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Abstract

The third variable region (V3) of the human immunodeficiency virus type 1 (HIV-1) envelope gp120 subunit participates in
determination of viral infection coreceptor tropism and host humoral immune responses. Positive charge of the V3 plays a
key role in determining viral coreceptor tropism. Here, we examined by bioinformatics, experimental, and protein modelling
approaches whether the net positive charge of V3 sequence regulates viral sensitivity to humoral immunity. We chose HIV-1
CRF01_AE strain as a model virus to address the question. Diversity analyses using CRF01_AE V3 sequences from 37
countries during 1984 and 2005 (n = 1361) revealed that reduction in the V3’s net positive charge makes V3 less variable due
to limited positive selection. Consistently, neutralization assay using CRF01_AE V3 recombinant viruses (n = 30) showed that
the reduction in the V3’s net positive charge rendered HIV-1 less sensitive to neutralization by the blood anti-V3 antibodies.
The especially neutralization resistant V3 sequences were the particular subset of the CCR5-tropic V3 sequences with net
positive charges of +2 to +4. Molecular dynamics simulation of the gp120 monomers showed that the V3’s net positive
charge regulates the V3 configuration. This and reported gp120 structural data predict a less-exposed V3 with a reduced net
positive charge in the native gp120 trimer context. Taken together, these data suggest a key role of the V3’s net positive
charge in the immunological escape and coreceptor tropism evolution of HIV-1 CRF01_AE in vivo. The findings have
molecular implications for the adaptive evolution and vaccine design of HIV-1.
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Introduction

The third variable region (V3) of human immunodeficiency

virus type 1 (HIV-1) envelope gp120 subunit participates in

determination of viral infection coreceptor tropism [1,2]. It is

usually composed of 35 amino acids, which form a loop-like

structure on the gp120 monomer [3,4]. The V3 and the conserved

outer domain of gp120 create the binding surface for viral

infection coreceptors after the binding of gp120 to the primary

infection receptor CD4 [4,5]. These interactions and successive

conformational changes of gp120 are essential in rendering the

initially occluded hydrophobic domain of the envelope gp41

subunit available to fusion with cellular plasma membrane.

The HIV-1 V3 is highly variable. In parallel with the V3

sequence variation, many types of infection coreceptors are

reported. These are the members of the G protein-coupled

receptor superfamily. The two most common types of infection

coreceptors in humans are the CC chemokine receptor 5 (CCR5)

and the CXC chemokine receptor 4 (CXCR4) [6]. Notably, a

single group of the HIV-1 variants using the CCR5 (R5 virus [6])

predominates during the first several to 10 years or more of

persistent infection in vivo [7,8]. Other tropism variants including

CXCR4-tropic variants (X4 virus [6]) can grow at early stage of

infection by needle stick injuries, but are replaced with the R5

viruses after seroconversion [9,10]. They generally grow better

only during progression to AIDS. The R5 and X4 viruses are

distinguishable by sequence feature of V3: the R5 V3 amino acid

sequences generally have a lower net positive charge than those of

X4 [3,11]. Only a few basic substitutions in V3 can switch the viral

coreceptor tropism from CCR5 to CXCR4 [12,13]. Considering

the extremely high levels of mutation rate of HIV-1, these findings

suggest that strong selective forces are continually purifying the R5

viruses during long-lasting persistent infection.

The HIV-1 V3 is highly immunogenic, tolerant to change, and

variable presumably to evade immune recognition [14–16]. HIV-

infected individuals make high levels of anti-V3 antibodies that are
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reactive with soluble, monomeric gp120 protein [17,18]. Howev-

er, they often react poorly or only with low affinity to the native,

oligomeric form of the gp120 protein [17,18]. The inaccessibility

of the oligomeric envelope protein is particularly prominent in the

primary HIV-1 isolates [19–21], which are usually the R5 viruses.

Indeed, studies with limited set of viruses have shown that

antibodies reactive with the R5-virus V3s tend to bind to the

monomeric but not the oligomeric gp120s [22,23], and they

poorly neutralize the R5 viruses [23–25]. In contrast, antibodies

against X4-virus V3s usually bind to both forms of gp120s [22,23],

and they potently neutralize the X4 viruses [23–25]. Consistent

with the lower sensitivity of R5 viruses to anti-V3 antibody

neutralization, positive selection for amino acid variation is less

prominent in the R5 virus V3 sequences, and V3 amino acid

sequences of the R5 virus are relatively homogeneous among virus

isolates [26,27] or in infected individuals [28–30] compared with

those of the X4 viruses.

While the immunological escape, variation, and coreceptor

tropism evolution of HIV-1 is an important issue from both

clinical and scientific viewpoints, current studies are largely

confined to those of HIV-1 subtype B from North America and

Europe. In this study, we attempted to obtain and integrate

information on HIV-1 CRF01_AE strain [31] circulating in

Southeast Asia. Specifically, we examined whether net positive

charge of HIV-1 CRF01_AE V3 sequence regulates viral

sensitivity to humoral immunity. Here, we demonstrate by

combining bioinformatics, experimental, and protein modelling

approaches that the reduction in net positive charge of HIV-1

CRF01_AE V3 sequence reduces viral sensitivity to humoral

immunity and simultaneously confers viral CCR5 tropism. The

findings suggest a key role of the V3 net positive charge in the

immunological escape, variation, and the coreceptor-tropism

evolution of HIV-1 CRF01_AE in vivo.

Results

Correlation of HIV-1 CRF01_AE V3 net positive charge, V3
prevalence, and V3 diversity.

A previous case study has suggested that a group of CRF01_AE

V3 sequences for the viral CCR5 tropism is resistant to the selective

force for amino acid variation [29,30]. To extend this finding with

three infected individuals, we conducted large-scale analysis of V3

diversity using public database information. V3 sequences of the

CRF01_AE strain were extracted from the HIV Sequence

Database (http://www.hiv.lanl.gov/content/hiv-db/mainpage.

html). A single V3 amino acid sequence per infected individual

was randomly extracted. Sequences with ambiguous bases are

excluded from the analysis. V3 sequences (n = 1361, 35 amino acid

length) from 37 countries during 1984 and 2005 (see supporting

information Figs. S1a and S1b) were used for the diversity analysis.

The 1361 V3 sequences were divided into two subsets, ‘‘a’’ and ‘‘b’’,

which lack and have the glycosylation motif, respectively. Each

group was divided into subgroups on the basis of the net charge;

arginine, lysine, and histidine were counted as +1, aspartic acid and

glutamic acid as 21, and other amino acids as 0.

Although there are exceptions, the V3 amino acid sequences

capable of directing the viral CCR5 tropism of the CRF01_AE

strain generally have net positive charges of +2 to +4 and the

conserved N-linked glycosylation motif (asparagine-X-threonine/

serine) at positions 6 to 8 [29,30]. Consistent with the dominance of

the R5 viruses in humans, less positively charged, glycosylated V3

sequences for the CCR5 tropism (2b, 3b, and 4b) were dominant in

the database for over 15 years, independent of the sampling period

(Fig. 1A and Fig. S1c). Shannon entropy scores representing amino

acid variation were relatively low for the most abundant 3b V3

compared to those for the 7a V3 for the CXCR4 tropism (Fig. 1B),

consistent with previous report [3]. Nucleotide substitutions for

amino acid change were more suppressed in the V3s for the CCR5

tropism compared with those for the CXCR4 tropism (Fig. 1C).

The 3b V3 had the lowest ratio of nonsynonymous to synonymous

substitutions (dn/ds) with about 0.6, and acquisition of a glycosyl-

ation site decreased the dn/ds ratios (P = 0.001, Table S1). The dn/ds

ratios correlated positively with the Shannon entropies, with lower

dn/ds ratios for lower entropies (Fig. 1D). Similar effects of the net

positive charge of V3 on V3 diversity were detected in other major

genetic lineages of HIV-1 circulating in the world, such as subtypes

A, B, and C (Fig. S2).

If the low levels of amino acid changes in the V3 structures for

CCR5 tropism involved the elimination of new mutants in natural

selection, negative values for Tajima’s D statistic would be

expected [32]. Indeed, Tajima’s D statistic was significantly

negative for 2b and 3b V3s (P = 0.01, Fig. 1E and Table S2).

Together, these findings on V3 diversity provide further evidence

that the V3 sequences for the CCR5-tropism are less variable in

nature due to the limited positive selection for amino acid diversity

compared with those for CXCR4 tropism.

Correlation of HIV-1 CRF01_AE V3 net positive charge,
HIV-1 neutralization sensitivity, and HIV-1 coreceptor
tropism.

A positive selection pressure for the V3 diversity can be the

humoral immunity. To examine whether the V3 net positive

charge regulates HIV-1 neutralization sensitivities to the anti-V3

antibodies, we used V3 recombinant viruses (n = 30). The

recombinant viruses have the CRF01_AE V3s in the backbone

of the X4 virus gp120 of HIV-1 subtype B, LAI strain [13,30,33].

The V3s were from HIV-1 proviral DNA clones in the peripheral

blood mononuclear cells of three infected individuals at the

asymptomatic stage or AIDS [13,30,33]. These V3s could be

grouped into the 2b (n = 2), 3b (n = 4), 4b (n = 5), 5b (n = 3), 6b

(n = 5), 3a (n = 1), 4a (n = 2), 5a (n = 3), 6a (n = 3), and 7a (n = 2)

sequences (Fig. S3). The 2b, 3b, and 4b V3 clones were the most

prevalent in the three infected individuals examined, and their

sequences were mostly identical [29], consistent with the V3

prevalence and diversity data in this study. The neutralization

sensitivity of each recombinant virus was assessed with a single-

round viral infectivity assay [34]. In parallel, titers of plasma

antibody reactive with the V3 elements of the recombinant viruses

were measured with V3-peptide-based, enzyme-linked immuno-

sorbent assay (ELISA) [35].

When the V3 synthetic peptide of the parental virus of the

recombinant viruses was used for the immunoassay, the CRF01_AE

plasma samples had only traces of binding antibodies (Fig. 2B,

Absorbance of LAI). The blood samples failed to neutralize this

virus (Fig. 2B, ND50 of LAI). Thus, the blood samples tested are

lacking in anti-V3 binding antibodies, as well as neutralization

antibodies against the parental subtype B virus. The results agree

with low levels of V3 amino acid identities between subtype B and

CRF01_AE strains (http://www.hiv.lanl.gov/content/hiv-db/

mainpage.html). They also agree with the assumption that V3

sequence diversity causes neutralization escape of HIV-1.

All blood samples from CRF01_AE infected individuals

contained antibodies that bound to the synthetic peptides from

the CRF01_AE strain V3 sequences of the recombinant viruses

(Fig. 2B, Absorbance of 2b to 7a). Coincidentally, they neutralized

a group of the viruses having particular V3 sequences (Fig. 2B).

The neutralization-sensitive viruses had V3s lacking a glycosyla-

tion site (3a, 4a, 5a, 6a, 7a, n = 11), or V3s having a glycosylation
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site and increased net positive charge (5b and 6b, n = 8) (Fig. S3).

The neutralization activities were abrogated by protein G pre-

treatment of the plasma samples (Fig. S4), showing that

neutralization is indeed mediated by antibodies in the plasma

samples.

Notably, the blood samples poorly neutralized a group of V3

recombinant viruses (Fig. 2B, ND50 of 2b, 3b, and 4b, n = 11). These

viruses had weakly charged V3s and had an N-glycosylation site,

which are the characteristics of V3s for CCR5 tropism (Fig. S3, V3

IDs of 2b, 3b, and 4b). The lack of neutralization activities was not

Figure 1. V3 net positive charge influences V3 diversity. HIV-1 CRF01_AE V3 sequences (n = 1361) were grouped on the basis of net positive
charge and glycosylation capability (A) Distribution of the V3 structural variants of HIV-1 CRF01_AE in the public database. (B) Shannon entropy
scores [3] on primary and three-dimensional structures of 3b and 7a V3s. AE-c, 3b-c, and 7a-c indicate consensus sequences for all CRF01_AE
sequences, 3b V3 group (n = 576), and 7a V3 group (n = 21), respectively. (C) Median (diamond) and interquartile range (vertical bar) of ratios of dn/ds,
(D) Relation of median dn/ds ratios and average Shannon entropy scores, and (E) Tajima’s D statistic values [32] for each V3 structural group.
doi:10.1371/journal.pone.0003206.g001
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due to the lack of anti-V3 binding antibodies against these

recombinant viruses. The blood samples contained high levels of

antibodies that bound to the 2b, 3b, and 4b V3 peptides, more so

than of other V3 groups (Fig. S5 and Fig. 2B, Absorbance of 2b, 3b,

and 4b). The results are consistent with the high levels of prevalence

and limited diversity of these V3 sequences (Fig. 1). The study shows

that the group of V3 elements for CCR5 tropism is highly

immunogenic, whereas binding antibodies raised in humans

generally show only weak neutralization activities. This neutraliza-

tion-resistant phenotype associated with particular V3 group was

observed reproducibly in a multiple-round infectivity assay,

suggesting that the phenotype is intrinsic to the viruses (Fig. S6).

The relation of this neutralization-resistant phenotype and

HIV-1 coreceptor tropism was examined using information on

coreceptor usages of the V3 recombinant viruses [13,30,33].

Importantly, the V3s having the viral-resistant phenotype

unexceptionally rendered HIV-1 CCR5-tropic (Fig. 2C, left panel,

V3 groups of 2b, 3b, and 4b, n = 10). On the other hand, V3s

conferring CCR5 tropism did not always render HIV-1 resistant

(Fig. 2C, V3 groups of 3a, 4a, 5a, and 5b, n = 7). Thus, the V3s

Figure 2. Reduction in V3 net positive charge causes loss of HIV-1 neutralization sensitivity to blood antibodies against V3 PND. (A)
Genome structure of the V3 recombinant viruses (n = 30) [13,30,33]. (B) Blood anti-V3 antibody titers and viral neutralization sensitivity to the blood
antibodies. Plasma samples (n = 20) were obtained from CRF01_AE positive individuals. Plasma antibody binding activities to the synthetic peptides
corresponding to each V3 PND of the recombinant viruses were measured by V3-peptide-based ELISA [35] (Absorbance at 450 nm). The same plasma
samples were used to measure ND50 against recombinant viruses in a single-round infectivity assay using CD4+CXCR4+CCR5+ HeLa cells [34]
(Neutralization). Medians (diamond) and interquartile ranges for individual V3 structural groups are shown. (C) Neutralization sensitivity and
coreceptor tropism. The recombinant viruses were grouped into CCR5-tropic (left) and CXCR4-tropic (right) variants using data reported previously
[13,30,33].
doi:10.1371/journal.pone.0003206.g002
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associated with the neutralization resistance are a subset of the V3

elements associated with viral CCR5 tropism. In contrast, all V3s

associated with viral CXCR4 tropism and CCR5/CXCR4 dual

tropism rendered HIV-1 susceptible to neutralization (Fig. 2C, V3

groups of 4b, 5a, 5b, 6a, 6b, and 7a, n = 13).

The group of viruses having 4b V3s were neutralization-

resistant only when they had the CCR5-restricted tropism (Fig. 2C,

4b in left and right panels). The 4b V3s associated with viral

neutralization resistance had no basic substitutions compared with

the CRF01_AE consensus (Fig. S3, recombinant IDs of A1, A2,

A4, and A5). By contrast, the neutralization-sensitive version had

two basic substitutions (Fig. S3, recombinant ID of B10). The

results may imply that V3 basic substitutions at particular positions

in addition to the overall net positive charge play a critical role in

the determination of viral neutralization sensitivity and coreceptor

tropism.

We further examined whether a CCR5-tropic but not a

CXCR4-tropic envelope of CRF01_AE strain is linked to viral

resistant to neutralization by anti-V3 antibodies. For this purpose,

we used a pair of nearly isogenic R5 and X4 virus clones that have

3b and 5a V3, respectively [36,37]. The results obtained with these

clones and 35 blood specimens were consistent with present study

and indicated that the CCR5-tropic but not the CXCR4-tropic

envelope protein of the HIV-1 CRF01_AE strain was linked to

viral resistance to neutralization with anti-V3 antibodies in the

blood (data not shown).

HIV-1 V3 net positive charge and V3 conformation
To obtain molecular insights into the roles of the V3 net positive

charge in regulating HIV-1 neutralization sensitivity, we conduct-

ed computer-aided structural analysis. Currently, X-ray structure

information on the HIV-1 R5 virus gp120 monomer bound with

soluble CD4 [3] is available in the Protein Data Bank. With the

data, we attempted to obtain a gp120 monomer structure for the

pre-CD4 binding stage to address initial V3 conformation before

receptor interaction. We first constructed gp120 outer domain

models of the V3 recombinant viruses used in this study by a

homology modelling method. Molecular dynamics (MD) simula-

tion was then performed with the homology models.

Figure 3A shows examples of the MD simulation of two

recombinant virus gp120s with 3b and 7a V3 elements. The TH09

V3 (3b V3) is from an HIV-1 CRF01_AE infected asymptomatic

patient, identical to the CRF01_AE V3 consensus sequence (Fig.

S3, recombinant ID of TH09), rendered HIV-1 neutralization-

resistant and CCR5-tropic (Fig. 2C, left panel). The B1 V3 (7a V3)

is from an AIDS patient, more positively charged (Fig. S3,

recombinant ID of B1) and rendered HIV-1 neutralization-

sensitive and CXCR4-tropic (Fig. 2C, right panel).

The MD simulations show that V3 configuration is nearly

equilibrated up to 5 nanoseconds of simulation times (Fig. 3A).

Notably, the TH09 V3 was equilibrated at a much more distant

position from the b20b21 loop in the outer domain than the B1

V3 (Figs. 3A and B). Hydrogen bonds were formed around the

TH09 V3 base between D330 and R332, and D330 and R424,

which contributed to stabilizing the V3 configuration (Fig. 3C).

However, the hydrogen bonds were not formed with the gp120

having the B1 V3 (Fig. S7). Coulombic repulsion between B1 V3

and R424 increased about 44-fold as compared with that of TH09

V3, with electrostatic energies of +2.0 and +0.045 kcal/mole for

B1 and TH09, respectively. The repulsion was greatest on the

R424 residue in the gp120 outer domain. The results suggest that

an increase in the V3 net positive charge influences electrostatic

balance at the V3 base.

Importantly, the amino acids around the V3 base are relatively

conserved in nature. The D330 and R332 are located at the V3

base and highly conserved within each subtype of the HIV-1 M

group in the public database (Fig. 3D). The conservation was seen

even in the V3s for the CXCR4 tropism (Fig. 1B). The R424 is in

the fourth constant region (C4) of the gp120 core, and

neighbouring amino acids are also conserved. The CRF01_AE

strain alone has lysine at position 424, whereas K424 is conserved

within the CRF01_AE. These data suggest that most HIV-1

gp120 monomers have the potential to stabilize V3 configuration

at the base and that basic amino acid substitutions in V3 have

strong influences on the V3 configuration.

The MD simulation data were incorporated into those of a

gp120 trimer structure obtained by cryoelectron microscopy [38]

to illustrate schematically the V3 position in the native gp120

trimer (Fig. 4). Some glycans are also schematically illustrated at

the appropriate regions. The models predict that less positively

charged V3 protrudes into the outer domain of the neighboring

gp120 monomer, whereas V3 with increased net positive charge

protrudes away from the neighboring monomer in the trimer

context.

Discussion

HIV-1 is the causative agent of AIDS and is responsible for

more than 2 million deaths every year. Understanding the

immunological escape, variation, and coreceptor tropism evolu-

tion of HIV-1 is critical for developing strategies for anti-HIV

interventions. In this regard, current studies are largely confined to

those of HIV-1 subtype B from North America and Europe. In this

study, we focused on the study of HIV-1 CRF01_AE strain

circulating in Southeast Asia. The HIV-1 CRF01_AE is one of the

five major HIV-1 subtypes circulating in the world [31] and thus

an important strain for public health of Asia, as well as of world.

However, much less basic information are available as compared

with the HIV-1 subtype B.

We first demonstrate with bioinformatics approach using 1361

sequences in public database that CRF01_AE V3’s net positive

charge influences V3 diversity and prevalence. We found that the

net positive charge of V3 influences V3 diversity (Fig. 1).

Acquisition of the N-glycosylation motif in V3 augmented the

sequence conservation. Our data of dn/ds ratios and Tajima’s D

statistic provide strong evidence that the reduction in V3 diversity

is due to limited positive selection for amino acid changes. These

findings are compatible with previous findings with subtype B that

sequence diversity is smaller among R5 virus V3s [26–28].

Moreover, the findings demonstrate the generality of findings

obtained with an intra-familial infection case of CRF01_AE

infection [29,30]. The evidence that the V3 net positive charge

influences V3 diversity is not solely based on sequence analysis.

Structural and neutralization data suggest that V3 net positive

charge regulates V3 diversity by controlling V3 structure and

neutralization sensitivities, as discussed below.

We next examined potential causes of the differential diversity

of CRF01_AE V3 sequences. We demonstrated with neutraliza-

tion assay of V3 recombinant viruses that the V3 net positive

charge influences HIV-1 neutralization sensitivity. We found that

reduction in the net positive charge of V3 caused reduction in viral

neutralization sensitivity to the blood anti-V3 antibodies in

infected humans (Fig. 2). Again, acquisition of the N-glycosylation

motif in V3 augmented the effect. We further confirmed that the

especially neutralization resistant V3 sequences all render HIV-1

CCR5 tropic (Fig. 2C). These results are compatible with previous

findings with subtype B that R5 viruses are more refractory to anti-
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V3 antibodies [23–25]. Together with sequence analysis data,

these findings suggest that anti-V3 antibodies can act as a positive

selection pressure to increase V3 sequence diversity and that V3

positive net charge can influence V3 diversity by regulating

neutralization sensitivity to the V3 antibodies.

Importantly, present data revealed that not all the CCR5-tropic

V3 sequences render HIV-1 resistant to the neutralization. Some

V3 sequences lacking N-glycosylation site or those have the

glycosylation site but have net positive charge of +5 conferred

CCR5 tropism on HIV-1, whereas they were relatively sensitive to

the antibody neutralization (Fig. 2C). These data are consistent

with findings on CRF01_AE V3 sequence diversity and preva-

lence in this study. Together, the data suggest that a particular

subset of CRF01_AE V3 for CCR5 tropism confers a selective

advantage on HIV-1 in the face of humoral immunity and that the

anti-V3 antibodies may be an important selective force to

maintain CCR5-tropic V3 sequences with limited amino acid

changes during persistent infection.

We further examined molecular mechanisms of neutralization

escape. We found with MD simulation that reductions in the net

positive charge of V3 caused a shift of V3 position in the gp120

monomer (Fig. 3). This is the first indication that the net positive

charge of V3 regulates V3 configuration in the gp120 monomer. By

incorporating our MD data into experimental data of HIV-1 gp120

structures [3,4,38], we proposed a model of V3 masking that

explains how the net positive charge of V3 regulates HIV-1 V3

neutralization sensitivity (Fig. 4). The model explains present

Figure 3. MD simulation of the HIV-1 gp120 outer domain. The V3 subset conferring the neutralization-resistant phenotype is referred to in
this study as rV3: it has net positive charges of +2 to +4, an N-glycosylation site, and a capability to direct viral CCR5 tropism. The non-rV3 renders HIV-
1 more susceptible to blood antibody neutralization. It has net positive charges of greater than +4 and a capability to direct viral CXCR4 tropism. (A)
Examples of the MD simulation of two recombinant virus p120 outer domains with rV3 (TH09) and non-rV3 (B1). Distance between the Ca atom of
P318 at the V3 tip and the Ca atom of Q433 at the b20b21 loop were monitored for 5 nanoseconds. (B) Superimposition of the gp120 monomers
with the TH09 V3 (blue) or B1 V3 (red) at the simulation time of 5 nanoseconds. (C) Close-up view of the base-stem region of the TH09 V3. Orange
dotted lines around the tip of the orange arrow indicate three hydrogen bonds at the V3 base. (D) Shannon entropy scores of the amino acids at the
positions of 330, 332, and 424 in the public database. The positions in the gp120 of the HIV-1LAI [48] are used for the amino acid numbering.
doi:10.1371/journal.pone.0003206.g003

Figure 4. Models for the self-directed masking of V3 by
mutations for the CCR5 tropism. The MD data in Fig. 3 and the
HIV-1 gp120 trimer structure from cryoelectron microscopy [38] were
used to construct the gp120 trimer models with CCR5-tropic (left) or
CXCR4-tropic (right) V3. The models were made so that the MD data
and experimental data [3,4,38] are compatible.
doi:10.1371/journal.pone.0003206.g004
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diversity and neutralization data: it predicts that less positively

charged V3 for CCR5 tropism positions in the gp120 trimer context

such that it protrudes into the outer domain of the neighboring

gp120 monomer, which will inevitably result in better protection of

V3 from antibodies by the glycans. This model also explains why

anti-V3 antibodies bind effectively to monomeric but not native,

oligomeric form of the gp120 protein of the HIV-1 R5 viruses [22–

25]. Further structural studies are under way to assess the model.

Our study provides molecular insights into the mechanisms of

coreceptor-tropism evolution of HIV-1. Due to high levels of viral

mutation rate, vigorous and continual viral replication in vivo, and

viral tolerance to V3 mutations, many viable HIV-1 V3 mutants

would be continuously generated during a persistent infection.

Therefore, why only the R5 virus dominates during persistent

infection is a long-lasting question in HIV-1 research. Our study

suggests a selective advantage of a subset of CCR5-topic V3

sequences in the face of humoral immunity: self-masking of

neutralization epitope by reduction in net positive charge. Higher

levels of the dn/ds ratios for more positively charged V3 sequences

for CXCR4 tropism (Figs. 1C and D) may imply that the X4

viruses might persist as a minority, continually receive positive

selection pressures for amino acid changes, and outgrow only

when the host immunity is severely damaged.

It will be important to examine why neutralization resistant V3

sequences exclusively direct viral CCR5 usage (Fig. 2C). The

distinct V3 configuration in gp120 may contribute to the

restriction of coreceptor type to be interacted, because amino

acid residues at the V3 base directly participate in the binding to

the N-terminal region of CCR5 [4]. In addition, structural

differences among chemokine receptors may contribute. For

example, the N-terminal region of CXCR4 is glycosylated,

whereas that of CCR5 is not. The glycosylated V3 for

neutralization resistance will sterically interrupt the access to the

glycosylated coreceptor. Indeed, the removal of the N-linked

glycosylation sites from CXCR4 allows the protein to serve as a

universal coreceptor for both X4 and R5 viruses [39]. Further

structural studies are under way to address this issue.

Our study has implications for HIV-1 vaccine design. The data

suggests that a key impediment to the clinical use of Gp120 as an

immunogen may be the cryptic nature of the R5 virus V3

neutralization epitope. A simple strategy to use R5 virus Gp120 will

be insufficient even if the Gp120 of circulating HIV-1 subtype is

carefully selected as immunogen. To develop strategies that could

circumvent or overcome the impediment may be critical for practical

application of Gp120 vaccine. In this regard, the amino acids that

contribute to forming V3 conformation for the epitope masking

through hydrogen bonds are relatively conserved among HIV-1

major subtypes in the world (Fig. 3D). Therefore, intervention in

these interactions might be a target for a new strategy to improve

effectiveness of immunological control of HIV-1.

In conclusion, we have identified here structural and functional

features of HIV-1 CRF01_AE V3 elements those allow HIV-1 less

sensitive to antibody neutralization. To our knowledge, this is the

first report to show that the net positive charge of a neutralization

epitope regulates viral sensitivity to humoral immunity. Thus,

amino acid substitutions altering charged status of antigen site

appear to deserve more attention, particularly in the adaptive

evolution of HIV-1, as well as the other rapidly evolving pathogen.

Materials and Methods

Analysis of sequence diversity
Grouping of the sequences was done computationally using a

software system, InforSense BioSense V3 (InforSense Ltd. http://

www.inforsense.com). Nonsynonymous and synonymous nucleotide

substitutions were calculated for all pair-wise sequence comparisons

within each V3 subgroup using the Perl version of SNAP (Los

Alamos HIV sequence database) according to the Nei and Gojobori

method [40] incorporating the statistical method developed by Ota

and Nei [41]. Amino acid variation at individual V3 positions was

calculated according to the method described in the report by

Huang et al [3] on the basis of Shannon’s equation [42]:

H ið Þ~ {
X

xi

p xið Þ log2 p xið Þ xi ~ G, A, I, V, ::::::ð Þ,

where H(i), p(xi), and i indicate the amino acid entropy score of a

given position, the probability of occurrence of a given amino acid

at the position, and the number of the position, respectively. An H(i)

score of zero indicates absolute conservation, whereas 4.4 indicates

complete randomness. The H(i) scores were expressed in the V3

sequence or in the three-dimensional structures constructed by the

MD simulation method described below. The p(xi) scores were used

to construct a consensus for each V3 structural group. Tajima’s D

statistic [32] for each type of V3 sequence population was calculated

using DnaSP 4.10 [43].

Blood specimens
Plasma samples were obtained from HIV-1 CRF01_AE positive

individuals with written informed consent at Yokohama City

University Hospital in Japan according to the rule of the ethics

committee of the hospital. The clinical stages of the patients at the

time of blood collection were A1 (n = 4), A2 (n = 4), B3 (n = 3), C2

(n = 1), C3 (n = 7), and unknown (n = 1) according to the 1993

Revised Classification System (CDC, USA). The CD4+ T-cell

counts and HIV-1 RNA levels ranged from 26103 to 37196103 /

ml blood (mean = 2436103 /ml) and from ,50 to 7.56105 copies/

ml blood (mean = 2.46104 copies/ml), respectively. All plasma

samples were heat-inactivated at 56uC for 30 minutes prior to use.

Anti-V3 antibody titration
V3-peptide-based ELISA [35] was carried out using synthetic

peptides matching to the central 19 amino acids of the V3 regions

of the recombinant viruses (Fig. S3). Synthetic peptides were

coated on 96-well plates (Immulon II; Dynatech Laboratories,

Virginia, USA) and reacted with diluted plasma samples (1/104).

Antibodies bound to the peptides were detected with anti-human

IgG peroxidase conjugate and 3,39,5,59-tetramethylbenzidine

substrate (TMB peroxidase EIA substrate Kit, Bio-Rad Labora-

tories, USA). Each plasma sample was tested in duplicate.

Neutralization assays
Plasmid DNAs containing HIV-1 V3 recombinant proviruses

(n = 30) were constructed by the overlap extension method

[13,30,33]. Cell-free viruses were prepared by transfection of the

plasmid DNAs into HeLa cells as described previously [13,30,33].

Neutralization activities were measured in a single-round viral

infectivity assay using CD4+CXCR4+CCR5+ HeLa cells [34].

Equal infectious titers of viruses (300 blue-cell-forming units) were

incubated with serially diluted plasma samples (1/10 to 1/103) for

60 min at 37uC. The infected cells were cultured for 48 hours at

37uC, fixed, and stained with 5-bromo-4-chloro-3-indolyl-b-D-

galactopyranoside. Each plasma dilution was tested in duplicate,

and the means of the positive blue cell numbers were used to

calculate the 50% inhibition dose of viral infectivity (ND50). For

plasma samples that did not neutralize a virus at the lowest

dilution tested (1:10), an arbitrary titer of 1:5 (50 ND50 /ml) was
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used. In some cases, neutralization activities were measured using

a multiple-round viral infectivity assay using NP-2 cell lines [44].

Equal infectious titers of the viruses (100 tissue culture infectious

dose) were incubated with serially diluted plasma samples (1/10 to

1/103) for 60 min at 37uC and used to infect the CD4+CXCR4+

NP-2 cells and CD4+CCR5+ NP-2 cells. After 60 min, the cells

were washed once with phosphate-buffered saline. Culture

supernatants were collected at 5 days after infection, and amounts

of HIV-1 Gag p24 proteins were measured with a commercially

available kit (RETROtek HIV-1 p24 Antigen ELISA, ZeptoMe-

trix Corporation, USA). Each plasma dilution was tested in

duplicate, and the means of the p24 amounts were used to

calculate the ND50.

HIV-1 coreceptor usages
Previous data of the coreceptor tropisms of the recombinant

viruses [13,30,33] were used.

MD simulation
Gp120 outer domain structures bearing various V3 elements

were constructed with the homology modelling technique, using the

Molecular Operating Environment, MOE 2006.08 (Chemical

Computing Group Inc., Montreal, Quebec, Canada) as described

[45,46]. As the modelling template, we used the crystal structure of

HIV-1 gp120 containing an entire V3 element at a resolution of

3.30Å (PDB code: 2B4C), which represents the structure after the

CD4 binding [3]. The 251amino-terminal and 24 carboxyl-

terminal residues were deleted to construct the gp120 outer domain

structure. MD simulations were performed using the SANDER

module in the AMBER 8 program package [47] with MDGRAPE-

3 (http://mdgrape.gsc.riken.jp/) and the AMBER parm99 force

field with the TIP3P water model. After heating calculations for 20

picoseconds until 310 K using the NVT ensemble, the simulations

were executed using the NPT ensemble at 1 atm and at 310 K for 5

nanoseconds. Superimpositions of the structures were done by

coordinating atoms of amino acids along the b-sheet at the V3 base.

Supporting Information

Figure S1 Information on the V3 sequences for the diversity

analyses. Shown are the % distributions of CRF01_AE V3

sequences used in the present study (n = 1361) as a function of

sampling years (a), countries (b), and V3 structural group (c). The

sequences during 1991 to 2005 (n = 1148) represent a majority.

They are mostly from Asia (15 countries, 1219 sequences). Others

are from Africa (7 countries, 52 sequences), Europe (10 countries, 47

sequences), other regions (5 countries, 36 sequences), and unknown

(1 sequence). V3 groups having CCR5 tropism (2b, 3b and 4b)

represent the majority independent of the sampling period.

Found at: doi:10.1371/journal.pone.0003206.s001 (0.34 MB TIF)

Figure S2 V3 diversity of HIV-1 subtypes A, B, and C. Global

distribution (left) and dn/ds ratios (right) of V3 structural variants of

HIV-1 subtypes A, B, and C were examined, using the HIV-1

public database information from June 2007, and plotted as

described in Fig. 1C.

Found at: doi:10.1371/journal.pone.0003206.s002 (0.31 MB TIF)

Figure S3 V3 amino acid sequences of the recombinant viruses.

V3 sequences of the recombinant viruses are from CRF01_AE

clones in uncultured peripheral blood mononuclear cells from a

Japanese family [30] (V3 IDs of A1{similar, tilde operator }A9 and

B1{similar, tilde operator }B13), A1 variants having naturally

occurring basic amino acid substitutions (mt1{similar, tilde operator

}mt8) [13], and TH09 isolate having the CRF01_AE consensus V3

sequence [33] (TH09). Deduced amino acids of the V3 sequences

were aligned with the CRF01_AE consensus sequence, ENSI-c.

The small blue open box indicates a potential N-linked glycosylation

site conserved in the V3 structural group b. Red letters indicates

basic amino acid substitutions with respect to ENSI-c. The large

black box indicates 19 amino acid sequences used for V3-peptide

ELISA in Fig. 2. The net charge is the number of positively charged

amino acids (R, K, and H) minus the number of negatively charged

amino acids (D and E). Coreceptor tropism of the recombinant

viruses was determined using CD4+CXCR4+ HOS cells and

CD4+CCR5+ HOS cells [13,30,33].

Found at: doi:10.1371/journal.pone.0003206.s003 (0.39 MB TIF)

Figure S4 Effects of protein G on plasma neutralizing activities.

The plasma samples (YM17 and YM61) were incubated with

serially diluted protein G agarose solution (GammaBind Plus

Sepharose, Amersham) for 60 min at 37uC. The agarose was

removed by brief centrifugation, and the supernatants were used

to measure ND50 against LAI recombinant viruses having non-

rV3 (B1 and B10) using CD4+CXCR4+CCR5+ HeLa cells

(MAGIC-5 cells [34]) as described in Materials and Methods.

Found at: doi:10.1371/journal.pone.0003206.s004 (0.21 MB TIF)

Figure S5 Antibody epitope mapping of the rV3. Peptide-based,

enzyme-linked immunosorbent assay [35] was carried out using

indicated synthetic peptides matching the rV3 amino acids of the

recombinant viruses (SI Fig. 3, recombinant ID of A1). Antibodies

bound to the peptides were detected with anti-human IgG

peroxidase conjugate and 3,39,5,59-tetramethylbenzidine sub-

strate. Absorbance at 450 nm is shown.

Found at: doi:10.1371/journal.pone.0003206.s005 (0.27 MB TIF)

Figure S6 ND50 in the single- and multiple-round viral infectivity

assays. Plasma samples (n = 8) were used to measure ND50 against

LAI recombinant viruses having rV3 (clone IDs of ENSI-c and A1)

and non-rV3 (B6). The ND50 were measured in a single-round viral

infectivity assay using CD4+CXCR4+CCR5+ HeLa cells (MAGIC-

5 cells) [34] or a multiple-round viral infectivity assay using

CD4+CXCR4+ NP2 cells and CD4+CCR5+ NP2 cells (NP-2 cells)

[44] as described in Materials and Methods. Red diamonds indicate

the medians of the neutralization titers of the 8 plasma samples.

Found at: doi:10.1371/journal.pone.0003206.s006 (0.20 MB TIF)

Figure S7 Close-up view of the V3 base-stem region of Gp120

with non-rV3. LAI Gp120 outer domain structures with B1 V3

were constructed computationally by methods of homology

modelling and molecular dynamic simulation at a simulation time

of 5 nanoseconds.

Found at: doi:10.1371/journal.pone.0003206.s007 (0.64 MB TIF)

Table S1

Found at: doi:10.1371/journal.pone.0003206.s008 (0.04 MB

PDF)

Table S2

Found at: doi:10.1371/journal.pone.0003206.s009 (0.04 MB

PDF)
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