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Improving cartilage phenotype 
from differentiated pericytes in 
tunable peptide hydrogels
Enateri V. Alakpa1, Vineetha Jayawarna2, Karl E. V. Burgess3, Christopher C. West4, Bruno 
Péault4,5, Rein V. Ulijn6 & Matthew J. Dalby2

Differentiation of stem cells to chondrocytes in vitro usually results in a heterogeneous phenotype. 
This is evident in the often detected over expression of type X collagen which, in hyaline cartilage 
structure is not characteristic of the mid-zone but of the deep-zone ossifying tissue. Methods to better 
match cartilage developed in vitro to characteristic in vivo features are therefore highly desirable in 
regenerative medicine. This study compares phenotype characteristics between pericytes, obtained 
from human adipose tissue, differentiated using diphenylalanine/serine (F2/S) peptide hydrogels 
with the more widely used chemical induced method for chondrogenesis. Significantly higher 
levels of type II collagen were noted when pericytes undergo chondrogenesis in the hydrogel in the 
absence of induction media. There is also a balanced expression of collagen relative to aggrecan 
production, a feature which was biased toward collagen production when cells were cultured with 
induction media. Lastly, metabolic profiles of each system show considerable overlap between both 
differentiation methods but subtle differences which potentially give rise to their resultant phenotype 
can be ascertained. The study highlights how material and chemical alterations in the cellular 
microenvironment have wide ranging effects on resultant tissue type.

Induction of mesenchymal stem cells (MSCs) to undergo chondrogenesis requires the cells to have strong cell-cell 
interactions and that they maintain a spherical morphology. The added use of growth factors in culture media 
such as transforming growth factors (TGFs) and bone morphogenetic proteins (BMPs) have also been shown to 
induce chondrogenesis1, 2. However, a common observation when inducing MSCs to form chondrocytes in vitro 
is the expression of type X collagen by the cells3–6. Typically, type X collagen is not expressed in the mid-zone of 
hyaline cartilage and is characteristic of chondrocytes undergoing hypertrophy and endochondral ossification in 
the deep-zone region of the tissue7, 8 suggesting that in vitro, the cells differentiate along a mixed phenotypic line-
age. Over exposure to compounds such as TGF-β1 is thought to be responsible for increased type X expression3, 6  
and, as such, biomaterial systems which are able to influence phenotypic expression are highly desirable as a 
replacement for chemically induced differentiation.

The use of stem cells for engineering cartilage is of particular interest as they facilitate continual develop-
ment from chondroblasts to terminal differentiation (hypertrophic chondrocytes), a characteristic which is not 
observed with the use of chondrocytes9. Also, induced differentiation of stem cells is able to provide an abundant 
source of chondrocytes to compensate for the naturally low cell numbers found in cartilage tissue. Cartilage is 
an avascular tissue type and naturally occuring cell populations are low. To collect and culture mature chondro-
cytes up to required population numbers is time consuming and costly. For this reason, prefered approaches for 
engineering cartilage have been to differentiate stem cells in vitro which can then be used in vivo. Pericytes, or 
perivascular stem cells, are sourced from the vasculature, inclusive of adipose tissue10–12. Thus, they are able to 

1Institution for Integrative Medical Biology, Umeå University, SE901 87, Umeå, Sweden. 2Centre for Cell Engineering, 
Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary & Life Sciences, Joseph Black Building, 
University of Glasgow, Glasgow, G12 8QQ, UK. 3Scottish Polyomics Facility, Wolfson Wohl Cancer Research Centre, 
College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK. 
4Centre for Regenerative Medicine and Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, 
EH16 4UU, UK. 5Orthopaedic Surgery Dept and Broad Stem Cell Research Center, University of California, Los 
Angeles, USA. 6Advanced Science Research Center (ASRC), University of New York, New York, NY, 10031, USA. 
Correspondence and requests for materials should be addressed to E.V.A. (email: Enateri.Alakpa@umu.se)

Received: 28 April 2017

Accepted: 26 June 2017

Published online: 31 July 2017

OPEN

mailto:Enateri.Alakpa@umu.se


www.nature.com/scientificreports/

2SCIEntIFIC REPORts | 7: 6895 | DOI:10.1038/s41598-017-07255-z

meet the much needed demand of a highly abundant multipotent cell type and are well placed for use in cartilage 
tissue engineering.

Tuning of material mechanical properties (stiffness) is an effective means of targeting a range of MSC fates, 
inclusive of chondrogenesis13–15. Supramolecular gels have shown enormous potential as model biomaterials to 
meet this particular challenge16–19. There have been major successes in the application of self-assembled peptide 
based materials as instructive matrices for stem cell growth, where the emphasis has been on the inclusion of 
biochemical signals, usually comprising matrix protein specific peptidic motifs18. There has also been focus on 
chemical approaches to control gel stiffness, either via redesign of building blocks or chemical crosslinking20. A 
number of breakthroughs have shown that stem cells’ growth and differentiation, in addition to biochemical sig-
nals, are highly sensitive to physical stimuli presented by their immediate environment21, 22. Specifically, mechan-
ical21 (i.e. gel stiffness) and structural/topographical factors23 of the cell-contacting matrix play crucial roles that 
have, in some cases, been shown to be more powerful than soluble biochemical signals24.

Previously, we had shown that pericytes cultured in supramolecular peptide hydrogels were able to undergo 
differentiation into a number of cell lineages when the hydrogels were tuned to various stiffnesses25. In this study, 
an interesting find was the differentiation of pericytes along the chondrogenic lineage when cells were cultured in 
13 kPa hydrogel, contrary to the previously observed myogenic development in other biomaterials with similar 
stiffnesses24, 26. The distinction of which can be explained by the use of a nanofiber structured hydrogel which the 
cells interact differently with compared to crosslinked materials25.

As this was an unusual observation for cellular differentiation in mechanically tuned substrates, where cell 
behaviour is contradictory to the norm, this study aimed to ascertain the properties of chondrocytes that develop 
in the Fmoc-F2/S hydrogels. We do this by further investigating the chondrogenic induction of pericytes, if 
Fmoc-F2/S hydrogels are able to sustain development in the longer term and whether the effective cellular devel-
opment can be enhanced with the aid of chondrogenic induction media.

Results
Fmoc-F2/S hydrogels act as biomaterial substrate to promote chondrogenesis of pericytes.  
We recently reported on the use of co-assembled hydrogels of the well-known gelator fluorenylmethoxycar-
bonyl (Fmoc)-diphenylalanine (F2)27, 28 and surfactant-like Fmoc-serine (Fmoc-S) to produce cyto-compat-
ible core/shell nanofibers that may be crosslinked upon exposure to cell culture media, resulting in gelation 
(Fig. 1A and B)29. The mechanical properties of the Fmoc-F2/S hydrogels were tuned by careful control of the 
peptide concentration in the pre-gel liquid before initiating cross linking with introduction to culture media, 
allowing gelation to occur as published previously25. The supramolecular hydrogels were therefore created using 

Figure 1. Self-assembly of two-component gelators. (A) Schematic presentations of the building blocks, gelator 
Fmoc-F2, surfactant Fmoc-S and surfactant coated nano fiber Fmoc-F2/S. (B) Macroscopic image for gel in 
culture media. (C) TEM image of hydrogel showing fibrous morphology. (D) Oscillatory rheology of the gels 
showing elastic moduli of 15.5 kPa.
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peptide concentrations that allow the formation of gels with moduli similar to that reported for chondrons30, 31. 
Oscillatory rheology of the hydrogel shows that the gels possess elastic moduli of 15.5 kPa (Fig. 1D). The G′, elas-
tic modulus, exceeds the viscous modulus G″, signifying that the hydrogel is an elastic material. The nanoscale 
features and hydrophilic chemistry presented by Fmoc-S on the surface allows nanoscale hydrogel fibres to adsorb 
proteins which enable indirect contact with cell surface receptors facilitating the cell-material interaction needed 
to interpret biomaterial qualities (Fig. 1C).

Promotion of chondrogenic development in vitro generally requires that cells are cultured within a three 
dimensional construct in order to maintain a typical rounded morphology and eliminating the dedifferentiation 
effects of monolayer culture32–34. The formation of aggregates in culture is of particular advantage as it has been 
shown to promote chondrogenic development in stem cells35, 36. Pericytes cultured within the 15.5 kPa Fmoc-F2/S 
hydrogels were observed to have good viability with cells forming small clusters (aggregates) over time (Fig. 2A). 
Pericyte differentiation was assessed by monitoring gene expression levels of RUNX-2, SOX-9 and type II collagen 
after 1 week which showed increased expression levels of all three genes compared to the negative control with 
SOX-9 and type II collagen in particular showing a statistically significant increase (Fig. 2B).

Cells were then cultured over a longer term (5 weeks) within the Fmoc-F2/S substrate and were subsequently 
immunofluorescently stained for type II collagen and aggrecan production. Confocal microscopy imaging 
demonstrated the presence of both proteins indicating successful differentiation of the pericytes into chondro-
cytes (Fig. 2C and D).

Fmoc-F2/S hydrogel promotes lessens formation of type X collagen while balancing aggrecan 
and type II collagen ratios. Phenotypic characteristics of differentiated pericytes were monitored by focus-
ing on the relative expression levels of type II collagen, aggrecan and type X collagen after long-term culture (35 
days). Comparisons were carried out using pericytes cultured in the 15.5 kPa Fmoc-F2/S gels in the presence (+) 
and absence (−) of chondrogenic induction medium. In addition, pericytes were also cultured in alginate hydro-
gels with chondrogenic induction medium in order to make a comparison with a conventionally used hydrogel 
system for chondrogenesis that is also used in MACI37–41. It is noteworthy to mention that many studies which 
use alginate for chondrogenesis of MSCs, culture the cells using low serum (1% FBS) concentrations. As chon-
drogenesis was originally observed in Fmoc-F2/S substrates using standard basal media composition (10% FBS), 
this study retains the conditions in which the original observation was made for both alginate and Fmoc-F2/S.

Figure 2. (A) Human adipose derived pericyte cultured within Fmoc-F2/S hydrogels. Cells were encapsulated 
in F2/S hydrogels and maintained in unsupplemented basal media for up to 1 week. Cells were checked for 
viability by fluorescence detection of Syto 10 (green) for live cells and ethidium homodimer-1 (red) for 
dead cells after 1, 3 and 7 days. (B) QRT-PCR analysis for gene expression of pericyte cells cultured within 
15.5 kPa Fmoc-F2/S hydrogels. Cells were assessed for the production of chondrogenic biomarkers RUNX-
2, SOX-9 & type II collagen (COL2A1) after one week in culture. (C & D) Confocal microscopy images of 
immunofluorescently stained F2/S hydrogels cultured with pericytes for 28 days. Pericytes were checked for 
chondrogenic development by staining for aggrecan production (C) and type II collagen (D) both ascertained 
through green fluorescence. Cell populations are indicated by staining the cell nucleus with DAPI (blue). The 
images are mosaics of a 3 × 3 tile scan, each acquired from random positions of the hydrogel. Scale bar in A 
is 100 µm, in C & D is 50 µm. In B, Error bars denote the standard error where p < 0.05 as calculated using 
unpaired student t-test.
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Gene expression profiles of pericytes showed an increase in all cartilage biomarkers over 1 week after which 
trends held steady up to 35 days indicating differentiation of pericytes. Marker expression levels from pericytes 
in both Fmoc-F2/S+ and Fmoc-F2/S− hydrogels were distinctly higher than those in alginate. The Fmoc-F2/S+ 
showed the highest production of SOX-9, type II collagen and type X collagen respectively (Fig. 3). Assessment of 
collagen and glycosaminoglycan production relative to each other showed that the outcome of this was dependent 
on which culture system was used. Type II collagen production was highest in Fmoc-F2/S+, having on average 2.6 
fold higher concentrations compared to aggrecan (Fig. 4A). Aggrecan content was largest when alginate was used 
(Fig. 4A). Pericytes cultured in Fmoc-F2/S− hydrogels exhibited an overall balance between type II collagen and 
aggrecan expression (0.89x, Fig. 4A).

Over expression of type X collagen compared to type II is known to be prevalent in most in vitro systems that 
differentiate stem cells into chondrocytes. This phenomenon is thought to be due to the culture system having an 
over exposure to transforming growth factor β1 (TGF-β1)3, 6 and also because of the use of ascorbic acid42–44, both 
of which are typically used in formulating chondrogenic induction medium. While Fmoc-F2/S+ and alginate 
produced the collagen II/collagen X ratio with greater collagen X weighting; it was seen, however, that F2/S−, 
which is absent of the tailored medium, produced the desired ratio with greater collagen II weighting (Fig. 4B), 
highlighting the influence of the supplemented medium on resultant cellular differentiation.

Chondrocyte metabolome highlights pathways that are causal of phenotypic differences.  
Metabolomics data were generated using high-resolution LC-MS analysis of denatured cell extracts of pericytes 
cultured in the Fmoc-F2/S+/− hydrogel systems. Comparisons between these two systems allowed identification 
of cell processes that are affected by the presence of induction medium and which subsequently lead to differences 
in phenotypic expression. A generalised overview of the metabolome using hierarchical cluster analysis showed 
that, on the whole, the metabolite profiles of Fmoc-F2/S+/− systems, although distinct from the undifferentiated 
control set, were similar to each other with slightly higher metabolite abundances detected on the Fmoc-F2/S+ 
substrate (Fig. 5A). Detected metabolite masses were mapped to known pathways to ascertain which areas of 

Figure 3. Quantitative PCR analysis assessing chondrocyte development of pericytes encapsulated in Fmoc-
F2/S hydrogels with (+), without (−) chondrogenic induction and in alginate hydrogels (ALG) also cultured 
with chondrogenic induction media. Cells were assessed for gene expression of the cartilage biomarkers SOX-9 
(A), type II collagen (B), aggrecan (C) and type X collagen (D) up to 35 days in culture. Expression levels of 
all four biomarker were observed as elevated for all culture systems with the highest expression levels noted 
for pericytes cultured in Fmoc-F2/S hydrogels. Gene expression was compared against pericytes cultured on 
glass cover slips (undifferentiated on planar substrate) as a negative control. Error bars are standard error of 
the mean; * indicate significant difference between groups as determined by one-way ANOVA followed by 
Bonferroni post hoc test where p < 0.05; n = 4.



www.nature.com/scientificreports/

5SCIEntIFIC REPORts | 7: 6895 | DOI:10.1038/s41598-017-07255-z

metabolism were most differentiated from the control set. The pathways showing the most significant change 
were those involved in amino acid metabolism and energy generating processes such as the TCA cycle (Fig. 5B). 
Of these, the most changed significantly were metabolites involved in arginine and proline metabolism. A path-
way which contributed to the development of collagen and the synthesis of polyamines. Polyamines are known to 
play an important role in proliferation and differentiation45, 46, and in particular, development of chondrocytes47.

Closer inspection between Fmoc-F2/S+ and Fmoc-F2/S− reveal pockets of distinction between the two. These 
potentially highlight metabolic processes that ultimately result in the phenotypic differences observed in Fig. 4.
Sample sets were compared against each other and a nominal threshold of 2 was set to isolate metabolites consid-
ered as distinct from one another. From the total population (734), 23.4% of these were considered to be of inter-
est. When mapped to metabolic processes, the pathways that had the greatest number of hits and therefore most 
contrasting turnover were centred mainly in amino acid metabolism. Observed differences between Fmoc-F2/
S− and Fmoc-F2/S+ therefore indicate differences in the protein make up between both systems. Pathways such 
as tyrosine metabolism and arginine & proline metabolism, however, showed no significant change between both 
systems suggesting that they are requisite for chondrocyte development but do not necessarily play a role in the 
observed shifts in phenotype between Fmoc-F2/S− and Fmoc−F2/S+ (Fig. 5C).

Significantly changed pathways involved in energy generation, such as the TCA cycle, although different from 
undifferentiated cells showed no discernible difference between Fmoc-F2/S- and Fmoc-F2/S+ as cells in both 
substrates are considered to be similarly active.

Discussion
The use of the biomaterial alone not only instigates pericytes to undergo chondrogenesis but the cells are also able 
to sustain continual development as observed through the constant production of the chondrogenic markers over 
a longer time in culture. The use of induction medium with the hydrogels causes a phenotypical imbalance, most 
notably with the production of collagen. No difference between the two systems (with and without induction 
media) are noted with regards to aggrecan production, suggesting that induction medium is better tailored to 
collagen development.

The type of collagen formed, however, is affected by the induction media as generally higher type X colla-
gen content is observed in these systems over type II collagen. This correlates with the gene expression profiles 
observed in Fig. 2 where initial chondrogenesis of pericytes is assessed. In the absence of the induction media, 
RUNX-2 expression levels is lowered compared to SOX-9. Subsequently, formation of type X collagen, which is 
pre-empted by RUNX-2, is lowered and we observe higher type II collagen content. Relative levels of the gene 
markers in alginate were significantly lower than the Fmoc-F2/S hydrogels which may be due to the difference 
in the cell type used, as opposed to MSCs for example, as well as the deviation from the typical use of low serum 
concentrations. Notwithstanding, comparative production of chondrogenic markers in alginate show that the 
use of induction media for differentiation also gives a higher proportion of type X collagen formation over type 
II collagen. Levels that are comparable with Fmoc-F2/S+ (Fig. 4B). Typically observed in vitro, type X collagen 
imbalance suggests greater population of hypertrophic chondrocytes5, 6, 48, thought to occur due to the initiation 
of some osteogenic activity3, 6. The detection of type X collagen in the Fmoc-F2/S- system however, indicates that 
its production is not completely eliminated but significantly reduced when chemical induction is avoided.

The interplay between collagen and glycosaminoglycan content is noteworthy as the distribution of one rel-
ative to the other in native cartilage plays an important role in the functional output of the tissue as a whole. The 
zonal structure of native hyaline cartilage, shows increased abundance in glycosaminoglycan content moving 

Figure 4. Comparison of chondrocyte expression of pericyte cells differentiated over a 5 week period using 15.5 
kPa Fmoc-F2/S hydrogels in the presence (+) and absence (−) of chondrogenic induction media. Cells were also 
differentiated using alginate hydrogels and chondrogenic induction media. (A) Expression of type II collagen 
relative to aggrecan showed higher type II collagen transcription for cells cultured in Fmoc-F2/S + hydrogels. 
(B) Expression of type II collagen relative to type X collagen. Gene expression was compared against pericytes 
cultured on glass cover slips (undifferentiated on planar substrate) as a negative control. Error bars are standard 
error of the mean; * indicate significant difference between groups as determined by one-way ANOVA followed 
by Bonferroni post hoc test where p < 0.05; n = 4.
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from the articular surface through the superficial, mid and deep zones where there is the greatest resistance to 
compressive loading8, 49, 50. Therefore, in order to impart better functionality when healing damaged cartilage 
tissue, the implication of balancing the abundance of type II collagen and aggrecan when developing cartilage 
tissue in vitro through mechanical and chemical substrate design is of particular importance, as it should best 

Figure 5. Analysis of metabolite masses detected from pericyte cell extracts undergoing chondrogenesis 
(n ≥ 12). (A) Hierarchical cluster analysis of metabolic MS masses detected using LC-MS for pericytes cultured 
on planar substrates (undifferentiated) and cultured in Fmoc-F2/S in the presence or absence of chondrogenic 
induction media 35 days. (B) Metabolites were mapped to metabolic pathways to ascertain which cell processes 
are significantly changed from the control. (C) Comparisons between Fmoc-F2/S− and Fmoc-F2/S+ isolate 
metabolite masses that differ between the two by more than two fold (inset) giving insight into processes that 
lead to the altered chondrocyte phenotype between Fmoc-F2/S− and Fmoc-F2/S+ Pathways marked with Ɨ were 
observed to be significantly different from undifferentiated cells but not between Fmoc-F2/S− and Fmoc-F2/S+ 
suggesting influence during chondrogenesis but do not contribute to the observed differences in chondrocyte 
phenotype.
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match the required structure of the lost tissue. The balance achieved with using Fmoc-F2/S− (Fig. 4A) allows for 
potential formation of a tissue type that is not overly inflexible due to higher collagen content than is observed 
when including induction medium.

While the findings from the metabolomics study are preliminary, they demonstrate correlation of cell behav-
iour with their microenvironment and a means of acutely discriminating between potential sub-phenotypes of 
a particular cell type. That is, distinguishing between finer details that cannot be simply reflected in ‘positive’ 
detection of specific markers. This however requires further experimental design and implementation beyond 
the scope of this study.

Methods
Formation of the Fmoc hydrogels. Pre gelation mixture was prepared by mixing diphenylalanine (F2) 
and serine (S) powders (both capped at the N-terminal with fluorenylmethoxycarbonyl (Fmoc)) in 14 mL glass 
vials and suspending the powders to a 30 mM peptide concentration in sterile/distilled H2O. 0.5 M NaOH was 
added dropwise until the powders were fully dissolved. The vial was mixed with alternated vortexing and son-
ication and then 0.5 M HCl was added until the desired pH was reached (7.5–8.0). Prior to use, Fmoc-F2/S pre 
gelation mixtures were sterilized under UV light for 45 min.

Alginate solution. A 1.2% (w/v) alginate solution was made by dissolving 0.360 g of alginate powder (Sigma) 
slowly in 30 ml of phosphate buffered saline containing a magnetic stirrer. The solution was then autoclaved at 
120 °C for 20 minutes.

Rheology. To assess the mechanical properties of the hydrogels, dynamic frequency sweep experiments were 
carried out on a strain-controlled rheometer (Kinexus rotational rheometer from Malvern) using a parallel-plate 
geometry (20 mm) with a 0.50 mm gap. An integrated temperature controller was used to maintain the tempera-
ture of the sample stage at 25 °C. Precautions were taken to minimize solvent evaporation and to keep the sample 
hydrated: a solvent trap was used and the atmosphere within was kept saturated. To ensure the measurements 
were made in the linear viscoelastic regime, an amplitude sweep was performed and the results showed no varia-
tion in elastic modulus (G′) and viscous modulus (G″) up to a strain of 1%. The dynamic modulus of the hydrogel 
was measured as a frequency function, where the frequency sweeps were carried out between 1 and 100 Hz. The 
measurements were repeated at least three times to ensure reproducibility.

Transmission electron microscopy (TEM). Carbon-coated copper grids (No. 400) were glow discharged 
for 5 s and placed shiny side down on the surface of the hydrogel for less than 5 s. Excess sample was removed 
by blotting with a filter paper and then 10 mL of negative stain (Nanovan: 1% aqueous methylamine vanadate, 
obtained from Nanoprobes) was placed on the top of the sample on the grid and allowed to dry for 10 mins. The 
dried specimens were then imaged using a LEO 912 energy filtering transmission electron microscope operating 
at 120 kV fitted with a 14 bit/2 K Proscan CCD camera. Fiber diameters were measured using ImageJ software 
version v1.43 u.

Pericyte isolation. Adipose tissue was collected with prior informed and written consent from healthy adult 
volunteers (n = 3) undergoing cosmetic lipectomy procedures. Permission for tissue collection and subsequent 
experimental protocols were granted and carried out in accordance with stated guidelines by the South East 
Scotland Research Ethics Committees (SESREC 10/S1103/45) in Edinburgh.

Pericytes were isolated from adipose tissue from adult donors undergoing cosmetic liposuction by Flow 
Activated Cell Sorting (FACS) using a FACS Aria II (BD Biosciences) based on our established protocols10 and is 
summarised below.

Adipose tissue was enzymatically digested with type II collagenase (1 mg/ml, Sigma-Aldrich) for 30 mins 
in a shaking waterbath at 37 °C to obtain the Stromal Vascular Fraction (SVF). SVF was then stained with the 

Gene

RUNX-2
Forward 5′-GGT CAG ATG CAG GCG GCC-3′

Reverse 5′-TAC GTG TGG TAG CGC GTC-3′

SOX-9
Forward 5′-AGA CAG CCC CCT ATC GAC TT-3′

Reverse 5′-CGG CAG GTA CTG GTC AAA CT-3′

Aggrecan (ACAN)
Forward 5′-TAC ACT GGC GAG CAC TGT AAC-3′

Reverse 5′-CAG TGG CCC TGG TAC TTG TT-3′

Collagen type II (COL2A1)
Forward 5′-GTG AAC CTG GTG TCT CTG GTC-3′

Reverse 5′-TTT CCA GGT TTT CCA GCT TC-3′

Collagen type X (COL10A1)
Forward 5′-CAC CTT CTG CAC TGC TCA TC-3′

Reverse 5′-GGC AGC ATA TTC TCA GAT GGA-3′

GAPDH
Forward 5′-ACC CAG AAG ACT GTG GAT GG-3′

Reverse 5′-TTC TAG ACG GCA GGT CAG GT-3′

Table 1. Real time PCR primers used to quantify mRNA expression from human genes.
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following antibodies; CD146-Alexa647 (1:100, AbD Serotec, Raleigh, NC), CD45 APC-cy7, CD31-FITC, and 
CD34-PE (1:100, all from BD Biosciences, San Jose, CA). Pericytes were sorted to homogeneity based on the fol-
lowing phenotype CD146+, CD45−, CD34− and CD31−. Immediately following FACS, pericytes were seeded 
onto 0.1% gelatin coated wells at a density of 20,000 cells/cm2 in EGM-2 media (Lonza) in a humidified incubator 
with 5% CO2 at 37 °C. When confluent, cells were detached from the cultureware using 0.25% trypsin and split 
at a ratio of 1:6 and cultured in DMEM + 20% FCS for all subsequent passages. Media was changed 3 times per 
week. Purity of pericyte cultures was confirmed by flow cytometry (Supplementary data, Figure S1).

Cell Culture and Reagents. Pericytes were tripsinised from the culture well flasks, pelleted by centrifuga-
tion and resuspended in either the Fmoc-F2/S or the alginate solution.

Cell laden alginate beads were made by pipetting 300 µL of the alginate solution into a 100 mM calcium chlo-
ride solution. They were allowed to cure at room temperature for 5 minutes before removing the calcium chloride 
solution. Hydrogels were then washed twice with PBS solution and 500 μl of culture media added to each well.

300 µL of the Fmoc-F2/S cells suspension was dispensed into 24 well culture plates containing 500 μl of culture 
media. Culture plates were incubated under humidified atmosphere of 5% CO2 at 37 °C for approximately 1 hr to 
allow the Fmoc-F2/S hydrogels to fully cure. Following this, the media in both the peptide and alginate hydrogels 
were changed every 24 hours in the first two days of preparation and every twice weekly after that.

Chondrogenic differentiation in one subset of the Fmoc-F2/S and in alginate was induced using DMEM con-
taining 10% FBS, insulin (6.25 μg/ml), dexamethasone (10 nM), ascorbate-2-phosphate (50 nM), transforming 
growth factor (TGF-β1, 10 ng/ml) and sodium pyruvate (110 μg/ml).

Cell viability. Culture media surrounding the biomaterials were aspirated to waste and washed once with 
warm PBS solution. A working solution containing both Syto 10 and ethidium homodimer-2 dyes was made in 
PBS (1:500 v/v). 500 µL of the dye solution was added to the hydrogels and the samples incubated in the dark at 
room temperature for 15 minutes.

Following this, the hydrogels were then fixed at room temperature with 4% formaldehyde solution for at least 
15 minutes before viewing under a microscope.

Immunofluorescence cell staining. After 28 days in culture (unless otherwise stated), the cells were 
washed once in PBS and fixed with 10% formaldehyde at 37 °C for 15 min. When fixed, the samples were perme-
abilised using a buffer solution (10.3 g sucrose, 0.292 g NaCl, 0.06 g MgCl2, 0.476 g Hepes buffer, 0.5 ml Triton X, 
in 100 ml water, pH 7.2) at 4 °C for 5 min. The samples were then incubated at 37 °C for 5 min in 1% BSA/PBS, 
followed by the addition of the primary antibody (1:50 in 1% BSA/PBS, monoclonal anti-human collagen type 
II and aggrecan raised in mouse (IgG1), Santa Cruz Biotechnology Inc) for 1 h (37 °C). The samples were then 
washed in 0.5% Tween 20/PBS (5 min, ×3). A secondary, biotin-conjugated antibody (1:50 in 1% BSA/PBS, mon-
oclonal anti-mouse (IgG), Vector Laboratories, Peterborough, UK) was added for 1 h (37 °C) followed by washing. 
A FITC conjugated streptavidin third layer was added (1:50 in 1% BSA/ PBS, Vector Laboratories, Peterborough, 
UK) at 4 °C for 30 min, and given a final wash.

QRT-PCR analysis. RNA extractions from cells cultured on hydrogel biomaterials were done using the Trizol 
extraction reagent (Invitrogen). Cells cultured for on culture well plastic had RNA retrieved using RNeasy micro 
kit (Qiagen), both protocols were carried out as per manufacturer’s instructions. Reverse transcription to obtain 
cDNA was done using Quantitech reverse transcription kit (Qiagen) for all samples, also according to the man-
ufacturer’s protocol. Cells were cultured and harvested at time points 1hr, 1, 3, 7, 14, 28 and 35 days in culture.

Amplification by qRT-PCR was done using human specific primers (Eurofins MWG Operon) detailed in 
Table 1. PCR was carried out using a 7500 Real time PCR system & software (Applied Biosystems). Samples had 
a total reaction volume of 20 µL containing 2 µL of diluted cDNA, each reverse and forward primer at a final 
concentration of 100 µM and analysed using SYBR green chemistry (Qiagen). For PCR amplification samples 
were held at 50 °C for 2 minutes then 95 °C for 10 min then amplified using 95 °C for 15 s and 60 °C for 1 min for 
40 cycles. The specificity of the PCR amplification was checked with a heat dissociation curve (measured between 
60–95 °C) done subsequent to the final PCR cycle. Gene expression levels were standardised using GAPDH as an 
internal control. Quantification analysis was performed using the comparative ΔΔCt method51 and gene expres-
sion expressed as fold change relative to the control sample.

Samples were assayed in quadruplicate and gene expression was expressed as mean ± SEM.

Metabolomic analysis. Metabolite extraction from cells cultured on hydrogels and control samples for 
1 week was done using ice cold chloroform:methanol:water (1:3:1,v/v) on a shaker for 1 h maintained at 4 °C. 
Samples were centrifuged and 10 μL of the supernatant injected on to the LC-MS system.

The LC separation was carried out using hydrophilic interaction chromatography with a ZIC-HILIC 150 
mm × 4.6 mm, 5 μm column (Merck Sequant), operated by an UltiMate liquid chromatography system (Dionex, 
Camberley, Surrey). The LC mobile phase was run with 0.1% formic acid in water (A) and 0.08% formic acid 
in acetonitrile (B). The mobile phase was run at a linear gradient for 30 minutes from 20–80% A, maintained at 
5% A for 10 minutes and then re-equilibrated to 20% A. Mass spectrometric detection was performed using an 
Orbitrap Exactive (Thermo Fisher Scientific, Hemel Hempstead, U.K.) within the mass range m/z 70–1400 in 
polarity switching mode.

Chromatographic peak selection and metabolite identification were done using Ideom/MzMatch excel inter-
face52, 53 and measured peak intensities by LC-MS were normalised against protein content as measured using 
the Bradford assay as detailed previously54. Metabolite identification was done using a set of known standards to 
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define mass and chromatographic retention times. Putative metabolites were also identified on this basis using 
predicted retention times as described by Creek et al.55.

Statistical Analysis. Analysis of variance (ANOVA) and Bonferroni post hoc tests were performed using 
GraphPad prism software to compare more than two study groups. Statistical significance is noted where the 
calculated p value is less than 0.05 using four biological replicates unless otherwise stated.

Multivariate analysis of the LC-MS data and metabolite pathway mapping were done using Metaboanalyst 
2.056.

Data availability. Raw data generated from this study is available from http://dx.doi.org/10.5525/gla.
researchdata.344.
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