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ABSTRACT
Background: Strategies to optimize management in rhabdomyosarcoma (RMS) in-
clude risk stratification to assign therapy aiming to minimize treatment morbidity 
yet improve outcomes. This analysis evaluated the relationship between complete 
metabolic response (CMR) as assessed by 18F-fluorodeoxyglucose positron emis-
sion tomography-computed tomography (FDG-PET) imaging and event-free survival 
(EFS) in intermediate-risk (IR) and high-risk (HR) RMS patients.
Methods: FDG-PET imaging characteristics, including assessment of CMR and 
maximum standard uptake values (SUVmax) of the primary tumor, were evaluated 
by central review. Institutional reports of SUVmax were used when SUVmax values 
could not be determined by central review. One hundred and thirty IR and 105 HR 
patients had FDG-PET scans submitted for central review or had SUVmax data avail-
able from institutional report at any time point. A Cox proportional hazards regression 
model was used to evaluate the relationship between these parameters and EFS.
Results: SUVmax at study entry did not correlate with EFS for IR (p = 0.32) or HR 
(p = 0.86) patients. Compared to patients who did not achieve a CMR, EFS was not 
superior for IR patients who achieved a CMR at weeks 4 (p = 0.66) or 15 (p = 0.46), 
nor for HR patients who achieved CMR at week 6 (p  =  0.75) or 19 (p  =  0.28). 
Change in SUVmax at week 4 (p = 0.21) or 15 (p = 0.91) for IR patients or at week 6 
(p = 0.75) or 19 (p = 0.61) for HR patients did not correlate with EFS.
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1  |   INTRODUCTION

Rhabdomyosarcoma (RMS) is the most common soft tissue 
sarcoma (STS) in children and adolescents with approxi-
mately 350 cases documented in the United States each year.1 
Clinical features present at diagnosis can stratify patients into 
low-, intermediate-, and high-risk groups to predict outcome 
and modulate treatment intensity.2,3 Patients with low-risk 
and intermediate-risk (IR) RMS have a relatively favorable 
long-term event-free survival (EFS) of approximately 90% 
and 60%, respectively, whereas patients with high-risk (HR) 
disease have poor outcomes with a 5-year EFS of approxi-
mately 30%.4-6 Recent studies to improve outcomes in RMS 
have explored novel ways of stratifying risk to identify pa-
tients that may require more intensive or novel therapies.6-10

Response to induction chemotherapy is a well-established 
predictor of survival in many pediatric cancers, including 
acute lymphoblastic leukemia, Hodgkin lymphoma, osteo-
sarcoma, and Ewing sarcoma.11-16 Both radiographic and his-
tologic response have been used to adapt treatment intensity 
in an overall effort to minimize toxicity for lower risk patients 
and escalate therapy for higher risk patients. Radiographic 
response to treatment (as measured by change in tumor size), 
however, has not proven to be a reliable predictor of outcome 
in RMS, limiting the ability to identify patients who could 
benefit from more intensive or novel therapy.17-19

Metabolic activity as assessed by 18F-FDG-PET/CT (FDG-
PET) has recently been shown to improve accuracy of staging 
in pediatric RMS.20,21 Preliminary data from a single institu-
tion suggested that a complete metabolic response (CMR) as 

assessed by FDG-PET following radiation therapy for local 
control may predict local relapse-free survival (LRFS) in pe-
diatric patients with Group III RMS.22 A follow-up analysis by 
the same group confirmed these findings in a larger cohort of 
RMS patients showing that metabolic response by FDG-PET 
predicted EFS, overall survival, and local tumor control.23 The 
predictive value of FDG-PET response, however, has not been 
evaluated in a prospective multi-institutional RMS clinical trial.

In this analysis, we present the FDG-PET imaging 
data from two large, prospective Children's Oncology 
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Conclusion: Based on these data, FDG-PET does not appear to predict EFS in IR 
or HR-RMS. It remains to be determined whether FDG-PET has a role in predicting 
survival outcomes in other RMS subpopulations.
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Lay summary
This manuscript reports the 18F-fluorodeoxyglucose 
Positron Emission Tomography-Computed 
Tomography (FDG-PET) imaging data from two 
large, prospective, Children's Oncology Group 
Studies—ARST0531 and ARST08P1—of pediat-
ric patients with intermediate- and high-risk rhab-
domyosarcoma, respectively. The study examined 
several FDG-PET variables on imaging submitted 
from patients enrolled on each study to determine if 
FDG-PET imaging could be correlated with event-
free survival (EFS) in rhabdomyosarcoma. None of 
the variables tested were found to correlate with EFS 
in rhabdomyosarcoma suggesting the imaging mo-
dality does not have a role in predicting outcome in 
intermediate- or high-risk rhabdomyosarcoma.
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Group (COG) studies for newly diagnosed IR RMS and 
HR RMS: ARST0531 (Randomized Study of Vincristine, 
Dactinomycin, and Cyclophosphamide (VAC) versus VAC 
Alternating with Vincristine and Irinotecan (VI) for Patients 
with Intermediate-Risk Rhabdomyosarcoma) and ARST08P1 
(A Pilot Study to Evaluate Novel Agents (Temozolomide and 
Cixutumumab) in Combination with Intensive Multi-Agent 
Interval Compressed Therapy for Patients with High-Risk 
Rhabdomyosarcoma). The purpose of this analysis was to de-
termine whether complete metabolic response as assessed by 
FDG-PET imaging correlates with EFS in these two subpop-
ulations of RMS patients.

2  |   PATIENTS AND METHODS

2.1  |  Patient population

Details of the design, eligibility criteria, treatment, and 
outcome for ARST0531 (NCT00354835) and ARST08P1 
(NCT01055314) have been previously published.5,7 
ARST0531 enrolled newly diagnosed patients with IR RMS 
defined as patients with non-metastatic (Group I-III) alveolar 
RMS arising at any site (Stage 1–3) and incompletely excised 
(Group III) embryonal RMS arising in an unfavorable site 
(Stage 2–3). Patients received 42 weeks of either VAC alone 
or alternating cycles of VAC with VI. Only patients with 
measurable disease at study entry (Clinical Group III) were 
included in this analysis. Radiation therapy (50.4 Gy in 1.8 Gy 
fractions for Clinical Group III patients) was given at week 
4 of therapy. Patients enrolled on both treatment arms were 
combined for the purpose of this FDG-PET analysis, as there 
was no statistical difference in EFS between the two treat-
ment arms.5 FDG-PET imaging was optional for all patients 
and was recommended prior to chemotherapy, at week 4, and 
at week 15. ARST08P1 enrolled newly diagnosed patients 
with HR RMS defined as patients with metastatic (Stage 4/
Group IV) alveolar or embryonal RMS. Patients were treated 
with a multi-agent chemotherapy backbone which included 
two cycles of VI (Weeks 1–6), followed by six cycles of al-
ternating interval compressed vincristine, doxorubicin, and 
cyclophosphamide (VDC) and ifosfamide and etoposide (IE) 
(weeks 7–19). Two VI cycles were repeated at weeks 20–25 
and weeks 47–51. Interval-compressed VDC/IE cycles were 
administered again at weeks 28 through 34 followed by four 
cycles of VAC administered every 3  weeks during weeks 
35–46. Patients were enrolled in sequential pilot cohorts to 
receive the described chemotherapy backbone in conjunc-
tion with cixutumumab or temozolomide with the primary 
aim to evaluate the feasibility of the combination.7 Radiation 
therapy was administered at week 20 to the primary tumor as 
well as to sites of metastatic disease at the discretion of the 
treating institution. FDG-PET imaging was performed prior 

to chemotherapy, at week 6, and week 19 (prior to radiation 
therapy) if clinically indicated and available at the treating 
institution.

2.2  |  Measurement of response and 
definition of endpoints

We evaluated both FDG-PET tumor response and baseline 
maximum standard uptake values. Two nuclear imaging 
physicians (MTP and BLS) centrally reviewed FDG-PET 
response. Response was classified according to European 
Organization for Research and Treatment of Cancer crite-
ria.24 CMR was defined as complete resolution of abnormal 
FDG uptake within the tumor region defined on baseline scan. 
SUVmax values were assessed by central review or institu-
tional report if central review was not available. SUVmax was 
determined by manually drawing a region of interest over the 
area of FDG activity corresponding to the tumor in question. 
Quality assurance of the treating institution included docu-
mentation of: blood glucose level before injection, injected 
18F-FDG dose, time of injection, time that image acquisi-
tion began, patient weight and height for determination of 
SUV, and assurance that the DICOM header was intact. Both 
transverse CT files and transverse 18F-FDG-PET attenuation 
corrected files were required.

2.3  |  Statistical analysis methods

EFS was defined as the time from study enrollment to disease 
progression, disease recurrence, occurrence of a second ma-
lignant neoplasm, or death from any cause. EFS for patients 
who did not experience disease progression or death was 
censored at the subject's last contact date. Follow-up is cur-
rent as of 31 December 2018. The Kaplan–Meier method was 
utilized to estimate the EFS.25 EFS was compared between 
groups using the log-rank test.26 A Cox proportional hazards 
regression model was used to evaluate SUVmax and ratio of 
SUVmax.27 Software SAS 9.4®, was used for the analysis.

3  |   RESULTS

3.1  |  Patient demographics and disease 
characteristics

Demographic data for the evaluated patient cohort are 
shown in Table 1 for ARST0531 and ARST08P1. Figure 1 
shows the disposition of patients enrolled on ARST0531 and 
ARST08P1 and the distribution of available FDG-PET imag-
ing data. Of the 387 eligible patients with Clinical Group III 
disease enrolled on ARST0531, 130 patients had FDG-PET 
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scans submitted for central review or had SUVmax data 
available from institutional report at any time point. Twenty-
six IR patients had week 4 and 51 patients had week 15 
FDG-PET imaging available for response evaluation. FDG-
PET SUVmax at the primary tumor site was reported by the 
treating institution and evaluated by central imaging review 
if available. On the IR study, SUVmax data were analyzed 
for 111 patients prior to chemotherapy, 39 patients at week 
4, and 84 patients at week 15. Of the 167 eligible and evalu-
able patients enrolled on ARST08P1, 105 patients had FDG-
PET scans submitted for central review or had SUVmax data 
available from institutional report at any time point. Seventy 
HR patients had week 6, and 69 patients had week 19 FDG-
PET imaging available for response evaluation. FDG-PET 
SUVmax of the primary tumors was reported by the treating 
institution and evaluated by central review if available. On 
the HR study, SUVmax data were analyzed for 95 patients 
prior to chemotherapy, 69 patients at week 6, and 55 patients 
at week 19.

3.2  |  Relationship between complete 
metabolic response and EFS

Of the 26 IR RMS patients who had FDG-PET imaging 
available for review at week 4 following one cycle of chemo-
therapy, a CMR was achieved in three (11.5%). No signifi-
cant improvement in 3-year EFS was seen in patients who 
achieved a CMR compared to those who did not at week 4 (3-
year EFS 67% vs 52%, p = 0.66). Of the 51 patients who had 
FDG-PET imaging available for review at week 15 following 
five cycles of chemotherapy and local radiotherapy, CMR 

T A B L E  1   Clinical features and treatment of patients from 
ARST0531 (N = 130) and ARST08P1 (N = 105) with FDG-PET 
response or SUVmax data available

Clinical characteristic

Number 
of 0531 
patients (%)

Number 
of 08P1 
patients (%)

Gender

Male 67 (51.5%) 53 (50.5%)

Female 63 (48.5%) 52 (49.5%)

Age, years

0–0.99 3 (2.3%) 1 (1.0%)

1–9.99 67 (51.5%) 22 (21.0%)

≥10 60 (46.2%) 82 (78.1%)

Race

White 99 (76.2%) 78 (74.3%)

Black 15 (11.5%) 11 (10.5%)

Asian 4 (3.1%) 3 (2.9%)

Other/unknown 12 (9.2%) 13 (12.4%)

Ethnicity

Hispanic or Latino 17 (13.1%) 23 (21.9%)

Not Hispanic or Latino 108 (83.1%) 78 (74.3%)

Unknown 5 (3.9%) 4 (3.8%)

RMS histology

Embryonal 67 (51.5%) 23 (21.9%)

Alveolar 57 (43.9%) 75 (71.4%)

NOS/unknown 6 (4.6%) 7 (6.7%)

Maximum tumor size, cma 

<5 55 (42.6%) 21 (20.0%)

5–9.99 65 (50.4%) 49 (46.7%)

≥10 9 (7.0%) 35 (33.3%)

Regional lymph node status

N0 100 (76.9%) 48 (45.7%)

N1 30 (23.1%) 56 (53.3%)

Not evaluated/unknown N/A 1 (1.0%)

Primary site

Orbit 1 (0.8%) 0 (0%)

Head or neck 4 (3.1%) 5 (4.8%)

Parameningeal 76 (58.5%) 13 (12.4%)

GU, bladder/prostate 12 (9.2%) 5 (4.8%)

GU, non-bladder/prostate 0 (0%) 9 (8.6%)

Extremity 20 (15.4%) 30 (28.6%)

Retroperitoneal/perineal 15 (11.5%) 25 (23.8%)

Trunk 2 (1.5%) 9 (8.6%)

Other or Missing Data 0 (0%) 9 (8.6%)

Fusion statusb 

FOXO1− 76 (58.5%) 26 (24.8%)

FOXO1+ 44 (33.9%) 38 (36.2%)

(Continues)

Clinical characteristic

Number 
of 0531 
patients (%)

Number 
of 08P1 
patients (%)

Unknown 10 (7.7%) 41 (39.1%)

Treatment

VAC 65 (50.0%) N/A

VAC/VI 65 (50.0%) N/A

IMC-A12: 3 mg/kg dose N/A 16 (15.2%)

IMC-A12: 6 mg/kg dose N/A 12 (11.4%)

IMC-A12: 9 mg/kg dose N/A 37 (35.2%)

Temozolomide N/A 40 (38.1%)

Abbreviations: GU, Genitourinary; N0, Regional nodes not clinically involved; 
N1, Regional nodes clinically involved by neoplasm; NOS, Not otherwise 
specified; RMS, rhabdomyosarcoma; VAC, Vincristine/antino mycin/
cyclophosphamide; VAC/VI, Vincristine/antino mycin/cyclophosphamide 
alternating with vincristine/irinotecan.
aData missing for one patient. 
bERMS/Spindle cell/BRMS were treated as FOXO1− 

T A B L E  1   (Continued)
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was achieved in 32 (62.7%). No significant improvement in 
3-year EFS was seen in patients who achieved a CMR com-
pared to those who did not at week 15 (3-year EFS: 56% vs 
68%, p = 0.46; Table 2; Figure 2).

Of the 70 HR RMS patients who had FDG-PET imaging 
available for review at week 6, a CMR was achieved in 24 
(34.3%). No significant improvement in 3-year EFS was seen 
in patients who achieved a CMR compared to those who did 
not at week 6 (3-year EFS 16% vs 21%, p = 0.75). Of the 
69 patients who had FDG-PET imaging available for review 
at week 19, CMR was achieved in 50 (72.5%). No signifi-
cant improvement in 3-year EFS was seen in patients who 
achieved a CMR compared to those who did not at week 19 
(3-year EFS 13% vs 31%, p = 0.28; Table 2; Figures 2 and 3).

3.3  |  Relationship between 
SUVmax and EFS

The median (range) SUVmax of the primary tumor at diag-
nosis of IR and HR patients was 6.0 (range, 1.3–24.5) and 
7.9 (range, 1.6–26.8), respectively. Increased SUVmax at 
study entry did not correlate with EFS in IR RMS patients 
(Hazard ratio: 0.97, p  =  0.32) or HR RMS (Hazard ratio: 
1.00, p = 0.86; Table 3).

To determine if change in SUVmax during therapy was 
associated with EFS, a ratio of SUVmax during therapy to 
SUVmax at study entry (SUVmax0) was calculated. For 
IR RMS there was no difference in EFS based on change in 
SUVmax at week 4 or week 15. (Hazard ratio SUVmax4/
SUVmax0: 2.72, p  =  0.21; Hazard ratio SUVmax15/
SUVmax0: 0.95, p  =  0.91). Similarly, for HR RMS, there 

F I G U R E  1   Disposition of patients enrolled on ARST0531 and ARST08P1 and the distribution of available FDG-PET imaging data

84 subjects with SUVmax
reported at Week15

51 subjects with response
evaluation at Week 15

39 subjects with 
SUVmax reported at 

Week4

26 subjects with 
response evaluation at 

Week 4

111 subjects with 
SUVmax reported 

at Week 0

387 Group III 130 subjects with 
FDG- PET scans submitted or had 
SUVmax data available from 
institutional report at any time point.  

14 Group 1 and
47 Group II

33 Ineligible

481 subjects 
enrolled on 
ARST0531

55 subjects with 
SUVmax reported at 

Week 19

69 subjects with 
response evaluation at 

Week 19

69 subjects with SUVmax
reported at Week 6

70 subjects with 
response evaluation 

at Week 6

95 subjects with 
SUVmax reported at 

Week 0

167 eligible 105 subjects with FDG- PET 
scans submitted or had SUVmax data 

available from last institutional report at any 
time point. 

8 Ineligible

175 subjects enrolled
on ARST08P1

T A B L E  2   Relationship between the presence/absence of complete 
metabolic response (CMR) and EFS in IR RMS (ARST0531) and 
HR RMS (ARST08P1) at different timepoints as assessed by central 
imaging review

PET imaging 
criterion N

3 year event-free 
survival (95% CI) p-value

ARST0531

Response at week 4

CMR 3 67% (13.3–100%) 0.66

<CMR 23 52% (31.8–72.6%)

Response at week 15

CMR 32 56% (39.1–73.4%) 0.46

<CMR 19 68% (46.7–90.2%)

ARST08P1

Response at week 6

CMR 24 16% (0–32.7%) 0.75

<CMR 46 21% (6.0–35.7%)

Response at week 19

CMR 50 13% (2.4–24.0%) 0.28

<CMR 19 31% (1.8–59.9%)
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was no difference in EFS based on change in SUVmax at 
week 6 or week 19. (Hazard ratio SUVmax6/SUVmax0: 
1.23, p  =  0.75; Hazard ratio SUVmax19/SUVmax0: 0.66, 
p = 0.61; Table 3).

4  |   DISCUSSION

This is the first prospective cooperative group study evalu-
ating whether FDG-PET imaging predicts outcome in RMS 
patients. We evaluated SUVmax at diagnosis, change in 
SUVmax with therapy, and CMR during treatment (both 
early CMR following 4 and 6 weeks of chemotherapy in IR 
RMS and HR RMS, respectively, and late CMR following 15 
and 19 weeks of chemotherapy in IR RMS and HR RMS, re-
spectively); none of these parameters predicted EFS in either 

IR or HR RMS. We conclude that, at the timepoints we used, 
FDG-PET is not a useful tool to predict outcome for either 
IR or HR RMS.

Metabolic assessment of tumors using FDG-PET eval-
uation remains a relatively novel modality for assessing re-
sponse and how best to incorporate this imaging modality into 
treatment paradigms is an active area of research. Multiple 
studies have documented FDG-PET response to be a predic-
tor of outcome in several malignancies including Hodgkin 
lymphoma,28 renal cell carcinoma,29 non-small cell lung can-
cer,30 Ewing sarcoma,31 and osteosarcoma.32-34 A potential 
prognostic relevance for metabolic response as assessed by 
FDG-PET in pediatric RMS is supported by the adult STS 
literature.35,36 Adult patients with high-grade STS who at-
tain an early metabolic response as defined by a greater than 
26% drop in SUVmax after one cycle of chemotherapy have 

F I G U R E  2   EFS by CMR vs less than CMR for IR and HR RMS Patients

EFS for patients by complete metabolic response vs less than complete  

metabolic response at Week 4 on ARST0531 

EFS for patients by complete metabolic response vs less than complete  

metabolic response at Week 15 on ARST0531 

EFS for patients by complete metabolic response vs less than complete 

metabolic response at Week 6 on ARST08P1 

EFS for patients by complete metabolic response vs less than complete  

metabolic response at Week 19 on ARST08P1 
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a significantly improved overall survival (OS). Late meta-
bolic response following chemotherapy significantly cor-
relates with OS in univariate but not multivariate analysis.36 
Moreover, several studies in the STS patient population have 
shown SUVmax at diagnosis to be a significant predictor of 
outcome, although these have been limited by small sample 
size and the inclusion of several differing histologic subtypes 
and tumor primary sites.36-38

Since RMS is uncommon in adults, it has rarely been 
represented in STS studies conducted evaluating the utility 
of FDG-PET.39 The value of FDG-PET imaging for patients 
with RMS, thus, remains an open question. In osteosarcoma, 
the most common primary malignant sarcoma of bone in both 
the pediatric and adult population, FDG-PET has been shown 
to be a potential predictor of histologic response following 
neoadjuvant chemotherapy, a well-documented surrogate for 

outcome in this disease.31-33,40-42 While our results do not 
support the use of FDG-PET to predict outcome in IR or HR 
RMS, several studies have documented the value of FDG-
PET imaging for disease staging. For example, FDG-PET 
has been found to have increased sensitivity and specificity 
compared to conventional imaging including 99mTechnetium 
methylene diphosphanate bone scintigraphy in the identi-
fication of distant RMS metastases, particularly bone and 
distant nodal metastases.20,21 A retrospective evaluation of 
FDG-PET showed improved sensitivity and specificity in 
identifying nodal metastases in RMS when compared with 
conventional imaging.43 This finding was confirmed in a re-
cent prospective study.44 This study, however, documented 
a low concordance rate between FDG-PET and pathology 
after tissue biopsy with nodal tissue sampling and thus, tis-
sue sampling should remain the gold standard when defining 

F I G U R E  3   17 year old girl with alveolar RMS of the lower extremity enrolled on ARST08P1. Images at the time of presentation (left panel) 
show right sided supraclavicular, left anterior mediastinal, subdiaphragmatic, widespread bilateral retroperitoneal, and left iliac bone uptake. By 
6 weeks most sites of uptake had resolved. SUVmax of the anterior mediastinal mass declined from 8.7 to 1.7. At 19 weeks no residual areas of 
abnormal uptake were present. FDG-PET response does not correlate with EFS in either IR or HR RMS. This patient suffered distant recurrence 
6 months following completion of protocol directed therapy despite excellent FDG-PET response, and eventually died from recurrent disease

Sample 
size

Hazard 
ratio 95% CI, for HR p-value

ARST0531

SUVmax0 111 0.97 (0.911, 1.031) 0.32

SUVmax4/SUVmax0 32 2.72 (0.569, 13.047) 0.21

SUVmax15/SUVmax0 68 0.95 (0.409, 2.226) 0.91

ARST08P1

SUVmax0 95 1.00 (0.945, 1.048) 0.86

SUVmax6/SUVmax0 64 1.23 (0.344, 4.420) 0.75

SUVmax19/SUVmax0 50 0.66 (0.128, 3.363) 0.61

T A B L E  3   Relationship between FDG 
PET maximum standard uptake value 
(SUVmax) at study entry and ratio of later 
SUVmax values relative to baseline on EFS 
as assessed by the Cox proportional hazards 
model
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sites requiring local control with radiotherapy.44 At present, 
the data clearly support a role for FDG-PET imaging in the 
initial staging evaluation of RMS.

Our data contrast with prior single institution reports that 
supported a role for using CMR to predict EFS in patients 
with Group III RMS following 15  weeks of chemotherapy 
and radiation therapy for local control.22,23 The reasons for 
this discrepancy remain unclear. The prior studies were per-
formed at a single institution where the timing of the FDG-
PET imaging and techniques used could be well controlled, 
as opposed to our cooperative group study which relied on 
imaging performed at multiple institutions. Furthermore, the 
ARST0531 study requested FDG-PET imaging at Week 4 
immediately prior to radiotherapy and at Week 15, approx-
imately 6  weeks after completion of radiotherapy. Both of 
these timepoints are significantly earlier than the above sin-
gle institution studies that delivered radiation therapy at week 
15.

This study has several limitations, most notably the 
small sample size of the patient population available for 
this analysis—particularly the small number of paired 
baseline and follow-up studies at each timepoint. FDG-PET 
imaging was not a requirement for enrollment on either 
study, and there may have been bias introduced by selec-
tive submission of imaging studies, although we could de-
tect no significant differences in the clinical features of the 
population with and without FDG-PET imaging available 
for review (data not shown). Several limitations similarly 
exist regarding the collection of the FDG-PET data. While 
the guidelines for FDG-PET imaging were specific in both 
protocols, precise standardization of imaging equipment 
was not practical due to the large number of institutions 
involved.45 Furthermore, while several FDG-PET imaging 
variables and their relationship to outcome were evaluated, 
more advanced parameters such as metabolic tumor vol-
ume and total lesion glycolysis that were beyond the scope 
of this analysis were not evaluated although could be con-
sidered for future analyses.46 Finally, FDG-PET imaging 
was performed at diagnosis, week 4 and week 15 of ther-
apy in ARST0531, and at diagnosis, week 6, and week 19 
in ARST08P1. It remains possible that FDG-PET response 
later in therapy, immediately following local control, or at 
the conclusion of all planned treatment could potentially 
be prognostic.

In conclusion, our analysis does not support using FDG-
PET as a predictor for outcome in the IR or HR RMS pop-
ulation. Further prospective studies are needed to determine 
whether this imaging modality has a role in predicting re-
sponse to therapy or outcome in other RMS subpopulations, 
and whether FDG-PET imaging at a later timepoint would be 
more predictive of outcome. Additional research is needed to 
identify other methods to measure therapy response that can 
reliably predict outcome in RMS.
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