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Abstract
Background and Objectives
Myelin and iron play essential roles in remyelination processes of multiple sclerosis (MS)
lesions. χ-separation, a novel biophysical model applied to multiecho T2*-data and T2-data,
estimates the contribution of myelin and iron to the obtained susceptibility signal. We used this
method to investigate myelin and iron levels in lesion and nonlesion brain areas in patients with
MS and healthy individuals.

Methods
This prospective MS cohort study included patients withMS fulfilling theMcDonald Criteria 2017
and healthy individuals, aged 18 years or older, with no other neurologic comorbidities. Participants
underwent MRI at baseline and after 2 years, including multiecho GRE-(T2*) and FAST-(T2)
sequences. Using χ-separation, we generatedmyelin-sensitive and iron-sensitive susceptibilitymaps.
White matter lesions (WMLs), cortical lesions (CLs), surrounding normal-appearing white matter
(NAWM), and normal-appearing gray matter were segmented on fluid-attenuated inversion re-
covery and magnetization-prepared 2 rapid gradient echo images, respectively. Cross-sectional
group comparisons used Wilcoxon rank-sum tests, longitudinal analyses applied Wilcoxon signed-
rank tests. Associations with clinical outcomes (disease phenotype, age, sex, disease duration,
disability measured by Expanded Disability Status Scale [EDSS], neurofilament light chain levels,
and T2-lesion number and volume) were assessed using linear regression models.

Results
Of 168 patients withMS (median [interquartile range (IQR)] age 47.0 [21.7] years; 101 women;
6,898 WMLs, 775 CLs) and 103 healthy individuals (age 33.0 [10.5] years, 57 women), 108 and
62 were followed for a median of 2 years, respectively (IQR 0.1; 5,030 WMLs, 485 CLs). At
baseline, WMLs had lower myelin (median 0.025 [IQR 0.015] parts per million [ppm]) and iron
(0.017 [0.015] ppm) than the corresponding NAWM (myelin 0.030 [0.012]; iron 0.019
[0.011] ppm; both p < 0.001). After 2 years, both myelin (0.027 [0.014] ppm) and iron had
increased (0.018 [0.015] ppm; both p < 0.001). Younger age (p < 0.001, b = −5.111 × 10−5),
lower disability (p = 0.04, b = −2.352 × 10−5), and relapsing-remitting phenotype (RRMS, 0.003
[0.01] vs primary progressive 0.002 [IQR 0.01], p < 0.001; vs secondary progressive 0.0004 [IQR
0.01], p < 0.001) at baseline were associated with remyelination. Increment of myelin correlated
with clinical improvement measured by EDSS (p = 0.015, b = −6.686 × 10−4).
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Discussion
χ-separation, a novel mathematical model applied to multiecho T2*-images and T2-images shows that young RRMS patients
with low disability exhibit higher remyelination capacity, which correlated with clinical disability over a 2-year follow-up.

Introduction
In multiple sclerosis (MS), autoimmune aggression against
the CNS myelin sheaths leads to focal demyelination of both
white and gray matter.1 Remyelination, the process of myelin
regeneration, may occur as a response to injury, eventually
providing metabolic support to the axon, hereby preventing
its degeneration.2 As a consequence, promoting remyelina-
tion mechanisms has become a major goal for novel disease-
modifying drugs.2,3

Iron is essential to myelin production, maintenance, and
remyelination processes.4 It is mostly stored in oligodendro-
cytes, which are also the main myelin-producing cells in the
brain.4 Postmortem histopathologic and imaging studies
showed that—in MS lesions—iron is released from dying
oligodendrocytes, causing intracellular and extracellular iron
accumulation.5 Moreover, focal and diffuse iron deposits have
been associated with smoldering inflammation and neurode-
generative processes.6

Recently, imaging studies using myelin-sensitive PET have
demonstrated that remyelination is extremely heterogeneous
within lesions and patients.7 Remyelination was particularly
pronounced in patients with lower disability scores7 and
shorter disease duration.8 Furthermore, the results pointed
toward the existence of distinct patient subgroups, some of
whom retain a larger remyelination capacity (“good remyeli-
nators”) than others (“bad remyelinators”).7 However, PET
studies are characterized by complexity, high costs, limited
availability, invasiveness, and radiation exposure to patients
and are therefore unsuitable for large-scale clinical trials or
clinical routine.

Conventional MRI, widely used for brain tissue character-
ization in clinical settings, lacks specificity for quantifying
myelin and iron. Advanced MRI techniques such as quanti-
tative susceptibility mapping (QSM9,10), magnetization
transfer imaging,11 diffusion weighted imaging,12 or T1/T2-
relaxometry13,14 provide more specific estimates of myelin

properties7 but are affected by other components of the brain
such as water, axons, or iron deposits. Although iron is a
source of contrast for many MRI modalities, the specific
quantification of iron is currently challenging.15

Susceptibility-based MRI measures material magnetization
under an external magnetic field.16 This causes a polarization
that can either amplify the magnetic field (known as para-
magnetism) or counteract it (diamagnetism).16,17 QSM de-
termines the bulk susceptibility of a particular tissue through
the acquisition of susceptibility-based MRI. However, due to
the collective contribution of paramagnetic iron and dia-
magnetic myelin to the signal, conventional QSM is unable to
distinguish a decreased diamagnetic (e.g., demyelination)
from an increased paramagnetic component (e.g., iron accu-
mulation). Recently, a new MRI method (“χ-separation” or
“chi-separation”) has been proposed,18 which estimates the
individual contribution of paramagnetism and diamagnetism
to the bulk susceptibility signal. This method has demon-
strated the ability to differentiate MS lesions from those
resulting from neuromyelitis optica spectrum disorder,19 but
its use in quantitative comparisons with healthy individuals
and its potential for detecting longitudinal changes in MS
lesions remain uncertain.

In this study, we applied χ-separation in vivo to (1) compare
the content of iron andmyelin in regions of interest (ROIs) in
patients with MS vs healthy individuals, (2) correlate iron and
myelin in white matter lesions (WMLs) and cortical lesions
(CLs) with clinical disease characteristics, and (3) assess
remyelination capacity over time, correlated with clinical
changes of disability.

Methods
Study Design, Participants, and Assessment
This study was designed as a cross-sectional and longitudinal
analysis of data deriving from a prospective cohort study in-
vestigating patients with MS and healthy controls. We in-
cluded individuals who met the following inclusion criteria:

Glossary
CLs = cortical lesions; EDSS = Expanded Disability Status Scale; FAST-T2 = fast acquisition with spiral trajectory and adiabatic
T2-prep; FLAIR = fluid-attenuated inversion recovery; FSL = FMRIB software library; IQR = interquartile range;MEGRE =
multiecho gradient echo;MP2RAGE = magnetization-prepared 2 rapid gradient echo;MS = multiple sclerosis;MWF = myelin
water fraction; NAGM = normal-appearing gray matter; NAWM = normal-appearing white matter; NfL = neurofilament light
chain; ppm = parts per million; PPMS = primary progressive MS;QSM = quantitative susceptibility mapping; ROI = region of
interest; RRMS = relapsing-remitting MS; SPMS = secondary progressive MS; TE = time to echo; TI = inversion time; TR =
repetition time; WMLs = white matter lesions.
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(1) age of 18 years or older, (2) ability to give informed
consent, and for patients (3) MS according to the McDonald
Criteria 2017.20 Participants with psychiatric or neurologic
comorbidities other than headache, contraindications for
MRI, or pregnant women were excluded. MR images were
acquired between October 2018 and December 2022. Par-
ticipants underwent clinical assessments and imaging at
baseline and after follow-up of 2 years. Serum neurofilament
light chain (NfL) concentrations were measured at baseline
through ultra-sensitive Single-Molecule Array assay at the
University Hospital Basel.21 Disability was quantified by
board-certified neurologists and/or certified raters applying
the Expanded Disability Status Scale (EDSS). Written in-
formed consent was obtained from all participants. The study
protocol was approved by the local ethics committee.

Tissue of Interest
We described iron and myelin in (1) WMLs and their per-
ilesional normal appearing white matter (NAWM), and (2)
CLs and their perilesional normal appearing gray matter
(NAGM). In addition, to accommodate the absence of
comparable lesional tissue in healthy individuals, we assessed
(3) the putamen (as a referential ROI with an expected high
content of iron22), and (4) the corpus callosum (as a refer-
ential ROI with an expected high content of myelin23) in both
patients and healthy individuals. In all tissues of interest, a

high diamagnetic susceptibility value on negative suscepti-
bility maps was used as an indicator of high myelin (in the
following referred to as “content of myelin”). A high para-
magnetic susceptibility value on positive susceptibility maps
was interpreted as sign of high iron (likewise referred to as
“content of iron”).18

MRI Acquisition, Reconstruction, and Analysis

Image Acquisition
MR images were acquired on a 3 Tesla Siemens MAGNE-
TOM Prisma scanner. The acquisition protocol included: (1)
3D magnetization-prepared 2 rapid gradient echo24

(MP2RAGE, Figure 1A; repetition time [TR]/time to echo
[TE]/inversion time [TI] 5,000/2.98/700, 2,500 millisec-
onds, voxel size 1 × 1 × 1 mm), (2) 3D fluid-attenuated
inversion recovery (FLAIR, TR/TE/TI = 5,000/386/1,800
milliseconds, voxel size 1 × 1 × 1 mm), (3) fast acquisition
with spiral trajectory and adiabatic T2-prep25 (FAST-T2;
spiral TR/TE = 7.5/0.5 milliseconds, 6 T2prep times = 0, 7.5,
17.5, 67.5, 147.5, and 307.5 milliseconds, voxel size 1.25 ×
1.25 × 5 mm), and (4) multiecho gradient echo images
(MEGRE, TR 49 milliseconds, 10 echoes with TEs = 6.7,
10.8, 14.8, 18.9, 22.9, 27.0, 31.1, 35.1, 39.2, and 43.2 milli-
seconds, voxel size 0.95 × 0.75 × 3 mm). Additional acquisi-
tion details are provided in eTables 1–4.

Figure 1 MRIs and χ-Separation Maps

(A) 3D magnetization-prepared 2 rapid gradient echo. (B)
Quantitative susceptibility mapping based on multiecho
gradient echo. (C) χ-separationmap of diamagnetic sources.
Brighter tones of yellow indicate higher values of suscepti-
bility (i.e., higher content of myelin). (D) χ-separation map of
paramagnetic sources. Brighter tones of yellow indicate
higher values of susceptibility (i.e., higher content of iron).
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Reconstruction of χ-Separation Maps
To obtain voxel-wise diamagnetic (i.e., myelin-sensitive,
Figure 1C) and paramagnetic susceptibility maps (i.e., iron-
sensitive, Figure 1D), we applied the χ-separation algorithm,
as previously described.18 Shortly, FAST-T2 images were
patient-wise transformed to theMEGRE space. Subsequently,
the frequency shift was calculated by sequentially processing
the phase images of MEGRE in the order of SEGUE phase
unwrapping,26 V-SHARP background removal,27 and signal-
to-noise ratio-weighted echo combination. T2 and T2* values
were estimated by voxel-wise fitting of an exponential
function to the multiecho magnitude signal of MEGRE or
FAST-T2, respectively. This approach has been validated
on both ex vivo and in vivo materials to generate high-
quality images of iron and myelin, enabling us to identify
histologic details in the brain that are not visible on con-
ventional MR images.18

Tissue Segmentation
Referential ROIs (putamen, corpus callosum) were extracted
from FreeSurfer using the Desikan-Killiany atlas, after ap-
plying the lesion_filling command in FMRIB software library
(FSL)28 to avoid tissue misclassification due to WMLs.
WMLs were segmented automatically using a deep learning
algorithm applied to FLAIR and MP2RAGE images,29 fol-
lowed by inspection and manual correction, if needed. To
avoid partial volume effects, we excluded WMLs ≤10 voxels
on χ-separation maps (equivalent to 16.875 mm3).30 To
identify the perilesional NAWM, an in-house algorithm au-
tomatically identified a 2-voxel layer surrounding each WML.
In case of an overlap of 2 NAWM regions (n = 2,837/6,898,
mostly 2–3 voxels, maximum 99 overlapping voxels), the
susceptibility values were equally distributed between the 2
regions. Experienced raters manually segmented CLs and a
2-voxel layer of adjacent NAGM (avoiding inclusion of WM
or CSF) on MP2RAGE images. CLs ≤2 voxels on χ-separa-
tion maps (equivalent to 3.375 mm3) were excluded.31

Image Transformation and Coregistration
Images of the same acquisition were rigidly coregistered in the
MP2RAGE space using the flirt command in FSL (Figure 2).
For longitudinal coregistration, skull-stripped MP2RAGE
images from baseline and follow-up were affinely registered,
followed by nonlinear registration with the MP2RAGE im-
ages containing the skull, using the greedy diffeomorphic
registration algorithm in ITK-Snap.32,33 To create χ-separa-
tionmaps, T2 spiral images were aligned withMEGRE images
by combining transformation matrices from T2 spiral to
MP2RAGE space and then to MEGRE space. Baseline masks
for WMLs and CLs were patient-wise transformed to both
baseline and follow-up χ-separation spaces, using a sequence
of transformation matrices and displacement fields, with
1-time nearest neighbor interpolation applied as a final step.
To account for potential lesion expansion at follow-up, we
restricted voxels of the NAWM at follow-up to those de-
lineated in the FreeSurfer NAWMmaps. Baseline and follow-
up ROI masks were transformed to the MEGRE spaces of the

respective acquisitions, using transformation matrices from
the space of MP2RAGE to the respective MEGRE space. All
outputs were manually inspected and corrected if needed,
using ITK-SNAP33 or 3D Slicer (version 4.6.2). For more
details of the postprocessing pipeline, see eMethods.

To describe the content of myelin and iron in each ROI/
lesion, we used the mean susceptibility value of all voxels
contained in each ROI/lesion (absolute content of myelin
and iron, respectively). In addition, we calculated the suscep-
tibility index for myelin and iron separately, as the ratio of the
susceptibility value in each lesion, divided by the suscepti-
bility value in the perilesional area (i.e., susceptibility
[WMLs]/susceptibility [NAWM] and susceptibility [CLs]/
susceptibility [NAGM], respectively. A susceptibility index of 1
would indicate an equal susceptibility effect and imply an
equal content of myelin or iron, respectively, in a lesion and its
perilesional tissue). For clinical correlations, the median sus-
ceptibility value of all lesions in each single patient was con-
sidered. For longitudinal analyses, the delta between baseline
and follow-up of myelin and iron was calculated for each
lesion (e.g., for myelin: negative susceptibility [timepoint2] −
negative susceptibility [timepoint1]).

Statistical Analysis
We tested the following null hypotheses: (1) there is no dif-
ference between susceptibility values on myelin-sensitive or
iron-sensitive maps in referential ROIs (putamen and corpus
callosum) between patients with MS and healthy individuals,
both at baseline and follow-up; (2) there is no difference be-
tween susceptibility values onmyelin-sensitive or iron-sensitive
maps between the tissues of interest (WMLs, CLs, NAWM,
NAGM, putamen, and corpus callosum) in patients with MS;
(3) the correlation coefficient of the susceptibility index in
WMLs or CLs, and demographic (age, sex) or clinical char-
acteristics (disease phenotype, disease duration, EDSS, T2-
lesion number and volume, CLs, and NfL) is 0; (4) the dif-
ference of susceptibility values of WMLs and CLs on myelin-
sensitive or iron-sensitivemaps between baseline and follow-up
is 0; and (5) the correlation coefficient of the changes between
baseline and follow-up, and the demographic or clinical char-
acteristics is 0. To test these hypotheses, we used Wilcoxon
rank-sum tests for unpaired comparisons, andWilcoxon signed
rank tests for paired comparisons, followed by Bonferroni
correction to adjust for multiple comparisons. For the longi-
tudinal comparisons of lesions (i.e., baseline vs follow-up), we
additionally applied linear mixed models using patients as a
random intercept to adjust for the higher age of patients at
follow-up. To describe correlation coefficients β, we used
univariable and multivariable linear regression models. To
classify individuals as “top improver” or “top progressor,” we
identified the 5% of patients exhibiting the most substantial
EDSS change between baseline and follow-up in both positive
and negative directions, respectively. In case that more than 5%
exhibited the same EDSS change, we included all patients with
the considered EDSS change to the respective group. In an
exploratory analysis, we estimated the heterogeneity of (re-)
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myelination within lesions, by comparing susceptibility stan-
dard deviations in lesions.

Statistical analysis was performed using R studio.34 Normally
distributed variables are given as mean ± SD, nonnormally
distributed variables as median and interquartile range (IQR).
A p < 0.05 was considered statistically significant.

Data Availability
Data generated or analyzed during the study are available
from the corresponding author on reasonable request.

Results
Cohort Description
Demographic and clinical characteristics of the 168 patients
and 103 healthy individuals are given in Table 1. The MS

cohort was mostly composed of female (60%) patients, with a
median age of 47.0 years (IQR 21.7), median EDSS of 3.0
(IQR 3), andmedian disease duration of 6.2 years (IQR 16.3).
Relapsing-remitting MS (RRMS) disease course was the most
prevalent clinical MS phenotype (n = 98 [58.3%]), followed
by secondary progressive (SPMS, n = 46 [27.7%]) and pri-
mary progressive MS (PPMS, n = 24 [14.3%], eTable 5).
Healthy individuals were considerably younger (median
[IQR] age 33 [10.5] years) but exhibited a similar proportion
of women (57/103, 58.7%).

In total, we analyzed 6,898 WMLs and 775 CLs at baseline
(medianWMLs per patient: 34.5 [IQR 39.5]; median CLs per
patient: 2 [IQR 9]; median volume WMLs: 45.56 mm3 [IQR
45.56]; CLs 15.19 mm3 [IQR 15.45]). Follow-up was per-
formed in 108 of 168 (64.3%) patients after a median of 2.0
years (IQR 0.1), allowing us to longitudinally analyze 5,030

Figure 2 Imaging Postprocessing and Transformation Pipeline

(A) Individual acquisitions were skull stripped and rigidly coregistered using FSL. (B) Longitudinal acquisitions were coregistered on MP2RAGE, as follows:
MP2RAGE were first affinely (skull-stripped) and then nonlinearly (with the skull) registered using ITK Snap (greedy diffeomorphic registration). (C) Lesion
masks (i.e., masks for white matter lesions, cortical lesions, normal appearing white matter, and normal appearing gray matter) from baseline were
transformed to baseline and follow-up maps, using nearest neighbor interpolation. (D) Regions of interest (i.e., masks for corpus callosum and putamen
derived from FreeSurfer) were transformed from baseline to baseline and from follow-up to follow-up, respectively, using nearest neighbor interpolation.
FLAIR = fluid-attenuated inversion recovery; FSL = FMRIB software library; MEGRE = multiecho gradient echo; MP2RAGE = magnetization-prepared 2 rapid
gradient echo; χ = chi (indicates negative and positive χ-separation maps).
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WMLs and their corresponding NAWM, as well as 485 CLs
and their corresponding NAGM. In healthy individuals, 62 of
103 (63.9%) were followed up after 2.0 years (IQR 0.1).

Cross-Sectional Study of Iron and Myelin in
Referential Regions of Healthy Individuals vs
Patients With MS
On myelin-sensitive maps, there was a lower median sus-
ceptibility value in the corpus callosum of patients with MS
vs healthy individuals (median [IQR] 0.043 [0.01] vs 0.044
[0.009] parts per million [ppm], p = 0.047, Wilcoxon
rank-sum test, Figure 3A); however, this did not withstand
the adjustment for multiple comparisons. The content of
myelin in the putamen was similar, at both baseline and fol-
low-up.

The putamen of patients with MS showed higher suscepti-
bility values on iron-sensitive maps than healthy individuals,
but this finding lost statistical significance after adjustment for

age (linear regression model). The content of iron in the
corpus callosum was comparable between healthy individuals
and patients.

Cross-Sectional Study of Iron and Myelin in
White Matter Lesions, Cortical Lesions, and
Regions of Interest in Patients With MS

Comparison of Tissues
In patients with MS, the absolute susceptibility values on
myelin-sensitive and iron-sensitive maps varied significantly
among the tissues of interest (Figure 4), indicating the highest
content of myelin in the corpus callosum (median 0.043, IQR
0.010 ppm) and the highest content of iron in the putamen
(median 0.053, IQR 0.023 ppm).

In WMLs, the absolute susceptibility values suggested lower
myelin than in the corresponding NAWM (median 0.025
[IQR 0.015] vs 0.030 [0.012] ppm, p < 0.001, Wilcoxon rank-

Table 1 Demographics and Clinical Characteristics of Patients

Patients (N = 168) Controls (N = 103)

Age, y, median (IQR) 47.0 (21.7) 33.0 (10.5)

Sex, female, n (%) 101 (60.1) 57 (58.7)

Disease course, n (%)

RRMS 98 (58.3) n.a.

SPMS 46 (27.4)

PPMS 24 (14.3)

EDSS at baseline, median (IQR) 3.0 (3) n.a.

Patients with a follow-up, n (% of all patients) 108 (64.3) 62 (63.9)

Timepoint of follow-up MRI, y, median (IQR) 2.0 (0.1) 2.0 (0.1)

EDSS at follow-up, median (IQR) 3.0 (3.75) n.a.

Disease duration at baseline, y, median (IQR) 6.2 (16.3) n.a.

No. of T2-hyperintense white matter lesions, median (IQR) 43 (51.25) n.a.

Volume of T2-hyperintense white matter lesions, mm3, median (IQR) 45.56 (86.06) n.a.

No. of T1-hyperintense cortical lesions, median (IQR) 2 (9.0) n.a.

Volume of T1-hyperintense cortical lesions, mm3, median (IQR) 15.19 (16.45) n.a.

Serum NfL, median (IQR) 8.4 (5.9) n.a.

DMT, n (%)

No DMT 30 (17.8) n.a.

First-generation injectables 6 (3.6)

Orals 41 (24.4)

High effective DMT 91 (54.2)

Abbreviations: DMT=disease-modifying therapy; EDSS = ExpandedDisability Status Scale; IQR = interquartile range; n.a. = not applicable; NfL = neurofilament
light chain; PPMS = primary progressive multiple sclerosis; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary progressive multiple sclerosis.
First-generation injectables include interferon β-1a, interferon β-1b, and glatiramer acetate. Orals include fingolimod (n = 16), dimethyl fumarate (n = 15),
teriflunomide (n = 2), and siponimod (n = 2). High effective DMTs include ocrelizumab (n = 70), rituximab (n = 16), and natalizumab (n = 4).
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sum test). The same was observed for the absolute values of
iron (median 0.017 [IQR 0.015] vs 0.019 [0.011] ppm, p <
0.001, Wilcoxon rank-sum test). In CLs, myelin was compa-
rable with the NAGM, but iron was lower than in the corre-
sponding NAGM (median 0.016 [IQR 0.018], vs 0.022
[0.018] ppm, p < 0.001, Wilcoxon rank-sum test). An ex-
ploratory analysis of myelin heterogeneity within lesions and
patients is given in eFigure 1.

Correlation Between Iron/Myelin Content and
Clinical Characteristics
In WMLs, the myelin susceptibility index (describing the sus-
ceptibility of myelin in lesions, relative to the susceptibility of
myelin in the surrounding NAWM) did not show any linear
correlation with age. Still, to adjust for residual bias,35 we
adjusted all following models for age. We did not see any
association between the myelin susceptibility index and sex,
disease phenotype or duration, EDSS, T2-lesion number or
volume, or CLs number (univariable linear regression models,
adjusted for age, see eFigures 2–4).

Considering the iron susceptibility index in WMLs, we found
higher indices in younger patients (p < 0.001, b = −4.19 ×
10−3, aR2 = 0.218, linear regression model) and in patients
with lower T2-lesion number (p = 0.02, b = −4.80 × 10−4, aR2

= 0.2) and volume (p = 0.05, b = −1.42 × 10−6, aR2 = 0.23,
univariable linear models, adjusted for age). Otherwise, there
were no correlations with the investigated disease character-
istic (univariable linear regression models, adjusted for age).

For CLs, no associations between the susceptibility index of
either iron or myelin and any clinical disease characteristic
mentioned above were found.

Longitudinal Study of Iron and Myelin in
Referential Regions of Healthy Individuals
Between baseline and follow-up, there were no dynamic
changes of iron and myelin, respectively, in both corpus cal-
losum and putamen (Figure 3B).

Longitudinal Study of Iron and Myelin in
Patients With MS
After the follow-up of 2 years (IQR 0.1), 48 patients had an
unchanged, 47 an increased (median deterioration: 1.0 EDSS
step), and 13 an improved EDSS (median improvement: 1.0
EDSS step).

In WMLs, the median absolute content of both myelin and
iron increased during follow-up (myelin: baseline median
0.025 [IQR 0.014], follow-up 0.027 [IQR 0.014] ppm, p <
0.001 in both Wilcoxon signed rank test and linear mixed
model adjusted for age; iron: 0.0170 [IQR 0.015], 0.0177
[IQR 0.015] ppm, p = 0.001 inWilcoxon signed-rank test, and
p = 0.03 in linear mixed model adjusted for age). The same
was observed for the susceptibility index of myelin (baseline
median 0.865 [IQR 0.27], follow-up median 0.882 [IQR
0.253], p < 0.001 in bothWilcoxon signed-rank test and linear
mixed model adjusted for age) and the susceptibility index for
iron (baseline median 0.886 [IQR 0.41], follow-up 0.900

Figure 3 Iron andMyelin in the Referential Regions of Interest of Healthy Individuals and Patients With MS at Baseline and
Follow-Up

Comparison of absolute susceptibility values, in (A) healthy individuals vs patients with MS, and (B) baseline vs follow-up. p Values derive fromWilcoxon rank-
sum tests and are considered significant if p < 0.0125 (i.e., after Bonferroni correction for 4 comparisons). HC = healthy controls; MS =multiple sclerosis; ns =
not significant; ppm = parts per million.
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[IQR 0.40], p < 0.001 in Wilcoxon signed-rank test; p = 0.001
in linear mixed model adjusted for age, Figure 5, A and B).

In CLs, the median absolute susceptibility of myelin increased
during follow-up (baseline median 0.023 [IQR 0.019], follow-
up median 0.024 [IQR 0.17] ppm, p = 0.03, Wilcoxon signed-
rank test), but this finding lost statistical significance when
adjusting for age in a linear mixedmodel. The absolute content
of iron remained stable between baseline (median 0.016 [IQR
0.018] ppm) and follow-up (0.015 [IQR 0.017] ppm). When
considering the CLs susceptibility index, there was no change
between baseline and follow-up for myelin, while the suscep-
tibility index of iron increased over time (baseline median
0.730 [IQR 0.59], follow-up 0.739 [IQR 0.49], p = 0.003,
Wilcoxon signed-rank test, Figure 5, C and D). However, the
latter finding lost statistical significance after adjusting for age
in a linear mixed model.

The absolute change of myelin between baseline and follow-
up was larger in WMLs of patients with younger age (p <
0.001, b = −5.111 × 10−5, aR2 = 0.003, linear regression
model), lower EDSS (p = 0.04, b = −2.352 × 10−5, aR2 =
0.002, linear regression model adjusted for age), and RRMS
phenotype (RRMS median 0.003 [IQR 0.01] vs SPMS me-
dian 0.0004 [IQR 0.01], p < 0.001; RRMS vs PPMS median
0.002 [IQR 0.01] ppm, p < 0.001; both Wilcoxon signed-rank

test), indicating a higher degree of remyelination in WMLs of
those patients. In addition, changes of myelin in WMLs cor-
related with changes of EDSS during follow-up, with a higher
degree of remyelination in patients with stable or improving
EDSS (p = 0.015, b = −6.686 × 10−4, aR2 = 0.004, linear
regression model adjusted for age). Concerning the suscep-
tibility of iron, we did not observe any correlation between
disease characteristics and clinical changes during follow-up.
The same was true for changes of myelin and iron in CLs.

When considering the median susceptibility index of all lesions
per patient, we found that younger patients had a higher
median increase in the index of myelin (p = 0.02, b = −9.13 ×
10−4, aR2 = 0.047) between baseline and follow-up. Fur-
thermore, changes of myelin between baseline and follow-up
correlated with the clinical improvement, as measured by
EDSS (p = 0.01, b = −1.6 × 10−2, aR2 = 0.08, linear regression
model, adjusted for age, Figure 6). A similar tendency, how-
ever without reaching statistical significance, was found for
CLs (data not shown). Although top improver (n = 12, 494
WMLs) and top progressor (n = 10, 415 WMLs) showed
comparable proportions of lesions with increasing suscepti-
bility index between baseline and follow-up (57% vs 53%), top
improver exhibited a significantly larger median increment
than top progressor (0.005 [IQR 0.005] vs 0.002
[0.002] ppm, p = 0.005, Wilcoxon signed-rank test, Figure 6).

Figure 4 Content of Iron (Blue) and Myelin (Yellow) in Regions of Interest in Patients With MS

Absolute susceptibility values of iron (blue) andmyelin (yellow) at baseline are displayed, in whitematter and cortical lesions, aswell as the perilesional normal
appearing white and gray matter. In addition, the corpus callosum (as a referential region of interest with a high content of myelin) and the putamen (as a
referential region of interest with a high content of iron) are displayed. CL = cortical lesions; NAGM = normal appearing gray matter; NAWM = normal
appearing white matter; ppm = parts per million; WML = white matter lesion.
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Discussion
In this study, we implemented a novel mathematical model
that leverages the frequency shift and transverse relaxation of
MRI susceptibility signals (χ-separation)18 to assess iron and
myelin presence and changes in MS lesions. χ-separation
showed comparable contents of myelin between patients with

MS and healthy individuals in referential brain areas
(putamen and corpus callosum), as well as a reduction of
myelin in WMLs compared with the surrounding NAWM,
but not in CLs compared with the NAGM. Furthermore, a
longitudinal analysis of changes in χ-separation myelin
maps showed a correlation between remyelination
capacity—as quantified by an increase of myelin in WMLs

Figure 5 Longitudinal Changes of Myelin and Iron in White Matter and Cortical Lesions

Susceptibility index formyelin inwhitematter lesions (A) andcortical lesions (C), aswell as thesusceptibility index for iron inwhitematter lesions (B)andcortical lesions (D)
between baseline and 2-year follow-up. The susceptibility index describes the content of myelin (or iron, respectively) in the lesion, relative to the myelin (or iron,
respectively) inperilesionalnormalappearing tissue.Asusceptibility indexof1 indicatesanequal susceptibility indicativeof similar contentofmyelin (or iron, respectively)
in lesional and perilesional tissue. Onedot gives themedian index of 1 patient. Diagonal lines connect the samepatient betweenbaseline and follow-up. pValues derive
from linear mixedmodels adjusted for age. The figures indicate a significant increase of bothmyelin and iron in white matter lesions. Although there was a significant
increaseof iron incortical lesionsbetweenbaselineand follow-up, this finding lost its significanceafteradjustment forage.CL= cortical lesion;WML=whitematter lesion.
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after 2 years—and clinical outcome—as measured by
EDSS.

Our analysis of myelin in WMLs led to the expected result of
significant reduction in the damaged area compared with the
surrounding NAWM. Unexpectedly, in CLs, we did not see a
difference in myelin between the lesion area and the sur-
rounding NAGM. This could be attributed to either a milder
myelin-related damage in focal lesions36 or to diffuse de-
myelination in cortical areas without focal damage—as pre-
viously shown in histopathologic studies.36,37 Nevertheless, it
is also possible that partial volume effects may partly explain
these findings because CLs identified onMP2RAGE are often
quite small and the resolution of the applied MRI techniques
might be insufficient for a detailed analysis of small structures.
Against this latter explanation, however, speaks the fact that
we observed a significantly lower level of iron in CLs com-
pared with the NAGM. This finding is consistent with pre-
vious 7T QSM studies that suggested that iron loss dominates
changes in the susceptibility contrast in CLs, rather than
demyelination.38

Similar to previous studies,5,39 we also found elevated iron in
the putamen of patients with MS compared with healthy

individuals. However, this finding lost statistical significance
after adjustment for age. By contrast, inWMLs, the increase in
iron between baseline and follow-up persisted after adjusting
for age. These findings are intriguing, as iron accumulation has
been described both as a physiologic age-related phenome-
non40 and pathologic process leading to neurodegeneration.41

It has furthermore been attributed to a release by damaged
oligodendrocytes,42 which in turn is caused by microglial cells
during inflammatory processes.39 On the other hand, in-
flammation itself might lead to the production of reactive
oxygen species and proinflammatory cytokines.5,22 The fact
that longitudinal increases of iron inWMLs persisted after age
correction in our cohort provides an argument in favor of a
pathology-related iron accumulation.

In a previous imaging-postmortem evaluation, QSM identi-
fied fully remyelinated lesions (shadow plaques) with a
specificity of 100% but could not depict the dynamics of
myelin reconstitution.43 In this work, we have provided the
first knowledge of how remyelination occurs over 2 years in
patients with MS, in both CLs and WMLs. Our 2-year lon-
gitudinal analysis revealed in fact a broad range of changes in
myelin, indicating significant variability of myelin loss and
remyelination between and within participants. Of interest,

Figure 6 Changes in Myelin as Well as Clinical Changes Between Baseline and Follow-Up in White Matter Lesions

In the scatter plot, 1 dot represents 1 patient. The y-axis shows the median change in myelin susceptibility index between baseline and follow-up. The x-axis
shows the change of EDSS between baseline and follow-up. The regression analysis indicates that patients with a greater increase of themedian susceptibility
index have larger clinical improvement. Bar charts show all lesions of selected patients with highest EDSS improvement (top improvers, green dots, left bar
charts) and highest EDSS progression (top progressors, red dots, right bar charts), with demographic and clinical information. In the bar charts, red bars show
lesionswith a decrease of susceptibility onmyelin-sensitivemaps between baseline and follow-up (indicating demyelination), green bars show lesionswith an
increase of susceptibility on myelin-sensitive maps between baseline and follow-up (indicating remyelination). BL = baseline; EDSS = expanded disability
status scale; FU = follow-up; PPMS = primary progressive multiple sclerosis; RRMS = relapsing-remitting multiple sclerosis; y/o = year old.
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although this had been already reported in histologic stud-
ies,44 we newly showed that signs of demyelination or
remyelination correlated with clinical progression or im-
provement, as measured by EDSS. In line with previous PET
studies using myelin-specific tracers,7,8 signs of remyelination
were particularly evident in patients with RRMS, younger age,
and lower EDSS. Furthermore, our analysis of the most im-
proving and most progressing patients supported the pre-
viously discussed distinction between good remyelinators and
bad remyelinators,7 with a larger increment of susceptibility in
improving than in progressing patients, suggestive of a more
pronounced remyelination in these patients (Figure 6). These
results corroborate the ones obtained in previous PET stud-
ies7 and provide new knowledge that it is possible to quantify
clinically meaningful remyelination activity in vivo in MS
patients without exposing patients to potentially harmful
radiation.

Previous studies have shown that myelin water fraction
(MWF)—a measure that is derived from T2 relaxometry
experiments—provides sensitive and specific information
about myelin content and integrity, both cross-sectionally14,45

and longitudinally.13,46 However, although the utility of WMF
is widely indisputable, these studies have certain limitations:
they did not directly correlate MRI findings with clinical
outcomes,13 were conducted on small cohorts,13,45 or focused
predominantly on gadolinium-enhancing lesions.13 Further-
more, MWF is a fraction that is dependent on total water
content; therefore, its values are influenced by the presence of
active inflammation/edema; also, it has been suggested that
MWF measurements are sensitive to iron influence, at least
when some acquisition schemes are applied.47,48 Therefore,
since MWF is not solely influenced by myelin properties, it
might be difficult to interpret its pathologic meaning in pa-
tients with MS. By exploiting the information derived by
multiecho T2 and T2* experiments, χ-separation bypasses
these limits and provides maps that are in theory not sensitive
to global water content and iron. Nevertheless, also χ-sepa-
ration suffers from inherent limitations: first, its dependency
on myelin orientation may have influenced the absolute
measurements in regions with variable myelin orientation.
However, we anticipate that the susceptibility index, which
assesses lesions relative to their local perilesional tissue with
supposedly similar myelin orientation, may mitigate this ef-
fect. Second, although myelin and iron are recognized as
primary susceptibility sources,49 the potential contribution of
local field inhomogeneities (static dephasing regime) and of
other magnetic and paramagnetic trace elements, such as
copper, manganese, or calcium, remains uncertain. Third, like
all T2*-based image techniques, χ-separation is susceptible to
reconstruction artifacts near areas prone to susceptibility ef-
fects. Furthermore, limitations of our study include the spatial
resolution of the QSM map, that is probably not ideal to
investigate CLs. We tried to avoid partial volume effects by
setting a lesion size threshold, which we had to set lower for
CLs compared with WMLs, to prevent exclusion of a sub-
stantial part of CLs. In addition, we could not assess lesion

activity because we usedMRI data that were obtained without
gadolinium administration. This deliberate decision however
was made to avoid potential interference with our suscepti-
bility measurements.50 Besides, as anticipated,7 our explor-
atory analysis of WML heterogeneity (eMethods) revealed
regional variations of demyelination or remyelination within
lesions. Recognizing that our approach using the median
susceptibility value for each lesion may not be ideal for cap-
turing this heterogeneity, future studies should consider
longitudinal assessment of voxel-wise susceptibility changes
within lesions. In addition, given the predefined clinical
follow-up of 2 years, we did not have the opportunity to
confirm the EDSS at a third timepoint, but EDSS assessors
were board-certified neurologists who underwent regular
EDSS assessment trainings. In addition, similar to a previous
study,18 images with different spatial resolutions were used to
apply the χ-separation method, which could have affected the
estimation of myelin and iron values in small lesions. Future
work should be devoted to develop clinical protocols in-
cluding high-spatial and isotropic MEGRE and ME-T2 res-
olutions. Last but not least, our focus to investigate myelin and
iron in MS lesions inherently precluded us from investigating
equivalent lesional regions in healthy participants. Still, to
ensure a meaningful comparison, we did not only report ab-
solute values, but also the susceptibility index, which charac-
terizes the lesional damage relative to the surrounding normal
appearing tissue. In addition, we provided susceptibility
measures of within-participant normal appearing tissues
(specifically, corpus callosum and putamen) that are known
for their content of myelin and iron, respectively, allowing us
to validate our findings by aligning them with healthy indi-
viduals from our cohort and findings from previous
studies.22,23

In conclusion, in this comprehensive cross-sectional and
longitudinal study of a large cohort of patients with MS, we
provided novel insights into the pathology of MS, shedding
light on the changes of iron and myelin content in MS brains
over time. Our results corroborate the utility of the χ-sepa-
ration method in MS lesion characterization,19 indicating the
ability to precisely describe longitudinal myelin and iron
changes on a lesional level. It therefore could serve as a
valuable outcome measure in future clinical trials aiming at
quantifying demyelination or remyelination, in a feasible ac-
quisition time. Together, our findings not only enhance our
understanding on the underlying mechanisms of MS pathol-
ogy but also offer promising opportunities to facilitate the
identification of effective remyelinating treatment strategies.
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