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Background: Recent evidence shows that functional magnetic resonance imaging (fMRI)
can detect activation in white matter (WM). Such advances have important implications
for understanding WM dysfunction. A key step in linking neuroimaging advances to the
evaluation of clinical disorders is to examine whether WM activation can be detected at
the individual level during clinical tests associated with WM function. We used an adapted
Symbol Digit Modalities Test (SDMT) in a 4T fMRI study of healthy adults.

Results: Results from 17 healthy individuals revealed WM activation in 88% of participants
(15/17). The activation was in either the corpus callosum (anterior and/or posterior) or
internal capsule (left and/or right).

Conclusions: The findings link advances in fMRI to an established clinical test of WM
function. Future work should focus on evaluating patients with WM dysfunction.
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INTRODUCTION
The ability to measure functional magnetic resonance imaging
(fMRI) activation in white matter (WM) using blood oxygen level
dependent (BOLD) contrast has potential to advance the clini-
cal investigation of WM disorders (e.g., multiple sclerosis, diffuse
axonal injury resulting from brain trauma). A key step in this
respect is to examine whether neuropsychological tests that are
associated with WM dysfunction can in fact elicit WM fMRI
activation at the individual level.

To date, imaging methods have documented structural
changes in WM and have attempted to link such changes to
behavior (Anzola et al., 1990; Sperling et al., 2001; Charil et al.,
2003; Ranjeva et al., 2006). Yet, in many cases, structural mea-
sures of WM integrity do not correlate with functional deficits
experienced by the patient (i.e., the clinico-radiological para-
dox; e.g., Pelletier et al., 2009). Functional MRI can provide a
more direct assessment, however, the concept of WM activa-
tion is controversial (Logothetis and Wandell, 2004). The pre-
vailing assumptions that go against WM fMRI activation relate
to two main issues: (1) fMRI signal in WM is thought to be
near or below detection thresholds because the cerebral blood
flow/volume are lower in WM than gray matter (Rostrup et al.,
2000; Preibisch and Haase, 2001; Helenius et al., 2003; Wise
et al., 2004; Van Der Zande et al., 2005); and (2) fMRI signal is
thought to arise primarily from post-synaptic potentials in gray
matter rather than action potentials in WM (Logothetis et al.,
2001).

Indeed, there are a number of possible factors that may
contribute to the detection of fMRI signal in WM. First, ion

channels (e.g., Na+/K+) in unmyelinated axons and the nodes
of Ranvier in myelinated axons have metabolic requirements
that must be met (Tettamanti et al., 2002). Secondly, astro-
cytes, which are known to exist in WM (Orthmann-Murphy
et al., 2008; Sun et al., 2010), have been proposed to be func-
tionally entrained to metabolic requirements related to neu-
rotransmitter reuptake/recycling and regulating “cerebral blood
delivery” (Figley and Stroman, 2011). Specifically, it is possi-
ble that astrocytes, which have end feet on arterioles, mediate
vasodilation in WM as a result of increased K+ uptake asso-
ciated with spiking activity (Kalsi et al., 2004; Petzold and
Murthy, 2011). Thirdly, it is also possible that NO producing
neurons, which have been found in WM, yield a hemodynamic
response (Barbaresi et al., 2013). Finally in terms of measure-
ment sensitivity, BOLD signal has previously been detected
in WM tissue during vascular challenges (e.g., breath-hold or
hypercapnia) (Rostrup et al., 2000; Preibisch and Haase, 2001;
Helenius et al., 2003; Macey et al., 2003; Van Der Zande et al.,
2005; Mandell et al., 2008; Driver et al., 2010; Thomas et al.,
2014).

Given the physiological viability of fMRI activation in WM,
there are a rising number of studies from our group and others
report WM activation (Maldjian et al., 1999; Tettamanti et al.,
2002; Omura et al., 2004; Weber et al., 2005; D’Arcy et al., 2006;
Zeffiro et al., 2007; Baudewig et al., 2008; Mazerolle et al., 2008,
2010; Gawryluk et al., 2009, 2011; Yarkoni et al., 2009; Newman
et al., 2010; Fabri et al., 2011; Weis et al., 2011).

The ability to detect WM fMRI activation has clear implica-
tions for the evaluation of WM disease or damage. In order to
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prepare for clinical applications, research on WM fMRI must ful-
fill the following two criteria: (1) be linked to well-known clinical
tests and (2) be demonstrable at the individual level.

With regards to the first criterion, neuropsychological testing
has shown that patients with WM disease (e.g., multiple sclerosis)
present with impairments on measures of attention, memory, and
executive function (Wishart et al., 2001; Hoffmann et al., 2007;
Rogers and Panegyres, 2007; Chiaravalloti and Deluca, 2008;
Smith et al., 2011). The most common and profound cognitive
deficits associated with WM disorder are evident on measures
of information processing speed (Hoffmann et al., 2007; Rogers
and Panegyres, 2007; Chiaravalloti and Deluca, 2008; Smith et al.,
2011). Accordingly, one of the most common tests for assess-
ing WM disorders is the Symbol Digit Modalities Test (SDMT;
Hoffmann et al., 2007). The SDMT is considered a robust diag-
nostic measure sensitive to cognitive impairment(s) across WM
disorders (Felmingham et al., 2004; Hoffmann et al., 2007; Rogers
and Panegyres, 2007; Chiaravalloti and Deluca, 2008). The SDMT
has been previously modified for use with fMRI (e.g., Genova
et al., 2009). In addition to the gray matter activation, at least one
study has published figures depicting evidence of WM activation
using the SDMT. While not reported in text, Genova et al. (2009)
showed greater activation in the anterior corpus callosum and
internal capsule for healthy controls relative to multiple sclerosis
patients (see Figure 3, Genova et al., 2009). In fact, the corpus cal-
losum and internal capsule are both regions that are functionally
consistent with the task demands. Although the SDMT is not an
interhemispheric transfer task per se, it is likely that information
is transferred because both hemispheres are involved in the task
[36]. Furthermore, previous DTI studies have shown that multi-
ple sclerosis patients with low fractional anisotropy values in the
corpus callosum have impaired performance on the SDMT (Yu
et al., 2011). Activation in the posterior limb of the internal cap-
sule is also likely to be task related given the involvement of the
corticospinal tract in movement and the required motor response
on the fMRI-adapted task. Even when present in the data, WM
activation is often not reported. Rather, the result is often either
ignored or dismissed as an artifact.

In terms of the second criterion, a growing number of stud-
ies have demonstrated white matter activation at the group level
(e.g., Gawryluk et al., 2009, 2011; Yarkoni et al., 2009; Mazerolle
et al., 2010). However, in clinical practice, it is essential to be able
to interpret findings at an individual level. The current study used
a clinical measure of information processing to study WM fMRI
activation in key regions of healthy controls, with a focus on indi-
vidual level results. Specifically, we hypothesized that the SDMT
would elicit activation in the corpus callosum and internal capsule
in the majority of individuals.

METHODS
PARTICIPANTS
Seventeen healthy adults provided written informed consent for
their participation. The participants (9 F) had a mean age of
27.23 years (SD = 3.36). Fifteen participants were right-handed
and two were left-handed. Individuals with contraindications
for MRI were excluded, as were individuals on psychotropic
medications or with neurological damage. We also set a priori

exclusion criteria for individuals who demonstrated head motion
that exceeded one voxel and for individuals who were unable
to complete the task. The study was approved by the National
Research Council board of ethics.

STIMULI AND PROCEDURE
The main objective in modifying standardized clinical tests for
research purposes is to keep the adapted version as close to the
clinical administration as possible (Connolly and D’arcy, 2000).
During the clinical written SDMT, the patient is asked to use a
legend to fill in numbers that match with symbol/number pairs in
a legend with a 90 s limit (Smith, 1982). The SDMT had recently
been adapted for use with fMRI (e.g., Genova et al., 2009; Kohl
et al., 2009). As in previous studies, the modified SDMT pre-
sented a legend involving the same symbol/number combinations
as used in the clinical version. During active blocks, participants
were shown a symbol/number combination below the legend
and asked to respond whether the stimulus was a “match” or
“not a match” with the legend using a hand held response pad.
During rest blocks, participants fixated on the center of the
screen.

The task and instructions were presented visually through
back-projection to a screen mounted inside the bore (and viewed
through a mirror mounted on the head coil) using E-Prime
(Psychology Software Tools, Inc). The task was administered one
time for each subject, and consisted of five active blocks (36 s)
and five rest blocks (18 s), yielding a time of approximately 5 min.
All subjects performed the clinical paper-and-pencil SDMT and
a short practice of the adapted task prior to imaging. The SDMT
was administered 15–20 min into the imaging session and fatigue
was not shown to be an issue on a self-report exit questionnaire
administered immediately following the session.

DATA ACQUISITION
Data were acquired from a 4 T Varian INOVA whole body MRI
system. Gradients were provided by a body coil (Tesla Engineering
Ltd.) operating at a maximum of 35.5 mT/m at 120 T/m/s, and
driven by 950 V amplifiers (PCI). The RF coil used was a TEM
head coil (Bioengineering Inc.). All images were obtained within
one 60-min session.

Functional MRI was conducted using an asymmetric spin-
echo (ASE) spiral sequence that collects three images per slice
per volume (Brewer et al., 2009). The three ASE spiral images
have equal blood-oxygen level-dependent (BOLD) contrast, but
increasing T2-weighting. Prior work has shown that increased T2-
weighting improves sensitivity to WM fMRI activation (Brewer
et al., 2009; Gawryluk et al., 2009). Accordingly, the three ASE
images were combined using an inverted signal weighted averag-
ing algorithm. A total of 26 slices were acquired, which allowed
for whole brain coverage with the following parameters: 5 mm
axial slices, 0.5 mm gap, 64 × 64 matrix (220 × 220 mm), 1 shot,
TR = 3 s, TI = 1400 ms, TE = 68 ms, and TE∗ = 28 ms (where
TE is the spin echo center and TE∗ is the asymmetric echo time).

For structural registration purposes, a 3D T1-weighted FLASH
whole brain anatomical image was collected. The parameters were
as follows: TR = 10 ms, TI = 700 ms, TE = 5 ms, flip 11◦, and
256 × 224 × 80 matrix (220 × 192 × 160 mm).
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DATA ANALYSES
Motion correction was carried out using SPM software (Friston
et al., 1995; Oakes et al., 2005). Motion parameters were exam-
ined carefully for each subject to ensure that motion was not
correlated with the task. Other pre-statistics processing steps
were performed in FMRIB Software Library (FSL) using fMRI
expert analysis tool (FEAT) version 5.3 (Smith et al., 2004;
Woolrich et al., 2009). These steps included non-brain removal
using BET (Smith, 2002), spatial smoothing using a Gaussian
kernel of FWHM 5 mm (analyses were also performed without
smoothing), mean-based intensity normalization of all volumes
by the same factor, and highpass temporal filtering (100 s cut-
off). Statistical analyses were performed using a model-based
approach (General Linear Model). Time-series statistical analysis
was carried out using FILM with local autocorrelation correction
(Woolrich et al., 2001). Statistical thresholding was performed
in FEAT using a cluster-based approach that is corrected for
multiple comparisons. Z statistic images were reported using a
corrected threshold for clusters determined by Z > 2.3 and a
cluster significance threshold of P = 0.05 (Worsley et al., 1992).
FLIRT was used to register functional data to anatomical images
(DOF = 7) and to register anatomic images to the Montreal
Neurological Institute template [12 DOF (Jenkinson and Smith,
2001; Jenkinson et al., 2002)]. Subsequently, in a similar approach
to Mazerolle et al. (2013), FNIRT was used to refine the regis-
tration to standard space (Andersson et al., 2007a,b). Activation
maps were displayed in FSLView (Z > 2.5).

Analyses were performed at the individual and group lev-
els, although individual analyses were focused upon, in order
to capture variability that is relevant to future patient stud-
ies/applications. To verify WM fMRI activation, individual data
were examined against both the anatomic underlay and the
raw spiral images (task vs. rest). The local maxima of clusters

in the corpus callosum and internal capsule were also deter-
mined (using an increased threshold approach) to ensure that
the cluster was centered in white matter. Subsequently, masks
of the corpus callosum and internal capsule (based off of the
JHU WM labels atlas) were tailored to each individual (i.e.,
the masks were examined for each subject and if areas out-
side of the regions of interest were captured, the masks were
manually trimmed according to the subject’s anatomy) and
applied using pre-threshold masking to examine these regions of
interest (ROIs).

In order to examine the relationship between groups with dif-
ferent levels of WM activation and behavioral data, split halves
t-tests were performed using Statistical Package for the Social
Sciences (SPSS).

RESULTS
FUNCTIONAL MRI RESULTS
WM activation was present in 88% of participants (15/17). The
activation was in either the corpus callosum (anterior and/or pos-
terior) or internal capsule (left and/or right). Fifteen participants
showed activation in the corpus callosum (7 anterior, 5 posterior,
3 both anterior, and posterior). Eight of these participants also
showed activation in the internal capsule.

Table 1 details the extent and maximum intensity of activa-
tion in the corpus callosum and internal capsule for each subject.
Figure 1 shows the results of the ROI analyses for an illustrative
subject overlaid on the subject’s anatomical.

Gray matter activation was observed at the individual level
in occipital, parietal, temporal and frontal regions (including
regions associated with visual stimulation and motor activation),
as well as in the cerebellum. Figure 2 shows whole brain activation
results for a representative individual (overlaid on the subject’s
anatomical).

Table 1 | The extent and maximum intensity of activation in the corpus callosum (CC) and internal capsule (IC) using a cluster-based threshold

(z > 2.3, p < 0.05), behavioral scores and demographic data for 15/17 subjects with white matter activation.

Subject Number max Number max fMRI-SDMT fMRI-SDMT Wrritten Handedness Age (years, Sex

voxels cc z cc voxels IC z IC ACC (%) RT(ms) SDMT months)

1 15 3.19 28 5.78 97 1635.30 83/83 Right 24 y,8 m M

2 55 5.87 29 4.13 93 1119.22 58/58 Right 27 y, 5 m M

3 14 4.60 21 3.06 97 1588.90 53/54 Right 29 y, 11 m F

4 21 4.26 18 4.75 93 1447.65 49/51 Right 26 y, 9 m M

5 47 4.51 158 5.31 97 1172.05 74/75 Right 30 y, 6 m M

6 31 6.99 17 5.00 97 1108.13 76/78 Right 31 y, 1 m F

7 126 8.04 12 4.34 87 1618.68 62/63 Right 20 y, 2 m F

8 30 3.86 12 3.61 97 1541.50 56/60 Left 27 y, 9 m M

9 17 3.85 None 93 1351.02 61/63 Right 25 y, 10 m F

10 12 3.91 None 90 1365.45 72/72 Right 21 y, 7 m F

11 29 4.52 None 77 1695.98 57/57 Right 32 y, 1 m M

12 21 3.91 None 90 1321.63 91/93 Right 26 y, 8 m M

13 7 3.74 None 93 1427.95 65/66 Right 31 y, 5 m F

14 41 4.60 None 87 1502.47 59/59 Right 28 y, 2 m M

15 50 5.78 None 83 1494.47 49/49 right 25 y, 10 m F

Group 34.40 4.78 36.88 4.50 91.40 1426.03 64/65 14R, 1L 27 y, 6 m 7 F, 8 M
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The SDMT task revealed white matter activation at the group
level in both the corpus callosum and internal capsule (Figure 3).
The gray matter results at the group level mirror those depicted at
the individual level (Figure 2).

BEHAVIORAL RESULTS
Analyses of behavioral data demonstrated that participants
performed the fMRI adapted SDMT with a mean accu-
racy of 91.71% (SD = 5.59%). The mean reaction time
was 1432.00 ms (SD = 175.55 ms). The clinical written SDMT
revealed that all participants’ scores were in the normal

FIGURE 1 | Corpus callosum (top) and internal capsule (bottom) ROI

results overlaid on anatomical data for a single subject (S9) during the

SDMT. The ROI mask is shown in blue. Images are in radiological view.
Activation related to the task is displayed in red-yellow with a Z threshold of
2.5 to more clearly depict the activation.

range (mean = 62.88, SD = 12.33). A split halves t-test
revealed a significant difference in fMRI accuracy scores
between the group with activation in only the corpus cal-
losum (mean = 87.57, SD = 5.83) and in both the corpus
callosum and internal capsule (mean = 94.75, SD = 3.62,
p = 0.01).

FIGURE 3 | (A) Corpus callosum activation (circled in yellow) and (B)

internal capsule activation (circled in yellow) at the group level (N = 17)
during the SDMT. Images are in radiological view. Activation related to the
task is displayed in red-yellow with a Z threshold of 3.0 to more clearly
depict the activation.

FIGURE 2 | Activation in white and gray matter during the adapted

SDMT overlaid on anatomical data for a representative individual (S3).

Activation clusters in the corpus callosum and internal capsule are pointed

out in green. Images are in radiological view. Activation related to the task is
displayed in red-yellow with a Z threshold of 2.5 to more clearly depict the
activation.
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DISCUSSION
The current study evaluated whether the adapted SDMT elicited
WM fMRI activation in healthy controls. As predicted, activation
was observed in the corpus callosum and internal capsule for 88%
of individuals and at the group level (N = 17).

These findings are consistent with previous fMRI results for
the SDMT that were shown but not reported [36]. Importantly,
the gray matter activation observed in the current study is also
consistent with previous studies, which revealed activation in
occipital, parietal, temporal, and frontal regions and the cerebel-
lum (Forn et al., 2009; Genova et al., 2009).

The WM activation clusters were also generally consistent with
the SDMT task requirements. For instance, the anterior corpus
callosum is known to connect to pre-frontal and motor corti-
cal areas, which fit with both the decision making component
and motor response required (Stančák et al., 2000; Iacoboni and
Zaidel, 2004; Zarei et al., 2006). The posterior corpus callosum
is thought to link parietal areas involved in sensory integration
related to the visual-perceptual task demands (Zarei et al., 2006;
Mazerolle et al., 2008). Activation in the internal capsule, which
contains corticospinal fibers and is thought to directly connect to
the primary motor cortex (Nolte, 2002), which is also consistent
with the motor component of the task. Importantly, variability
between subjects has previously been demonstrated in gray mat-
ter (Miller et al., 2009). Such variability might be based on differ-
ences in underlying vasculature, regional/individual differences in
hemodynamic response functions, or differences in strategy or
effort during the task. This type of variability may be difficult
to detect when testing is limited to traditional behaviorally-based
measures and will be a key consideration in future patient stud-
ies/applications. In order to examine the relationship between
behavioral scores and fMRI results, the individuals with activa-
tion in the CC and IC and those with activation in the CC alone
were compared. The results revealed lower accuracy scores in the
group with less white matter activation, which could potentially
reflect the strategy or level of effort put forth/required during the
adapted SDMT task.

Interpretation of white matter fMRI activation might be fur-
ther improved by evaluating its relationship to gray matter. In a
previous study, we used an interhemispheric transfer task that
elicited activation in both hemispheres as well as the corpus
callosum. We also collected DTI data and showed that tracts con-
necting the activation in each hemisphere were co-localized to
the white matter activation (Mazerolle et al., 2010). Thus, there
is an anatomical substrate by which white and gray matter acti-
vation may be related. However, it will be important for future
studies on WM fMRI to collect DTI data as well in order to
allow for examination of the structural connections between dif-
ferent areas of activation (e.g., internal capsule). Furthermore,
DTI data would allow for an examination of the relation between
microstructural properties (e.g., fractional anisotropy) and white
matter activation.

The functional connectivity among regions of white and gray
matter activation area is also of interest. Recent work evalu-
ated resting state functional connectivity within white matter
tracts, showing temporal intervoxel correlations that demon-
strated anisotropy (i.e., voxels were more correlated within a

tract than with random voxels matched for distance; Ding et al.,
2013). This approach could potentially be extended to study the
functional connections between white and gray matter at rest.
Understanding the relations between task-based white and gray
matter activation is also an interesting avenue for future research.
For example, whether the gray matter activation is predictive of
signal changes in white matter could be explored.

Although WM represents approximately 50% of the tissue in
the brain (Black, 2007), fMRI has rarely been investigated in
this tissue. As mentioned, the idea of WM fMRI activation is
controversial and such results are often ignored (Logothetis and
Wandell, 2004). While we have shown that WM fMRI activation
can be detected, characterized, and linked to a neuropsychological
test, the current techniques may benefit from optimization.

In particular, it remains possible that data acquisition meth-
ods can be optimized for detection of WM fMRI activation. For
example, we employed an ASE spiral sequence [which can pro-
vide increased sensitivity to WM activation; (Gawryluk et al.,
2009)] and used 4T MRI, which is more sensitive than 1.5T
MRI (Mazerolle et al., 2013). However, there are other stud-
ies that have used standard imaging sequences and reported
white matter activation at 1.5T (e.g., Fabri et al., 2011). It may
also be possible to increase sensitivity to white matter activation
by using a white matter specific hemodynamic response func-
tion. Although there is some evidence that the hemodynamic
response function in the corpus callosum resembles the canon-
ical hemodynamic response function (Fraser et al., 2012), other
work has demonstrated a slower response function in white mat-
ter (Yarkoni et al., 2009). Part of the difficulty in interpreting
how and when white matter activation is detected is that some
groups report these findings and others do not (e.g., Genova et al.,
2009). This variability makes it difficult to assess when and with
what types of parameters investigators are detecting white matter
activation.

CAVEATS
One limitation of the current study relates to the investigation of
the relationship between the clinical and adapted SDMT. There
are differences that exist between the tasks (e.g., with the legend
replaced on each trial, the working memory component has been
removed from the adapted version). However, it remains difficult
to compare the two versions of the task given that the scoring
of the tasks is inherently different. The current study used an
adapted version of the SDMT that has been used in the literature
(to confirm an unreported finding). Given the potential for this
task to be of clinical use, future efforts may focus on validation or
standardization.

Given that the detection of fMRI activation in white matter
remains controversial, there is skepticism and concern regarding
the nature of such findings. From an analysis perspective, registra-
tion can be particularly challenging when the focus is on exam-
ining small white matter and subcortical structures, such as the
internal capsule. The current study used a non-linear approach to
refine registration to standard space. Non-linear registration tech-
niques have been used in diffusion tensor imaging studies, which
also focus on white matter (Smith et al., 2007) and have been
shown to improve subcortical registration (Chakravarty et al.,
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2009; Klein et al., 2009). Nevertheless, registration is a common
concern, and there is still potential for misregistration caused
by susceptibility-induced distortions in the functional images.
Registration for a representative subject from the current study
is shown in Supplemental Figure 1.

From a physiological perspective, a caveat of the current
study relates to partial volume effects, which cannot be com-
pletely ruled out at the current spatial resolution. Future studies
should use higher resolution data acquisition to minimize these
effects. In terms of data analyses, the current data were also
examined without smoothing applied with no changes to the
results.

CONCLUSIONS
The current study is the first to investigate WM fMRI activation
associated with a clinical measure. The SDMT was implemented
because it is commonly used in clinical settings to detect WM dys-
function (Hoffmann et al., 2007). Given that the fMRI adapted
SDMT demonstrated WM activation in predicted regions, it
shows potential as a clinical assessment tool. Given the indi-
vidual variability in activation with this task, we speculate that
the SDMT fMRI task may be best suited to tracking progres-
sion/changes within individuals in WM function over the course
of diseases (i.e., longitudinal evaluations of patients). This idea is
supported by previous studies that have demonstrated that the
SDMT can be used to predict “clinically meaningful cognitive
decline” (Morrow et al., 2010) and that it is the “most sensitive”
test to measure cognitive decline longitudinally in patients with
multiple sclerosis (Amato et al., 2010). The next step in this line
of research is to use the fMRI adapted SDMT to test patients
with WM disorder to further explore the clinical value of this
technique.
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