence after cape-

citabine and oxaliplatin-based adjuvant chemotherapy

[26]. In the present study, we focused on metastatic

CRC and T2D exploring putative prognostic interac-

tions and genetic connections. A recent meta-analysis

including more than 80 studies showed a significant

increase in cancer-specific mortality (HR, 1.11; 95%

CI: 1.05–1.17) and relapse (HR, 1.09; 95% CI, 1.02–
1.16) of patients with CRC and diabetes. However, in

the cited and analyzed studies stages of disease and

type of diabetes were heterogeneous, including all

stages and type I/MODY diabetes, respectively [27].

Links between CRC and T2D are largely studied and

0

20

40

60

80

100

0 10 20 30
Time (months)

Not type 2 diabetes pa�ents

Type 2 diabetes pa�ents

Median survivals: diabetes vs non-diabetes, 9.6 vs 17.3 months
HR: 2.01; CI: 1.11-3.64

P=0.0197 at Log Rank test

Fig. 1. Kaplan–Meyer survival curves according to the presence of type 2 diabetes in metastatic colorectal cancer patients. Median

survivals, hazard ratios (HR), confidence intervals (CI), and P at log-rank test are embedded in the figure.
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discussed in the literature [28–33]. However, the basis

of such links still remains largely unknown.

We hypothesized that several genes involved in T2D

could have a role in the malignant phenotype, but this

is a still fascinating and under investigation concern.

Genotype/phenotype correlation studies may help to

shed light on this issue. However, these kind of studies

are very challenging due to both extreme clinical

heterogeneity of the CRC patients and genetic interfer-

ences of other comorbidities. A way to overcome these

methodological difficulties is to select “clean” clinical

models having cancer has the only illness. The charac-

terization of a not diabetic omCRC clinical model in

our study allowed us to build a genetic comparator

reinforcing the methodology to explore our hypothesis.

However, this selection is complicated, and makes very

difficult the enrolment of patients into genetic studies.

In fact, considering all patients submitted to lung or

hepatic surgery in our institute for mCRC from 2013

to 2018, less than 5% had oligo-metastases with CRC

as the only illness during their life. Furthermore, in

our clinical setting only 22/203 (10.8%) patients had

cancer and/or T2D as the only illnesses. The observa-

tion of genetic results of the CRC oligo-metastatic set-

ting suggests that the selected genetic variants are less

present compared to the poly-metastatic disease. This

observation is intriguing, as it adds further complexity

to the phenotype of cancer transformation processes.

In fact, previous genome-wide association studies sug-

gested that several “benign” genetic variants in differ-

ent loci can influence diabetes through a cumulative

effect on beta cell function, glucose metabolism, adipo-

genesis, etc. [34–36]. Some variants associated with

T2D, such as HNF1A p.I27L, IDE3 p.T105A, IRS1

p.S892G, and INSR p.A2G, although considered

benign and determining quite conservative biochemical

changes in the amino-acid sequence, could influence

the activity of the related proteins [37–41]. A similar

effect can be expected by changes occurring at 50-UTR

or intron variants that can impact transcription activ-

ity or alternative splicing. Most important, their

cumulative effect is unpredictable and we cannot rule

out the hypothesis that a “critical” cumulative,

although benign, effect could contribute and prompt

the malignancy. Interestingly, the genomic landscape

of unselected metastatic CRC patients is rich in somat-

ically mutated genes involved in T2D, as evidenced in

previously published studies [42–49]. The effects of

these variants are unexplored, elusive, largely invalu-

able in functional and clinical point of views. In this

light, lacking solid background data to prioritize these

variants, we built a simple and intuitive score based on

the sum of the number of genetic variants involved in

both T2D and CRC (CCND2, CDKN1B, CDKN2A,

CDKN2B, CENPA, EML4, ID3, HNF1A, IGF1, IGF2,

IGF1R, INSR, IRS1, IRS2, and TCF7L2). Characteri-

zation of metastases from 11 not T2D pmCRC

patients revealed that genes whose polymorphisms are

generally recorded in T2D are also present in these not

diabetic mCRC. By contrast, very few T2D-associated

polymorphisms were found in seven highly selected

omCRC patients (not included in the analysis to avoid

prognostic unbalances) having CRC as the only illness

and who developed only one metastasis (4 pts with sin-

gle nodule liver and 3 pts with single nodule lung

metastasis) (“genuine” oligo-metastatic single-nodule

patients) [50]. In detail, we observed that the diabetes-

associated TCF7L2 variants were never present in

omCRC patients. TCF7L2 is a pleomorphic transcrip-

tion factor influencing several pathways involved in

CRC and it acts as an effector of the Wnt pathway

[8]. It confers the strongest association with T2D sus-

ceptibility and is located on chromosome 10q25.3, with

rs7903146 being one of the most prevalent single

nucleotide polymorphisms (SNPs) present in the

TCF7L2 gene [51]. The TCF7L2 gene acts as a nuclear

receptor in the Wnt signaling pathway that encodes a

basic transcription factor 4 (TCF-4) [52]. The b-
catenin is the most important element of the Wnt sig-

naling pathway; when it binds to TCF-4, the b-
catenin/TCF-4 complex is formed; the complex is the

final effector of the Wnt pathway that exerts a crucial

Table 3. Univariate and multivariable analyses of T2D prognostic impact. F, female; L, left; M, male; R, right.

Co-variate Dichotomization Median survivals

No. of

events/patients

P at

univariate HR 95% CI

P at

multivariate

Age < 65 years vs ≥ 65 years 15.3 vs 12.6 42/95 vs 48/108 0.3141 1.22 0.75–1.99 0.4098

Gender M vs F 13.6 vs 15.0 45/98 vs 45/105 0.7870 0.82 0.51–1.32 0.4276

Side L vs R 15.3 vs 12.6 31/73 vs 59/130 0.3431 1.33 0.80–2.19 0.2584

Metastatic involvement 1 site vs > 1 27.3 vs 9.0 15/38 vs 75/165 0.0002 2.36 1.30–4.27 0.0043

Response to firs-line CT DC vs not DC 22.6 vs 8.6 43/107 vs 34/78 0.0005 0.50 0.30–0.82 0.0065

Glucose metabolism status T2D vs not T2D 9.6 vs 17.3 21/41 vs 69/162 0.0197 2.01 1.11–3.64 0.0226
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role in the development of pancreatic islets and regu-

lates hormone gene expression [53]. Interestingly, we

found genetic variants of TCF7L2 different from the

more frequent c.450+33966C>T (corresponding to the

rs7903146) [54]. This interesting result needs to be con-

firmed and explored in basic studies. We also found

that T2D patients had both higher lymph nodes

involvement at initial pathologic staging and a higher

number of metastatic sites at diagnosis of advanced

diseases. This biological CRC behavior in patients

affected by T2D can be explained, at least in part, by

the presence of a TCF7L2 alteration. In fact, it was

recently reported that TCF7L2 plays an anti-oncogenic

role in CRC and is involved in the inhibition of motil-

ity and metastatization of CRC cells [55]. These effects

can be at the bases of the frequent mutated status of

TCF7L2 in CRC and the association in our series

between T2D and initial lymph node metastatization

of the primary CRC. Another factor that can influence

the metastatic potential of CRC in T2D patients is the

increase of IGFs that is constantly observed in T2D

and insulin resistance [7,8,56–58]. In fact, hyperstimu-

lation of the IGFs/IGFR axis might also be involved

in accounting for the lower rate of response observed

in T2D patients, as already supposed by previous evi-

dence [59]. In this regard, it is important to clarify that

T2D patients of our series neither received a depotenti-

ated/reduced chemotherapy nor experienced higher

rates of toxicities.

Can the selected genes involved in CRC be considered

as key driver genes? Surprisingly, excluding TCF7L2

mutations implying loss of function, the selected genes

are not directly involved in CRC carcinogenesis. In fact,

CDKN2B and HNF1A deletions/inactivations have been

evidenced in pancreatic adenocarcinoma [60,61]. The

EML4-ALK “fusion-type” oncogene is critical in driving

oncogenesis in a subset of lung cancers [62]. Mutations

in ID3 are critical in Burkitt Lymphomas [63]. Interest-

ingly, the IGF axis is a complex molecular network (in-

cluding peptide-ligands IGF1, IGF2, and insulin, and

the receptors IGF1R, IGF2R, and INSR) that is

involved in a wide variety of neoplasms such as pros-

tate, breast, colorectal, and lung cancers [64]. However,

it is frequently hyperactivated, probably as a conse-

quence of upstream epi/genetic alterations. In fact, very

recently HOX homeobox proteins (key oncogenic dri-

vers particularly in hematopoietic malignancies) have

been demonstrated to display their oncogenic potential

by inducing the production of IGF1 [65].

Our study has some limitations. Most important, its

intrinsic retrospective nature. This pitfall is partially lim-

ited by the mono-institutional nature, which helps to

Fig. 2. Prioritization of studied genetic variants according to the Phenolyzer tool. In the upper section the reported Phenolyzer score ranged

from 0 to 1 (the greater the score, the stronger the association with colorectal cancer). In the lower panel is reported a network

visualization tool depicting gene–gene and gene–disease relationships (see Materials and methods).
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reduce some biases linked to patients’ selection, treat-

ments, and follow-up. Furthermore, the mean glycemia

value in our T2D patients at diagnosis was 152 mg�dL�1

(95% CI: 137–170 mg�dL�1); consequently, we could

argue that diabetes was not well controlled in this T2D

series. Analysis and discussion of the reason for hyper-

glycemia poor control is beyond the scope of this article;

interestingly, a poor attitude to control T2D has been

frequently observed after diagnosis of a cancer [66].

Therefore, we cannot exclude a direct effect of glucose

on stimulating CRC and a worsening prognosis. This

effect could also explain the reduced anticancer effect of

metformin (used by all included patients) [67]. However,

a better control of glycaemia could be associated with a

better prognosis. Moreover, we have characterized the

genetics of a limited number of patients of our series

due to the high selection we made for a reliable and

clean genotype/phenotype correlation. In this light,

genetic results must be considered necessarily as having

a hypothesis-generating role. The number of T2D

patients in our series was relatively small (41 patients);

however, it is consistent with statistical expectations as

well as with the incidence of the disease in the overall

population (about 15%). Our series, in fact, was not

enriched with T2D patients but it included the consecu-

tive patients observed in the analyzed period.

5. Conclusion

We found that T2D is a negative prognostic factor for

survival in CRC. The hypothesis that a “dosage

effect” of gene variants not directly involved in deter-

mining cancer could concur with malignancy in CRC

is fascinating and deserves to be studied in larger ser-

ies. It could also provide a rational basis for innova-

tive models of tumor progression and for integrated

antitumor strategies.
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