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Abstract
Triple-negative breast cancer (TNBC) is known for its aggressive nature, lack of effective diagnostic tools and 
treatments, and generally poor prognosis. The objective of this study was to investigate metabolic changes in 
TNBC using metabolomics approaches and explore the underlying mechanisms through integrated analysis with 
transcriptomics. In this study, serum untargeted metabolic profiles were first examined between 18 TNBC patients 
and 21 healthy control (HC) subjects using liquid chromatography-mass spectrometry (LC-MS), identifying a total 
of 22 significantly differential metabolites (DMs). Subsequently, receiver operating characteristic analysis revealed 
that 7-methylguanine could serve as a potential biomarker for TNBC in both the discovery and validation sets. 
Additionally, transcriptomic datasets were retrieved from the GEO database to identify differentially expressed 
genes (DEGs) between TNBC and normal tissues. An integrative analysis of the DMs and DEGs was conducted, 
uncovering potential molecular mechanisms underlying TNBC. Notably, three pathways—tyrosine metabolism, 
phenylalanine metabolism, and glycolysis/gluconeogenesis—were enriched, providing insight into the energy 
metabolism disorders in TNBC. Within these pathways, two DMs (4-hydroxyphenylacetaldehyde and oxaloacetic 
acid) and six DEGs (MAOA, ADH1B, ADH1C, AOC3, TAT, and PCK1) were identified as key components. In summary, 
this study highlights metabolic biomarkers that could potentially be used for the diagnosis and screening of 
TNBC. The comprehensive analysis of metabolomics and transcriptomics data offers a validated and in-depth 
understanding of TNBC metabolism.
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Introduction
The intricate nature of breast cancer (BC), characterized 
by its diverse subtypes, is particularly highlighted by the 
clinical challenges associated with Triple Negative Breast 
Cancer (TNBC). Accounting for an estimated 10–15% 
of all BC cases, TNBC is distinguished by its aggressive 
cellular behavior, increased likelihood of recurrence, and 
generally poorer prognostic outcomes [1, 2]. The hall-
mark of TNBC is its absence of estrogen and progester-
one receptors, in addition to a minimal expression of the 
human epidermal growth factor receptor 2 (HER2) [3], 
which significantly diminishes the efficacy of standard 
hormone therapies and HER2-targeted treatments. This 
situation underscores the critical need for the develop-
ment of novel diagnostic and therapeutic strategies that 
are tailored specifically to address the unique challenges 
of TNBC.

Advancements in the fields of metabolomics and tran-
scriptomics herald new vistas for elucidating the intricate 
molecular perturbations characteristic of oncogenesis, 
with the potential to facilitate the identification of novel 
biomarkers and therapeutic avenues. Metabolomics, in 
particular, has emerged as the preeminent technology for 
the advancement of early diagnosis and the refinement 
of precision medicine. This approach enables the com-
prehensive quantification and characterization of low-
molecular-weight molecules within biological systems, 
thereby illuminating potential diagnostic biomarkers and 
mirroring the underlying biochemical activities and states 
of cells and tissues [4]. Through the analysis of metabolite 
profiles from serum, tissue, and cell samples, researchers 
have identified metabolic disturbances in TNBC patients, 
including alterations in the glycerophospholipid metabo-
lism pathway, fatty acid metabolism, the tricarboxylic 
acid (TCA) cycle, and glutathathione biosynthesis path-
way [5–8]. However, the results across different biological 
specimens show significant disparities, highlighting chal-
lenges in the credibility and reproducibility of diagnostic 
biomarkers. This is mainly because the identification of 
disrupted metabolic pathways in TNBC largely relies on 
changes in metabolite levels, with only a few biomarkers 
being validated through other omics approaches. Systems 
biology focuses on the biological significance of metab-
olites, advocating for the integration of metabolomics 
with other omics technologies to elucidate the complex 
networks of molecular pathways involved in tumori-
genesis [9]. Transcriptomics, which interprets the func-
tional components of the genome, contributes valuable 
insights into the unique biological responses to diseases. 
The fusion of metabolomics and transcriptomics data has 
propelled cancer research forward, leveraging advance-
ments in systems biology and bioinformatics [10–12]. 
Yet, the application of this integrated approach remains 

underutilized in TNBC research, indicating a significant 
area for further exploration.

Consequently, the elucidation of the specific aberrant 
metabolic pathways contributing to the pathogenesis of 
TNBC necessitates the implementation of a meticulously 
designed research methodology, underpinned by an inte-
grated analytical framework. The objective of the present 
investigation is to harness the capabilities of integrated 
omics technologies to discern differentially expressed 
metabolites and genes, thereby shedding light on the 
metabolic pathways that diverge in TNBC from those in 
HC. By undertaking exhaustive analyses through both 
metabolomics and transcriptomics, this study endeavors 
to enhance our comprehension of the metabolic devia-
tions and gene expression alterations characteristic of 
TNBC. This endeavor aims to lay the groundwork for the 
identification of novel biomarkers and to foster a deeper 
understanding of the underlying pathophysiological 
mechanisms of TNBC.

Materials and methods
Chemical and materials
Methanol and acetonitrile of high performance liquid 
chromatography (HPLC) grade were procured from 
Fisher Scientific (Loughborough, UK). Similarly, for-
mic acid, also of HPLC grade, was acquired from TCI 
(Shanghai, China). The procurement of ammonium ace-
tate, adhering to HPLC grade standards, was facilitated 
through Sigma-Aldrich (Shanghai, China). The 2-chloro-
L-phenylalanine was obtained from Aladdin (Shanghai, 
China). Furthermore, distilled water was filtered through 
the Milli-Q system (Millipore, Bedford, USA).

Study design and sample collection
This investigation was conducted at the Second Affiliated 
Hospital of Fujian Medical University from 2021 to 2022, 
with ethical approval obtained from the hospital’s Eth-
ics Committee under reference number 2021[168]. Prior 
to the collection of blood specimens, informed consent 
was duly obtained in written form from all serum donors 
recruited for participation in the study. TNBC patients 
(n = 18) and healthy control (HC) subjects (n = 21) were 
initially recruited as a discovery set. The diagnostic cri-
teria for TNBC followed clinical and pathological stan-
dards, defined by the absence of estrogen receptor, 
progesterone receptor, and HER2 expression. Patients 
had not undergone any therapeutic interventions such as 
neoadjuvant chemotherapy or radiotherapy. The control 
subjects were enrolled from the hospital’s Physical Exam-
ination Center and consisted of healthy, age-matched 
volunteers with no prior history of breast disease, whose 
health status was rigorously verified through comprehen-
sive physical exams. Given that the metabolic environ-
ment varies along with the formation and progression 
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of breast cancer, all serum donors were female and free 
from other diseases such as hypertension, kidney dis-
ease, and diabetes. A validation set, consisting of TNBC 
patients (n = 7) and HC subjects (n = 5), was randomly 
selected and tested using our approach, with inclusion 
criteria identical to the discovery set.

Blood specimens were procured from fasting partici-
pants, and subsequently deposited into tubes specifically 
engineered for serum segregation. Following a centrifu-
gation process at 3000 rpm for a duration of 5 min at a 
temperature of 4℃, the serum was successfully isolated. 
Then, the serum samples were expeditiously transferred 
to a refrigeration unit maintained at − 80 °C, thereby pre-
serving them for future metabolomics analyses.

LC-MS based metabolome profiling
After thawing on ice, 100 µL of the serum was mixed 
with 400 µL of methanol then vortex-mixed for 1  min. 
The mixture is then centrifuged at 12,000 rpm for 10 min 
at 4 ℃ to precipitate proteins. After the supernatant was 
evaporated to dryness using a centrifugal vacuum evapo-
rator, 150 µL of an 80:20 methanol-water solution (v/v) 
containing 4 ppm of 2-chloro-l-phenylalanine as an inter-
nal standard was added to reconstitute the dried residue. 
The solution was then filtered through a 0.22 μm mem-
brane, and the resulting filtrate was transferred to an 
autosampler vial for LC-MS analysis.

In a parallel experimental setup, pooled quality control 
(QC) samples were prepared by mixing equal volumes of 
all serum supernatants. These QC samples played a piv-
otal role in assessing the stability and consistency of the 
overall experimental outcomes. The pooled QC sample 
was initially injected five times at the beginning of the 
analytical batch to equilibrate the column. Furthermore, 
it was injected once after every six serum sample injec-
tions throughout the entire analytical workflow to ensure 
accuracy.

Chromatographic separations were performed on 
a Vanquish ultra-high performance liquid chroma-
tography (UHPLC) System (Thermo Fisher Scientific, 
USA), employing an ACQUITY UPLC® HSS T3 column 
(150 × 2.1  mm, 1.8  μm, Waters, Milford, MA, USA) for 
the analysis. The metabolomic analyses were performed 
in both electrospray ionization positive (ESI+) and neg-
ative (ESI−) ion modes. For ESI+, the mobile phases 
were composed of A2 (0.1% formic acid in water) and 
B2 (0.1% formic acid in acetonitrile), with the elution 
gradient meticulously structured as follows: from 0 to 
1  min, the composition was maintained at 2% B2; from 
1 to 9  min, it was gradually increased from 2 to 50% 
B2; from 9 to 12  min, it was further increased from 50 
to 98% B2; from 12 to 13.5 min, it was held constant at 
98% B2; from 13.5 to 14  min, it was rapidly decreased 
from 98 to 2% B2; and finally, from 14 to 20 min, it was 

maintained at 2% B2. In the ESI- mode, the mobile 
phases comprised A3 (ammonium formate at 5 mM) 
and B3 (acetonitrile), with the elution conditions set as 
follows: from 0 to 1 min, the composition was at 2% B3; 
from 1 to 9 min, it was increased from 2 to 50% B3; from 
9 to 12 min, it was raised from 50 to 98% B3; from 12 to 
13.5 min, it remained at 98% B3; from 13.5 to 14 min, it 
was decreased from 98 to 2% B3; and from 14 to 17 min, 
it was kept at 2% B3. The column oven temperature was 
uniformly maintained at 40  °C, with a flow rate of 0.25 
mL/min and an injection volume of 2 µL. Throughout the 
duration of the experiment, all pre-treated serum sam-
ples were preserved at 4 °C.

Metabolite detection was facilitated through a Q Exac-
tive HF-X mass spectrometer (Thermo Fisher Scientific, 
USA), which was equipped with an ESI ion source and 
operated in both MS1 and MS/MS (Full MS-ddMS2 
mode, data-dependent MS/MS) acquisition modes. The 
operational parameters were meticulously defined, with 
sheath gas pressure set at 30 arb, auxiliary gas flow at 10 
arb, spray voltages calibrated at 3.50  kV for ESI(+) and 
− 2.50 kV for ESI(−), capillary temperature at 325℃, MS1 
scan range from m/z 81 to 1000, MS1 resolving power 
at 60,000 FWHM, eight data-dependent scans per cycle, 
MS/MS resolving power at 15,000 FWHM, normalized 
collision energy at 30%, and dynamic exclusion time set 
to automatic.

Metabolomics data analysis
The transformation of raw data into mzXML format 
was accomplished utilizing MSConvert, a component 
of the ProteoWizard software suite (version 3.0.8789) 
[13]. Then, the feature detection, retention time correc-
tion, and alignment of the data were executed through 
the application of XCMS. Subsequently, advanced multi-
variate statistical analyses, namely principal component 
analysis (PCA) and orthogonal partial least squares-
discriminant analysis (OPLS-DA) were conducted using 
Simca-P14.1 software. These analyses served to delineate 
distinct groups and pinpoint biomarkers indicative of 
TNBC. To ascertain the robustness of the model, a per-
mutation test encompassing 100 random permutations 
was employed, evaluating the OPLS-DA model based 
on its R2 (explained variance) and Q2 (predictive ability) 
parameters. The identification of discriminating metabo-
lites was facilitated by the OPLS-DA model through the 
implementation of the variable importance on projec-
tion (VIP) strategy, whereby only metabolites exhibiting 
a VIP value over 1 were deemed to possess statistical sig-
nificance in the classification of TNBC. Following this, 
a nonparametric univariate statistical analysis was con-
ducted, employing the Mann-Whitney U test (p < 0.05) in 
conjunction with fold change (FC) values ≤ 0.67 or ≥ 1.5 
to discern differential metabolites (DMs).
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The evaluation of the DMs’ predictive capacity was 
undertaken through receiver operating characteristic 
(ROC) curve analysis, which leveraged the area under 
the ROC curve (AUC) as an indicator of the overall test 
efficacy. The optimal cut-off values of the DMs based on 
the ROC curve were determined by the Youden index, 
calculated as sensitivity + specificity − 1 [4]. The DeLong 
test was applied to compare AUCs. All the analyses were 
performed using SPSS software (version 26).

The initial identification of DMs was predicated on 
the verification of accurate molecular weight (< 30 ppm). 
After that, an analysis was conducted using accurate 
mass numbers and high-resolution target MS/MS spec-
tra, along with the fragmentation laws for various metab-
olites. The exploration for potential structures of DMs 
was conducted through database searches (including 
METLIN, HMDB, and MassBank) and literature reviews, 
thereby accruing information on candidate metabolites.

Furthermore, Metabolite Set Enrichment Analysis 
(MSEA) was performed via MetaboAnalyst 6.0  (   h t  t p s  : 
/ / m  e t  a s c a p e . o r g / g p / i n d e x . h t m l     ) , aimed at elucidating 
metabolic pathways distinctly altered in TNBC patients 
in comparison to HC subjects.

Transcriptomics analysis
In the investigation of TNBC, three pertinent datas-
ets from the Gene Expression Omnibus (GEO) data-
base were meticulously selected for analysis: GSE65194, 
encompassing 55 TNBC tissue samples alongside 11 
samples of healthy breast tissue derived from mammo-
plasty procedures; GSE45827, comprising 11 TNBC and 
5 healthy breast tissue samples; and GSE36295, contain-
ing 41 TNBC tissues as well as 11 samples of normal tis-
sue. The identification of differentially expressed genes 
(DEGs) contrasting the TNBC group with the group of 
normal breast tissues was executed utilizing the GEO2R 
analytical tool, adhering to stringent cutoff criteria of an 
absolute log2 FC greater than 2 and an adjusted p-value 
less than 0.05. This initial analysis facilitated the genera-
tion of volcano plots and Venn diagrams, accessible via 
(http:// www.bio informa tics .com.cn/), to discern DEGs 
consistently observed across the trio of datasets.

After identifying the shared DEGs, gene ontology 
(GO) enrichment analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
sis were conducted using the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID, ver-
sion 12.0). The GO enrichment analysis was categorized 
into three aspects: biological process (BP), cellular com-
ponent (CC), and molecular function (MF). BP repre-
sents a sequence of coordinated molecular functions that 
achieve a specific biological goal, CC refers to the cel-
lular locations where gene products are active, and MF 

describes the biochemical activities of gene products at 
the molecular level.

After identifying shared DEGs, gene ontology (GO) 
enrichment analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis were 
conducted using the Database for Annotation, Visualiza-
tion, and Integrated Discovery (DAVID, version 12.0). 
The GO enrichment analysis was divided into three 
categories: biological process (BP), cellular component 
(CC), and molecular function (MF). BP refers to a series 
of events or molecular functions coordinated to achieve 
a biological objective. CC indicates the cellular location 
where gene products are active, while MF describes the 
biochemical activities of gene products at the molecular 
level. This multifaceted approach aimed to elucidate the 
underlying molecular mechanisms and potential patho-
physiological pathways relevant to TNBC, providing 
valuable insights into the biological characterization of 
this aggressive breast cancer subtype.

Joint analysis of metabolomics and transcriptomics
An integrative analysis was undertaken to explore the 
synergistic relationship between DMs and DEGs, as iden-
tified through comprehensive metabolomic and tran-
scriptomic investigations. This analysis was conducted 
by employing the Joint-Pathway Analysis module avail-
able within the MetaboAnalyst 6.0 platform, aimed at 
constructing a detailed metabolic pathway enrichment 
diagram. The analysis leveraged the total number of 
identified metabolites to evaluate the relevance and sig-
nificance of each pathway, with pathways demonstrat-
ing a p-value less than 0.05 being deemed significantly 
enriched. In parallel, the KEGG database served as a piv-
otal resource for elucidating potential genes implicated 
within these significantly enriched pathways. The utili-
zation of Cytoscape software version 3.9.1, in conjunc-
tion with the Metscape plugin, facilitated the elucidation 
of the intricate connections between metabolites and 
genes, thereby enabling the visualization of compound 
networks.

Validation of the expression of hub DEGs from the online 
dataset
Gene Expression Profiling Interactive Analysis (GEPIA; 
http://gepia.cancer-pku.cn/) represents a sophisticated 
interactive web service dedicated to the analysis of RNA 
sequencing expression data, incorporating 9,736 tumor 
and 8,587 normal samples derived from the Cancer 
Genome Atlas (TCGA) and the Genotype-Tissue Expres-
sion (GTEx) projects [14]. Concurrently, UALCAN 
(http://ualcan.path.uab.edu) emerges as an extensive, 
intuitive web portal tailored for the analysis of cancer 
OMICS data. This portal not only facilitates gene expres-
sion analysis predicated on clinical data from TCGA but 

https://metascape.org/gp/index.html
https://metascape.org/gp/index.html
http://www.bioinformatics.com.cn/
http://gepia.cancer-pku.cn/
http://ualcan.path.uab.edu
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also extends its functionality to include protein expres-
sion analysis leveraging data from the Clinical Proteomic 
Tumor Analysis Consortium (CPTAC) Confirmatory/
Discovery dataset [14, 15]. Furthermore, the Human Pro-
tein Atlas (HPA) database (https://www.proteinatlas.org) 
provides an invaluable open-access repository of immu-
nohistochemical images, documenting a broad spectrum 
of immune response observations across both neoplastic 
and normal tissues [16]. Employing the comprehensive 
datasets available within these repositories, a detailed 
comparative analysis of the mRNA and protein expres-
sions of key hub genes in breast cancer versus normal 
breast tissue was conducted, with immunohistochemis-
try serving as the foundational analytical technique.

Cell culture
The human breast cancer cell line MDA-MB-231 and the 
non-tumorigenic breast epithelial cell line MCF-10  A 
were obtained from the American Type Culture Collec-
tion (ATCC). MDA-MB-231 cells were cultured in low-
glucose Dulbecco’s Modified Eagle’s Medium (DMEM) 
supplemented with 10% fetal bovine serum (FBS). MCF-
10  A cells were cultured in DMEM/F12 medium sup-
plemented with 5% horse serum, 20 ng/mL epidermal 
growth factor (EGF), 10  µg/mL insulin, and 0.5  µg/mL 
hydrocortisone. All cells were maintained in a humidified 
incubator with 5% CO₂ at 37 ℃.

Western blot analysis
Cells were harvested and subsequently lysed in RIPA buf-
fer containing protease inhibitors (Roche Ltd, Basel, Swit-
zerland). Protein concentrations were quantified using 
the Micro BCA protein assay kit (Pierce Biotechnology). 
Protein samples were separated by 10% SDS-PAGE and 
transferred to Amersham Protran nitrocellulose mem-
branes (GE Healthcare Life Sciences, Fairfield, USA). The 
membranes were incubated overnight at 4℃ with specific 
primary antibodies diluted in blocking solution. The anti-
bodies used included anti-MAOA (1:600, Proteintech, 
10539-1-AP), anti-ADH1B (1:2200, Proteintech, 66939-
1-Ig), anti-ADH1C (1:400, Proteintech, 18897-1-AP), 
anti-AOC3 (1:2400, Proteintech, 66834-1-Ig), anti-PCK1 
(1:650, Proteintech, 16754-1-AP), and anti-GAPDH 
(1:5000, Immunoway, YM3029). Immunoreactive bands 
were visualized and quantified using the Odyssey® CLx 
Infrared Imaging System (LI-COR Biosciences).

Kaplan-Meier plotter database analysis
The Kaplan-Meier plotter database (www.kmplot.com) 
was deployed to elucidate the association between 
mRNA levels of each pivotal DEG and the prognostic 
outcomes of patients afflicted with TNBC. To this end, 
patient samples were stratified into two distinct groups 
predicated upon the median expression level of each 

gene, delineating cohorts with high versus low expres-
sion, thereby facilitating a rigorous evaluation of the 
prognostic relevance attributed to each gene. Notably, 
the platform autonomously computes the hazard ratios 
(HR) accompanied by 95% confidence intervals (CI) and 
Log rank P values, thereby streamlining the analytical 
process.

Results
General characteristics of study participants
In the current investigation, the cohort comprised exclu-
sively female subjects, with an established homogeneity 
in age demographics across all study groups. To mini-
mize the potential confounding impact of variables such 
as age, homogeneity within each group was rigorously 
evaluated utilizing the Kruskal-Wallis test. The partici-
pant pool included a total of 51 individuals: the discovery 
set consisted of 18 patients diagnosed with TNBC (age 47 
[range 27–59] years) and 21 HC (age, 46 [range 33–66] 
years), whereas the validation set encompassed 7 TNBC 
patients (age 51 [range 36–58] years) and 5 HC (age, 50 
[range 39–63] years). Analysis revealed no significant 
disparities in baseline characteristics among the groups, 
thereby reinforcing the internal validity of the study 
findings.

The metabolomics analysis for TNBC and HC serum 
samples
Reliability of the analytical method
In this study, multivariate statistical analyses were ini-
tially utilized to construct metabolic profiles for the 
entirety of the samples under study. The reliability of this 
analytical method was rigorously evaluated through the 
systematic repetition of analyses on QC samples across 
all sample runs. Subsequently, the PCA score plots for 
the samples within the discovery dataset were examined. 
Notably, all QC samples (Fig. 1, yellow) exhibited a pro-
nounced clustering in both ESI + and ESI- modes. This 
observation unequivocally confirms the analytical sys-
tem’s stability and reproducibility.

Differential metabolite screening
As shown in Fig. 1, the PCA score plots exhibited well-
distinguishable patterns between TNBC and HC sam-
ples, implying some remarkable differences existed in the 
serum endogenous metabolites between the two different 
groups. Building on this initial finding, OPLS-DA was 
applied to further pinpoint these metabolic discrepan-
cies. The results (Fig. 2A, B) demonstrated clear division 
between the two groups, with impressive R2Y and Q2 val-
ues of 0.984 and 0.878 in ESI + mode, and 0.995 and 0.834 
in ESI- mode, respectively. Subsequently, the results from 
100 permutation tests revealed that the permuted R2 and 
Q2 values on the left side were consistently lower than the 

https://www.proteinatlas.org
http://www.kmplot.com
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Fig. 2 The OPLS-DA score plots of the two groups revealed the clustering of samples in the discover set and their corresponding permutation tests. 
OPLS-DA score plots for HC (green, n = 21) and TNBC (red, n = 18) in (A) ESI + mode and (B) ESI- mode. The corresponding validation plots for putative 
features with 100 permutation tests in (C) ESI + mode and (D) ESI- mode

 

Fig. 1 PCA score plots of samples in the discovery set and QCs (HC: green; TNBC patients: red; QC: yellow) in (A) positive and (B) negative electrospray 
ionization mode

 



Page 7 of 17Gong et al. Journal of Translational Medicine         (2024) 22:1016 

original values on the right side, indicating no overfitting 
of the model (Fig. 2C, D). Furthermore, the intercept of 
Q2 being below zero further supports the model’s reliabil-
ity and validity [17].

In this work, after the application of predefined criteria, 
a total of 22 DMs were identified as potential biomark-
ers for differentiating between TNBC and HC speci-
mens. The comparative analysis elucidated that within 
the TNBC cohort, there were 13 metabolites exhibiting 
upregulation and 9 demonstrating downregulation in 
contrast to the HC group. The concentration profiles of 
these 22 DMs were systematically represented in a heat 
map (Supplementary Fig. 1), while comprehensive details 
encompassing retention time (RT), mass-to-charge ratio 
(m/z), adduct ion, FC, p-value, VIP, and mean decrease 
accuracy were listed in Table 1.

Evaluating and validating the diagnostic ability of 
metabolites
To ascertain the diagnostic potential of specific metabo-
lites, ROC analysis was employed to assess the diagnos-
tic accuracy of individual metabolites. The range of AUC 
was between 0.5 and 1, with values closer to 1 indicat-
ing higher accuracy of the detection method, while val-
ues closer to 0.5 indicating lower accuracy and lower 
application value [18]. This analysis yielded that 7 DMs 
manifested statistically significant diagnostic capabili-
ties (p < 0.001), namely 7-methylguanine, pipecolic acid, 
L-methionine, oxoglutaric acid, bilirubin, thymidine, and 

4-hydroxyphenylacetaldehyde (Supplementary Fig.  2). 
Using DeLong’s test, we found that 7-methylguanine 
demonstrated significantly better diagnostic power than 
oxoglutaric acid, bilirubin, thymidine, and 4-hydroxy-
phenylacetaldehyde (p < 0.05). However, there was no 
significant difference in the AUC between the other bio-
markers (p > 0.05). The precise p-values from DeLong’s 
test comparing the AUCs of these biomarkers are pro-
vided in Supplementary Table S1. These results revealed 
that 7-methylguanine in serum samples exhibited the 
highest efficacy in distinguishing TNBC patients from 
HC subjects, with an AUC of 0.992, sensitivity of 100%, 
specificity of 95.2%, and a Youden index of 0.952.

To corroborate the results obtained from the initial 
discovery set, serum samples were procured from 7 indi-
viduals diagnosed with TNBC and 5 HC. These samples 
underwent analysis employing identical UHPLC–MS 
procedures as those utilized for the discovery set. The 
relative intensity of 7-methylguanine between TNBC 
patients and healthy individuals was compared in the 
discovery set and replication set, respectively. Findings 
demonstrated a significant elevation of 7-methylguanine 
levels in the serum samples of TNBC patients in both 
discovery and validation sets (p < 0.01; Fig.  3A), indicat-
ing a consistent elevation of this metabolite in the con-
text of TNBC.

Subsequently, to ascertain the diagnostic util-
ity of 7-methylguanine within a clinical setting, ROC 
curves were generated based on the relative intensity of 

Table 1 Serum differential metabolites detected by UHPLC-MS between TNBC and HC subjects
No. Metabolites Rt(s) mz formula KEGG Adduct ion FC P VIP
1 Isonicotinic acid 600.2 122.0217 C6H5NO2 C07446 [M-H]- 0.54 0.036 1.464
2 Ergothioneine 102.7 230.096 C9H16N3O2S C05570 [M + H]+ 0.54 0.006 1.546
3 Glutaric acid 86.1 131.0329 C5H8O4 C00489 [M-H]- 0.55 0.005 1.555
4 Urocanic acid 139.1 137.0345 C6H6N2O2 C00785 [M-H]- 0.58 0.003 1.730
5 Acetylcholine chloride 33 180.9729 C7H16NO2. Cl C08201 [M-H]- 0.58 0.005 1.767
6 2,3-Butanediol 152.6 154.9901 C4H10O2S2 C00265 [M + H]+ 0.59 0.011 1.036
7 5’-Methylthioadenosine 897.2 297.2429 C11H15N5O3S C00170 [M-H]- 0.6 0.024 1.705
8 N-Acetyl-D-tryptophan 397.1 246.1238 C13H14N2O3 C03137 [M + H]+ 0.61 0.001 1.715
9 9(S)-HPOT 855.1 293.2108 C18H30O4 C16321 [M + H]+ 0.65 0.006 1.429
10 4-Hydroxyphenylacetaldehyde 95.1 136.048 C8H8O2 C03765 [M + H]+ 1.5 0.000 1.851
11 7-Methylguanine 139.6 166.0724 C6H7N5O C02242 [M + H]+ 1.53 0.000 2.406
12 Thymidine 539.7 242.1759 C10H14N2O5 C00214 [M-H]- 1.58 0.000 1.987
13 Oxalacetic acid 83.1 130.9993 C4H4O5 C00036 [M-H]- 1.59 0.029 1.572
14 CMP-3-deoxy-D-manno-octulosonate 773 542.1068 C17H26N3O15P C04121 [M-H]- 1.62 0.006 1.421
15 Oxoglutaric acid 75.8 145.0137 C5H6O5 C00026 [M-H]- 1.66 0.000 2.237
16 Bilirubin 917.5 585.2655 C33H36N4O6 C00486 [M + H]+ 1.7 0.000 1.731
17 Thymine 430.5 125.0347 C5H6N2O2 C00178 [M-H]- 1.71 0.047 1.288
18 L-Valine 135.2 118.087 C5H11NO2 C00183 [M + H]+ 1.73 0.015 1.018
19 Arachidic acid 917.3 311.2954 C20H40O2 C06425 [M-H]- 1.75 0.003 1.581
20 (S)-4-Hydroxymandelate 245.5 151.0336 C8H8O4 C03198 [M + H]+ 1.85 0.007 1.121
21 Pipecolic acid 96.9 129.0654 C6H11NO2 C00408 [M + H]+ 2.14 0.000 1.646
22 L-Methionine 137.4 148.0426 C5H11NO2S C00073 [M-H]- 2.49 0.000 2.285
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metabolites derived from the validation sample cohort. 
Within this validation set, 7-methylguanine exhibited an 
AUC of 0.971, with a sensitivity of 85.7% and specificity 
of 100%, corresponding to a Youden index of 0.857. These 
metrics closely paralleled those observed within the dis-
covery set (Fig. 3B), reinforcing the potential of 7-methyl-
guanine as a robust biomarker for TNBC.

Metabolite set enrichment analysis (MSEA)
The findings indicate that TNBC is characterized by dis-
tinct metabolite profiles, implying alterations in meta-
bolic biological networks. To delineate the disrupted 
metabolic pathways, informed by the altered set of DMs, 
comprehensive enrichment and pathway analyses were 
undertaken. The analyses revealed that the most signifi-
cantly enriched pathways in TNBC patients include the 
malate-aspartate shuttle, alanine metabolism, spermidine 
and spermine biosynthesis, urea cycle, ammonia recy-
cling, TCA cycle, gluconeogenesis, and aspartate metab-
olism, all of which demonstrated statistical significance 
(p-values < 0.05) as depicted in the bar chart in Supple-
mentary Fig. 3.

The transcriptomics analysis for TNBC and HC tissue 
samples
Identification of differentially expressed genes in TNBC
In this study, three GEO datasets were scrutinized: 
GSE65194, GSE45827, and GSE36295. To ensure the 
dataset’s quality is reliable, a rigorous analytical approach 
was employed using the GEO2R tool, with selection 
criteria set at an absolute log fold change (|logFC|) 

exceeding 2 and an adjusted p-value below 0.05. This 
analysis yielded that, compared to normal breast tissue, 
TNBC tissue had 1,561 up-regulated and 1,035 down-
regulated DEGs in the GSE65194 dataset (Fig.  4A), 
1,533 up-regulated and 1,047 down-regulated DEGs in 
GSE45827 (Fig. 4B), and 77 up-regulated along with 137 
down-regulated DEGs in GSE36295 (Fig.  4C). After the 
identification of DEGs within each dataset, an online 
Venn diagram tool was employed to intersect and visu-
alize the DEGs across the three datasets, facilitating the 
identification of common DEGs. This analysis revealed 
a total of 160 DEGs demonstrating uniform expression 
trends across the datasets, encompassing 57 genes that 
were up-regulated and 103 that were down-regulated, as 
depicted in Fig. 4D.

Gene ontology and KEGG enrichment functional analysis of 
overlapping DEGs
To examine the biological categorization of the 160 com-
mon DEGs, functional and pathway enrichment analy-
ses were executed utilizing the DAVID database. These 
investigations comprised GO enrichment analysis and 
KEGG pathways, which disclosed associations of the 
DEGs with 39 GO terms including BP, CC, and MF, in 
addition to 2 significant pathways, as listed in Supple-
mentary Table S2. The threshold for deeming results 
statistically significant was established at a False Dis-
covery Rate (FDR) below 0.05. As depicted in Fig.  5A, 
the GO analysis explicitly highlighted that DEGs about 
BP were notably concentrated in areas such as cell divi-
sion, mitotic spindle organization, bacterial response, 

Fig. 3 Validation of the diagnostic efficacy of 7-Methylguanine for discriminating between TNBC and HC groups across discovery set and validation sets. 
(A)> Comparative analysis of 7-methylguanine levels (****p < 0.0001 in the discovery set; ## p < 0.01 in the validation set). Control1 and TNBC1 represent 
HC subjects (n = 21) and TNBC patients (n = 18) of the discovery set, respectively. Control2 and TNBC2 represent HC subjects (n = 5) and TNBC patients 
(n = 7) of the validation set, respectively. (B) ROC curve analysis for diagnostic accuracy
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and so on. For CC, significant enrichment was observed 
in structures including the midbody, spindle, and con-
densed chromosome outer kinetochore. Furthermore, 
changes in MF were mainly enriched in microtubule 
binding. Regarding the KEGG pathway analysis, the 
DEGs were predominantly enriched in the PPAR signal-
ing pathway and tyrosine metabolism (Fig. 5B).

Integrative analysis of metabolomics and transcriptomics 
data
To advance the systematic exploration of TNBC, a com-
prehensive biological pathway analysis was performed 
by linking important 22 DMs and the 160 DEGs through 
shared metabolic pathways with the Joint Pathway Analy-
sis module on MetaboAnalyst 6.0. Our analysis unveiled 

three pathways of notable perturbation: tyrosine metabo-
lism, phenylalanine metabolism, and glycolysis or glu-
coneogenesis, each characterized by p-values < 0.05 and 
impact ≥ 0.5 (Fig. 6A; Table 2). To better understand the 
metabolite mechanism and gene dysregulation, 22 DMs 
and 160 DEGs were introduced into the Metscape plug-
in of the Cytoscape 3.7.1 database to collect the com-
pound–reaction–enzyme–gene network in combination 
with the top three enriched pathways (Fig.  6B). The 
results showed that six key genes linked to these path-
ways, with detailed information listed in Table 3.

Verifications of six hub genes expression
Upon integrating the outcomes derived from metabolo-
mics and transcriptomics datasets, this study identified 

Fig. 4 Identification of overlapping DEGs. Volcano plots for DEGs in TNBC and normal tissues based on data from GEO datasets (A) GSE65194, (B) 
GSE45827, and (C) GSE36295. (D) Venn diagrams of the DEGs from the three data sets. Different colors in the figure mean different data sets
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MAOA, ADH1B, ADH1C, AOC3, TAT, and PCK1 as 
potential key players in the pathogenesis of TNBC.

Utilizing the GEPIA platform, we assessed the mRNA 
expression levels of six pivotal genes in a dataset com-
prising 135 TNBC specimens and 291 normal breast 
tissue specimens. This dataset was collated from the 

Table 2 Joint analysis pathways of differential metabolites and 
genes
No Pathway name Match status P value Impact
1 Tyrosine metabolism 6/88 0.001 0.345
2 Phenylalanine metabolism 3/21 0.002 0.600
3 Glycolysis or Gluconeogenesis 4/61 0.008 0.117

Fig. 6 Integrated transcriptomics and metabolomics analyses of TNBC metabolic pathways. (A) Metabolic pathway enrichment plot. (B) The compound–
reaction–enzyme–gene network of the key metabolites and genes. Significant overexpression in red, significant downexpression in blue

 

Fig. 5 DAVID analysis of the overlapping DEGs. (A) GO and (B) KEGG enrichment analyses of the common DEGs. The size of the node reflects the count 
of genes enriched in terms, and the color shows the P value, the redder the color, the more significant it is. DAVID, Database for Annotation, Visualization, 
and Integrated Discovery; DEGs, differentially expressed genes; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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comprehensive resources of the TCGA and GTEx data-
bases. This examination revealed a statistically significant 
reduction in the expression of these genes in TNBC in 
comparison to normal samples (p < 0.05, Fig.  7). At the 
protein level, the UALCAN cancer database showed that 
their expression in TNBC tissue was significantly reduced 
relative to normal tissue (p < 0.05, Fig. 8A). Moreover, the 
western blot analysis (Fig. 8B) also indicated that MAOA, 
ADH1B, ADH1C, AOC3, and PCK1 protein levels were 
decreased in the MDA-MB-231 cell lines compared 
to those in the MCF-10  A cell lines. Then, these obser-
vations were further substantiated by immunohisto-
chemical analyses sourced from the HPA database. The 
representative immunohistochemistry (IHC) images 
in Fig.  9 showed that the expression levels of MAOA, 
ADH1B, ADH1C, AOC3, and PCK1 were downregu-
lated in breast cancer tissues compared to normal tissues. 

Specifically, the analysis included 3 normal samples and 
11 cancer samples for MAOA and AOC3, 2 normal sam-
ples and 11 cancer samples for ADH1B and ADH1C, and 
2 normal samples and 12 cancer samples for PCK1.

The survival analysis of hub genes in TNBC
The Kaplan-Meier Plotter, an accessible online analyti-
cal tool, was utilized to conduct survival analyses predi-
cated on gene expression levels, thereby evaluating the 
prognostic relevance of key genes. This analysis divided 
TNBC patient samples into dichotomous groups based 
on median mRNA expression levels of each gene, delin-
eating cohorts with high versus low expression. Notably, 
AOC3 and PCK1 were identified as genes significantly 
associated with poor overall survival (OS). Results 
showed that overexpression of AOC3 (HR 95%CI = 3.56 
(1.62–7.8), log-rank P = 0.00073) and PCK1 (HR 
95%CI = 2.86 (1.19–6.85), log-rank P = 0.04) were asso-
ciated with unfavorable OS of TNBC patients (Fig.  10). 
Consequently, this evidence supports the hypothesis that 
AOC3 and PCK1 may function as potential biomarkers 
for prognostication in TNBC patient populations. Based 
on these results, it is hypothesized that AOC3 and PCK1 
may serve as potential biomarkers for predicting the 
prognosis of TNBC patients.

Discussion
TNBC is recognized as the most lethal subtype of BC 
characterized by low OS rates and high rates of a high 
propensity for invasion and metastasis, posing an unmet 
medical challenge [19]. Clinical tumor markers such as 
carcinoembryonic antigen (CEA) and cancer antigen 
15 − 3 (CA15-3) are frequently used in BC diagnosis; 
nevertheless, their specificity and accuracy do not meet 
clinical standards [20]. Currently, there are no reliable 
biomarkers specifically for TNBC, highlighting a critical 
gap in diagnostic tools. Metabolic reprogramming, a hall-
mark of cancer, offers new prospects for cancer detection, 
prognosis, and treatment [21, 22]. It has been demon-
strated that metabolic dysregulation is linked to therapy 
response and clinical outcome across various cancer 
types and may influence the tumorigenesis, progression, 
and prognosis of BC via pathways related to angiogen-
esis, anti-apoptosis, mitogenesis, chronic inflammation, 
increased visceral fat reserves, and other cancer-associ-
ated adipokines [23–26]. This study aims to identify more 
reliable and specific serum markers for diagnosing TNBC 
using a metabolomic approach. While metabolomics 
has been applied in numerous studies to discover novel 
biomarkers for TNBC, relying solely on this method 
does not fully elucidate the pathophysiology of TNBC. 
Therefore, this research integrated metabolomics and 
transcriptomics data to deepen our understanding of 

Table 3 Related differentially expressed genes by joint-pathway 
analysis
Gene FC FDR log2 

FC
Gene 
description

Enriched 
pathway

MAOA 0.086 4.87E-05 -3.54 monoamine 
oxidase A

Tyrosine 
metabolism, 
Phenylalanine 
metabo-
lism, Drug 
metabolism 
- cytochrome 
P450

ADH1B 0.0188 3.44E-05 -5.73 “alcohol dehy-
drogenase 1B 
(class I), beta 
polypeptide”

Tyrosine 
metabolism, 
Glycolysis or 
Gluconeo-
genesis, Drug 
metabolism 
- cytochrome 
P450

ADH1C 0.0501 8.43E-06 -4.32 “alcohol dehy-
drogenase 1 C 
(class I), gamma 
polypeptide”

Tyrosine 
metabolism, 
Glycolysis or 
Gluconeo-
genesis, Drug 
metabolism 
- cytochrome 
P450

AOC3 0.187 0.00471 -2.42 “amine oxidase, 
copper contain-
ing 3 (vascular 
adhesion 
protein 1)”

Tyrosine 
metabolism, 
Phenylalanine 
metabolism

TAT 0.123 0.0132 -3.02 tyrosine 
aminotransferase

Tyrosine 
metabolism, 
Phenylalanine 
metabolism

PCK1 0.155 0.00257 -2.69 phospho-
enolpyruvate 
carboxykinase 1 
(soluble)

Glycolysis or 
Gluconeo-
genesis
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Fig. 8 Protein levels of MAOA, ADH1B, ADH1C, AOC3 and PCK1. (A) The protein expression of key genes in normal tissues and breast cancer tissues 
based on subclasses analyzed by the UALCAN cancer database. Z-values show standard deviations for the specified cancer type from the median across 
samples. Values for the Log2 Spectral count ratio obtained from CPTAC were first normalized within each sample profile and then across samples. (B) The 
protein expression of key genes in MCF-10 A and MDA-MB-231 cells detected by western blot

 

Fig. 7 Significantly expressed six genes in TNBC samples compared to normal samples. (A)MAOA, (B)ADH1B, (C)ADH1C, (D)AOC3, (E)TAT, and (F)PCK1 
have notable low mRNA expression in the TNBC specimen compared to the normal specimen (*p < 0.05). Red color refers to TNBC tissues and grey color 
refers to normal samples
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the interactions between selected metabolites and genes 
within dysregulated pathways.

The current study employed an untargeted metabo-
lomics approach, utilizing ultra-high-performance 
liquid chromatography coupled with mass spectrom-
etry (UHPLC-MS) and multivariate statistical analysis 

to identify metabolites with altered levels in TNBC com-
pared to HC. This comprehensive metabolomic analysis 
identified 13 upregulated metabolites and 9 downregu-
lated metabolites in TNBC. Notably, among these metab-
olites, 7-methylguanine emerged as a potential biomarker 
for TNBC, as evidenced by ROC analysis and the DeLong 

Fig. 10 Overall survival (OS) data evaluating the prognostic value of (A)MAOA, (B)ADH1B, (C)ADH1C, (D)AOC3, (E)TAT, and (F)PCK1 in TNBC patients using 
Kaplan-Meier plotter

 

Fig. 9 The representative immunohistochemistry (IHC) images of MAOA, ADH1B, ADH1C, AOC3, and PCK1 in BC and normal tissues were extracted 
from the HPA database. In each set, tumor tissue sections were displayed on the upper side, and normal tissue sections were displayed on the lower side
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test. Furthermore, MSEA highlighted several disrupted 
metabolic pathways critical to TNBC pathophysiology, 
including the malate-aspartate shuttle and the TCA cycle. 
These pathways play essential roles in cellular energy 
metabolism, indicating their significant involvement in 
the metabolic reprogramming characteristic of TNBC.

To deepen our understanding of the underlying mech-
anisms of TNBC, we analyzed data combined from 
three distinct GEO datasets. This comprehensive analy-
sis included 26 samples of normal breast tissue and 101 
samples of TNBC tissue. From this, we identified a total 
of 160 DEGs, comprising 103 downregulated and 57 
upregulated genes in TNBC tissues. Functional enrich-
ment analysis of these DEGs highlighted their significant 
involvement in cell proliferation processes, including 
cell division, mitotic spindle organization, chromosome 
segregation, and the positive regulation of chromosome 
segregation, all of which are consistent with the hallmark 
rapid proliferation of TNBC cells. Furthermore, KEGG 
pathway enrichment analysis revealed that the DEGs 
were predominantly associated with the PPAR signal-
ing pathway and tyrosine metabolism. This suggests that 
these genes play a critical role in regulating fatty acid and 
amino acid metabolism within TNBC cells.

The integrative analysis of metabolomic and tran-
scriptomic datasets has significantly advanced our 
understanding of the interplay between metabolic dys-
regulation and gene expression alterations in TNBC. This 
analysis has highlighted key pathways, including tyrosine 
metabolism, phenylalanine metabolism, and glycolysis/
gluconeogenesis, underscoring the complex biological 
landscape of TNBC that extends beyond simple genomic 
alterations. The disruption of these pathways likely 
reflects the adaptive oncogenic processes characteristic 
of TNBC, presenting potential targets for therapeutic 
intervention. Notably, the analysis identified two DMs 
(4-hydroxyphenylacetaldehyde and oxalacetic acid) and 
six DEGs (MAOA, ADH1B, ADH1C, AOC3, TAT, and 
PCK1) as integral components of these pathways. Further 
validation using the GEPIA, UALCAN, HPA databases 
and western blot analysis revealed consistent expression 
patterns for these hub genes at both the RNA and protein 
levels, reinforcing their pivotal role in the pathophysiol-
ogy of TNBC.

The disruption of tyrosine and phenylalanine metabo-
lism has been linked to various pathologies, includ-
ing gastroesophageal malignancies [27], non-small cell 
lung cancer [10], and BC [28]. Research by Christofk 
et al. [28] demonstrated that invasive breast cancer 
cells, when faced with amino acid deprivation, utilize 
extracellular matrix internalization and lysosomal deg-
radation to acquire amino acids. This adaptive mecha-
nism is crucial for supporting cellular proliferation and 
enhancing migratory capabilities, indicating a metabolic 

dependency on phenylalanine and tyrosine. In our study, 
we found that 4-hydroxyphenylacetaldehyde, along with 
the genes MAOA, AOC3, and TAT, were significantly 
enriched in the tyrosine and phenylalanine metabolic 
pathways. This finding suggests that TNBC cells may rely 
on these metabolic pathways to drive tumorigenesis.

Nowadays, the treatment landscape for TNBC remains 
challenging, with chemotherapy being the primary 
option available to patients. Receptor tyrosine kinases 
(RTKs) are, however, intriguing druggable targets due to 
their high expression in TNBC [8]. RTKs are membrane-
bound receptors essential for cell function, mediating 
intercellular signal transduction by phosphorylating tyro-
sine residues on key intracellular substrate proteins. This 
activation triggers multiple intracellular signaling path-
ways, such as MAPK, PI3K/Akt, and JAK/STAT, which 
regulate processes including cell proliferation, differen-
tiation, metabolism, and migration [29, 30]. In TNBC 
cells, multiple oncogenic signaling pathways are activated 
downstream of RTKs. Consequently, monoclonal anti-
bodies and small molecule inhibitors [31], such as EGFR 
inhibitors (e.g., erlotinib and gefitinib), VEGFR inhibi-
tors (e.g., bevacizumab), c-MET inhibitors (e.g., cabozan-
tinib), and FGFR inhibitors (e.g., erdafitinib), are being 
investigated as potential treatment options for TNBC. 
Tyrosine metabolism is closely linked to the activation of 
tyrosine kinases, indicating that alterations in this meta-
bolic pathway can significantly influence kinase activity. 
Our study suggested that MAOA, AOC3, and TAT may 
serve as therapeutic targets for the future treatment of 
TNBC.

The MAOA gene encodes the enzyme monoamine 
oxidase-A, which is present in both peripheral tissues 
and the central nervous system and is essential for break-
ing down monoamines such as norepinephrine (NE), 
epinephrine, and dopamine [32]. Recent findings have 
shown that different cancer types exhibit unique patterns 
of MAOA regulation and functionality. Overexpression 
of MAOA has been observed in glioma [33], classical 
Hodgkin lymphomas [34], and prostate cancer [35]. In 
contrast, a trend toward decreased MAOA expression 
has been reported in pancreatic ductal adenocarcinoma 
[36], hepatocellular carcinoma (HCC) [32], and gastric 
cancer [37]. Notably, prior researches have consistently 
demonstrated a significant reduction in MAOA expres-
sion in invasive BC compared to noncancerous cells and 
normal breast tissue [38, 39], corroborating the findings 
of our study. A recent report by Wang et al. [6] high-
lighted the role of NE, derived from tyrosine, in modu-
lating inflammatory immune responses within the tumor 
microenvironment through interactions with beta-
adrenergic receptors (β-ARs), thereby influencing tumor 
cell invasion and migration. Suppressing the effects of 
the NK cell-enriched environment and diminishing the 
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antitumor response can be achieved through chemical 
sympathectomy or β-AR pathway inhibition [10]. Addi-
tionally, it has been shown that MAOA may affect cancer 
development and progression by depleting neurotrans-
mitters downstream, specifically NE, in pancreatic and 
liver cancers. Our study reveals MAOA’s involvement 
in tyrosine and phenylalanine metabolism, suggesting a 
disruption in amino acid metabolism in TNBC patients. 
Moreover, a decrease in MAOA expression was observed 
in the TNBC cohort relative to the control group at both 
the mRNA and protein levels. This leads us to hypoth-
esize that TNBC may exhibit elevated NE levels, poten-
tially activating immune cells for antitumor responses—a 
hypothesis that warrants further investigation.

The AOC3 gene encodes the enzyme amine oxidase 
copper-containing 3, a membrane-bound adhesion pro-
tein also known as vascular adhesion protein 1 (VAP-1) 
[40]. This multifunctional molecule, primarily located in 
the vascular endothelium and pericytes, plays a crucial 
role in facilitating leukocyte adhesion and trafficking to 
inflammatory tissues [41]. Research suggests that VAP-1 
contributes to the recruitment of tumor-infiltrating lym-
phocytes to various carcinomas, aiding in the destruction 
of cancer cells [42]. However, AOC3 has also been impli-
cated in the progression of cancers such as melanoma and 
lymphoma [43]. Paradoxically, its expression is decreased 
in certain aggressive cancer types, including prostate and 
colorectal cancers [42, 43]. Our results indicated a signifi-
cant reduction in AOC3 expression in TNBC, suggest-
ing that this decrease may be associated with increased 
tumor aggressiveness. Moreover, our research has shown 
a correlation between low AOC3 expression and poor 
prognostic outcomes in TNBC, highlighting its poten-
tial as a prognostic biomarker. This proposition is further 
supported by proteomic analyses from Shaheed et al., 
[44] which compared neoplastic breast tissue to benign 
counterparts and found a significant reduction in AOC3 
expression, reinforcing its prognostic relevance in breast 
cancer.

The precise mechanisms underlying the relation-
ship between low AOC3 expression and poor prognos-
tic outcomes remain unclear. However, one potential 
mechanism involves its role in tumor immunity. AOC3 
facilitates lymphocyte adhesion to endothelial cells, pro-
moting lymphocyte aggregation within tumor vascula-
ture. This aggregation triggers a local immune response 
by activating tumor-infiltrating lymphocytes, which may 
inhibit tumor growth [45]. The absence or reduction of 
AOC3 expression in TNBC could, therefore, diminish 
local immune responses, contributing to a worse progno-
sis. Further research is needed to elucidate and validate 
this hypothesized link.

The TAT gene is essential for the biosynthesis of tyro-
sine aminotransferase, a liver-specific mitochondrial 

enzyme crucial for converting tyrosine into non-toxic 
molecules. These molecules are then either excreted 
via the renal pathway or used in metabolic processes to 
generate energy. Mutations in the TAT gene can lead to 
enzyme deficiency, resulting in the harmful accumula-
tion of tyrosine and its derivatives [46]. This buildup can 
damage vital organs such as the liver, kidneys, and ner-
vous system, as well as other tissues, by disrupting their 
normal functions. Reduced TAT expression has been 
observed in HCC, suggesting its involvement in the 
pathogenesis of this malignancy. Further in vitro analy-
ses have shown that TAT is instrumental in mediating 
apoptotic pathways and exerting anti-oncogenic effects, 
highlighting a significant association with the develop-
ment and progression of HCC [46]. Our study revealed a 
marked decrease in TAT protein levels and an increase in 
4-hydroxyphenylacetaldehyde, a tyrosine metabolite, in 
patients with TNBC compared to the control group. This 
finding not only indicates a disruption in tyrosine metab-
olism within TNBC but also suggests that the downregu-
lation of TAT may contribute to TNBC progression.

Cancer cells are characterized by significant repro-
gramming of cellular energy metabolism, a phenomenon 
predominantly illustrated by the Warburg effect [22]. 
This effect, observed even in oxygen-rich environments, 
is marked by a substantial increase in glucose uptake, 
enhanced glycolysis, and increased production of lactic 
acid within tumor cells [47, 48]. Concurrently, gluco-
neogenesis—the synthesis of glucose from non-carbohy-
drate sources such as glucogenic amino acids, pyruvate, 
lactate, and glycerol—is typically suppressed due to the 
preferential activation of the glycolysis pathway in cancer 
cells [49]. In our investigation, we observed an enrich-
ment of oxaloacetic acid and PCK1 during the metabolic 
processes of glycolysis and gluconeogenesis. This obser-
vation suggested a critical involvement of these com-
ponents in facilitating the interconnected pathways of 
energy metabolism within cancer cells, highlighting their 
potential roles in the metabolic reprogramming associ-
ated with oncogenesis.

The PCK1 gene, localized on the chromosomal region 
20q13.31 in humans, exhibits variable expression across 
different tumor types, showing overexpression in colorec-
tal and melanoma malignancies, while underexpression 
is observed in HCC and renal cell carcinoma [50, 51]. 
Research by Bian et al. [51] demonstrated that enhancing 
the stability of the PCK1-encoded protein can increase 
gluconeogenesis, decrease glycolysis, and suppress can-
cer cell proliferation. As a pivotal enzyme in gluconeo-
genesis, PCK1 catalyzes the conversion of oxaloacetic 
acid into phosphoenolpyruvate. Our findings indicate a 
notable increase in oxaloacetate levels, accompanied by 
reduced PCK1 expression in TNBC patients, suggesting 
an inhibition of gluconeogenesis. Additionally, our study 
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identified a significant association between PCK1 overex-
pression and decreased OS in TNBC patients (p < 0.05), 
aligning with previous research outcomes [47].

Our findings represented a groundbreaking contribu-
tion towards identifying potential biomarkers for TNBC. 
Nevertheless, these promising findings are tempered 
by certain limitations inherent in our study, such as the 
relatively small sample size, and the imperative for sub-
sequent validation across larger and more varied cohorts. 
Moreover, the analytic procedures employed necessitate 
rigorous replication and standardization before their 
integration into clinical application.

In conclusion, our research underlined the utility of 
combining metabolomic and transcriptomic analyses 
to provide a more comprehensive view of the complexi-
ties of TNBC. It unveils potential diagnostic biomarkers 
and therapeutic targets, offering promising avenues for 
revolutionizing TNBC management. The imperative for 
future investigations to validate these findings and extend 
the omics-based methodology to additional cancer sub-
types is clear. Such endeavors are crucial for propelling 
the field of personalized medicine forward in the realm 
of oncology, potentially enhancing patient outcomes 
through more tailored and effective treatment strategies.
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