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In this study, we investigated the effects of Apoptin-induced endoplasmic reticulum (ER)
stress on lipid metabolism, migration and invasion of HepG-2 cells, and preliminarily
explored the relationship between endoplasmic reticulum stress, lipid metabolism,
migration, and invasion. The effects of Apoptin on ER function and structure in HepG-2
cells were determined by flow cytometry, fluorescence staining and western blotting by
assessing the expression levels of ER stress related proteins. The effects of Apoptin on
HepG-2 cells’ lipid metabolism were determined by western blot analysis of the
expression levels of triglyceride, cholesterol, and lipid metabolism related enzymes. The
effects of Apoptin on HepG-2 cells’ migration and invasion were studied using migration
and invasion assays and by Western-blot analysis of the expression of proteins involved in
migration and invasion. The in vivo effects of endoplasmic reticulum stress on lipid
metabolism, migration and invasion of HepG-2 cells were also investigated by
immunohistochemistry analysis of tumor tissues from HepG2 cells xenografted nude
mice models. Both in vitro and in vivo experiments showed that Apoptin can cause a
strong and lasting ER stress response, damage ER functional structure, significantly
change the expression levels of lipid metabolism related enzymes and reduce the
migration and invasion abilities of HepG-2 cells. Apoptin can also affect HepG-2 cells’
lipid metabolism through endoplasmic reticulum stress and the abnormal expression of
enzymes closely related to tumor migration and invasion. These results also showed that
lipid metabolismmay be one of the main inducements that reduce HepG-2 cells’migration
and invasion abilities.
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INTRODUCTION

Apoptin is derived from chicken anemia virus (1), which has two
nuclear localization signals. These signals can help Apoptin to
specifically enter tumor cells’ nuclei and interact with the APC1
subunit of APC/C (2, 3), causing a C2/M cell cycle arrest and
tumor cell apoptosis (4, 5). Apoptin can also interact with the
nuclear orphan receptor Nur77 to transfer the apoptotic signal
from nucleus to mitochondria (6, 7), which induces the release of
cytochrome c that activates Caspase-3, resulting in tumor cell
apoptosis (8). At present, no relevant literature has reported the
effect of Apoptin on the functional structure of the endoplasmic
reticulum. In our previous studies, we found that Apoptin can
affect this functional structure by causing a strong and lasting
endoplasmic reticulum stress response.

The endoplasmic reticulum (ER) is the main site of protein,
lipid and carbohydrate synthesis. It is essential for the
maintenance of intracellular homeostasis and imbalance of the
endoplasmic reticulum homeostasis can seriously affect its
function (9). ER stress related proteins mainly include Protein
Kinase like Endoplasmic Reticulum Kinase (PERK), Calnexin,
Endoplasmic Reticulum Oxidoreduclin 1-La (Ero1-La), Protein
Disulfide Isomerase (PDI), Inositol-Requiring Enzyme1a
(IREa), and Immunoglobulin Heavy Chain Binding Protein
(Bip). The main function of these proteins is to reduce the
endoplasmic reticulum load and proteins unfolding and
misfolding (10). Therefore, it is of great significance to study
the effect of Apoptin on the expression of ER and ER stress
related proteins to explore the regulatory function of
ER metabolism.

ER functional structure damage can significantly affect
protein, lipid and carbohydrate synthesis, resulting in serious
impacts on tumor cells’ proliferation and metastasis. As one of
the main components of the tumor cell membrane, lipids are
closely related to the migration and invasion of tumor cells (11).
However, the mechanism by which lipid metabolism affects
tumor cell migration and invasion is unclear. The most
important enzymes in lipid metabolism, such as Acetyl-CoA
Carboxylase (ACC), Fatty Acid Synthase (FASN), ATP Citrate
Lyase (ACLY), Phospholipase D1 (PLD1), Stearoyl-CoA
Desaturases 1 (SCD1), are closely related to cancer metastasis
(11). Meanwhile, there are no reports about the effects Apoptin-
induced ER stress injury on lipid metabolism, migration and
invasion of HepG-2 cells. Therefore, it is also important to study
the relationship between lipid metabolism and migration
and invasion.

In this study, we show that Apoptin can cause a strong and
lasting ER stress response that damages ER functional structure,
and significantly affects the lipid metabolism level and the
migration and invasion abilities of HepG-2 cells. For this, we
used methods that assessed changes in endoplasmic reticulum,
lipid metabolism, migration, and invasion, using an
immunohistochemistry approach of tissue from tumor-bearing
nude mouse model.
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MATERIALS AND METHODS

Materials
The human liver cancer cell line HepG-2 was purchased from the
Cell Bank of the Chinese Academy of Sciences (Shanghai,
China). We used a recombinant type 5 adenovirus Ad5-CMV-
Apoptin (Ad-Vp3) that contained a CMV promoter and the
chicken anemia virus Apoptin gene. The recombinant type 5
adenovirus Ad5-CMV (Ad-Mock) without Apoptin gene was
used as a blank control. Ad-Vp3 and Ad-Mock were previously
constructed in our laboratory.

Six-week-old male BALB/c nude mice were purchased from
the Experimental Animal Center of The Academy of Military
Medical Sciences of China. The animal experimental protocols
were approved by the Institutional Animal Care and Use
Committee (IACUC) of the Chinese Academy of Military
Medical Science, Changchun, China (10ZDGG007). All
surgeries were performed under sodium pentobarbital
anesthesia and all efforts were made to minimize suffering.

The Cell Counting Kit-8 (No.CD04) was purchased from
DOjinDO (Shanghai, China). The human LDH ELISA Kit
(No.69-98628), human Reactive Oxygen Species (ROS) ELISA
Kit (No.69-99364), human TC ELISA Kit (No.69-52377), and
human TG ELISA Kit (No.69-99502) were purchased from MSK
(Wuhan, China). Hoechst 33342 (No.H1399), JC-1 (No.T3168),
ER-Tracker™ Green (No.E34251) were purchased from
ThermoFisher Scientific (Shanghai, China). The FITC Annexin
V Apoptosis Detection Kit I (No.556547) was purchased from
BD Biosciences (Beijing, China). The Minute™ Total Protein
Extraction Kit (No.SD-001/SN-002) was purchased from invent.
The ER Stress Antibody Sampler Kit (No.9956), Fatty Acid and
Lipid Metabolism Antibody Sampler Kit (No.8335), SCD1
(C12H5) Antibody (No.2794), PLD1 Antibody (No.3832),
Phospho-PLD1 (Thr147) Antibody (No.3831), Girdin
Antibody (No.14200S), Palladin (D9H2) Rabbit mAb
(No.8518S), E-Cadherin (24E10) Rabbit mAb (No.3195S), N-
Cadherin (D4R1H) XP® Rabbit mAb (No.13116S), Vimentin
(D21H3) XP® Rabbit mAb (No.5741S) were purchased from
CST. The Transwell® Permeable Supports 6.5 mm Insert, 24
Well Plate 8.0 mm Polycarbonate Membrane (No.3422), BioCoat
Corning® Matrigel® Invasion Chamber 24-well plate 8.0 Micro
(No.354480) and Matrigel® Matrix Basement Membrane
(No:356234) were purchased from CORNING. The 25
Culture-Inserts 2 well for self-insertion (No.80209) was
purchased from ibidi.

Methods
Cell Viability Analysis
The HepG-2 human hepatoma cells were seeded at 5 × 103 cells
per well in a 96-well plate and incubated for 24h at 37°C with 5%
CO2. HepG-2 cells were infected with Ad-Vp3 at 10 multiplicity
of infection (MOI), 50 MOI and 100MOI. Along with Ad-Mock-
infected control wells, the infected cells were cultured at 37°C
with 5% CO2 for 24, 48, and 72 h. Cell viability was measured by
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the Cell Counting Kit-8 and Human LDH ELISA Kit, following
the manufacturer’s instructions. Ad-Mock-infected cells and
HepG-2 cells were used as negative controls.

Hoechst Staining
HepG-2 cells were seeded at 6 × 105 cells/well into a 6-well plate,
cultured at 37°C with 5% CO2 for 24 h and infected with Ad-Vp3
at 10 MOI, 50 MOI, and 100 MOI for 24, 48, and 72 h. The
infected cells were stained with 1,000-fold dilutions of Hoechst
and incubated at 37°C away from light for 5 min and then the
karyomorphism of infected cells were observed through a
fluorescence microscope. Ad-Mock-infected cells and HepG-2
cells were used as negative controls. The results of cell viability
analysis and Hoechst staining were determined based on cells’
infection with Ad-Vp3 as 50 MOI.

Annexin V Analysis
HepG-2 cells were seeded at 6 × 105 cells per well in a 6-well plate
and incubated for 24h at 37°C with 5% CO2. The cells were then
infected with 50 MOI Ad-Vp3 for 24, 48, and 72 h. The Ad-Vp3-
infected HepG-2 cells were incubated in the dark for 15 min at
room temperature in the presence of 5 ml Annexin V-FITC and
5ml PI in 100 ml of 1 × binding buffer, and then the apoptosis of
HepG-2 cells was analyzed by a fluorescence microscope and
flow cytometry. Ad-Mock -infected cells and HepG-2 cells were
used as negative controls.

ROS Levels Elisa Analysis
HepG-2 cells were seeded at 6 × 106 cells per well in a 6-well plate
and incubated for 24 h at 37°C with 5% CO2. The cells were then
infected with 50 MOI Ad-Vp3 for 24, 48 and 72 h. The ROS
levels of Ad-Vp3-infected HepG-2 cells were detected by a
human ROS ELISA Kit and following the manufacturer’s
instructions. Ad-Mock -infected cells and HepG-2 cells were
used as negative controls.

Mitochondrial Membrane Potential Analysis
HepG-2 cells were seeded at 6 × 105 cells/well into a 6-well plate,
cultured for 24 h at 37°C with 5% CO2 and infected with Ad-Vp3
at 50 MOI for 12, 24, 36, 48, and 72 h. The infected cells were
incubated in the dark for 20 min at 37°C in the presence of 1 mL
JC-1 in 1 ml of DMEM, and then the mitochondrial membrane
potential of HepG-2 cells was analyzed by a fluorescence
microscope and flow cytometry, following the manufacturer’s
instructions. Ad-Mock-infected cells and HepG-2 cells were used
as negative controls.

Endoplasmic Reticulum Flow Cytometry and
Fluorescence Staining Analysis
HepG-2 cells were seeded at 6 × 105 cells/well into a 6-well plate,
cultured for 24 h at 37°C with 5% CO2 and infected with Ad-Vp3 at
50 MOI for 12, 24, 36, 48, and 72 h. The infected cells were
incubated in the dark for 30 min at 37°C, in the presence of 4 mM
ER-Tracker™ Green, and then the Endoplasmic reticulum of
HepG-2 cells was analyzed by a fluorescence microscope and flow
Frontiers in Oncology | www.frontiersin.org 3
cytometry, following the manufacturer’s instructions. Ad-Mock-
infected cells and HepG-2 cells were used as negative controls.

Western Blotting
HepG-2 cells were seeded at 6 × 105 cells/well into a 6-well plate,
cultured for 24 h at 37°C with 5% CO2 and infected with Ad-Vp3
at 50 MOI for 12, 24, 36, 48, and 72 h. The total protein of the
infected cells was extracted by Minute™ Total Protein Extraction
Kit and probed for expression of ER stress related proteins and
lipid metabolism related proteins by Western-blot, following the
manufacturer’s instructions. Ad-Mock-infected cells were used
as negative controls.

TG and TC Level Elisa Analysis
HepG-2 cells were seeded at 6 × 105 cells/well into a 6-well plate,
cultured for 24 h at 37°C with 5% CO2 and infected with Ad-Vp3
at 50 MOI for 12, 24, 36, 48, and 72 h. The levels of TG and TC in
infected cells were detected by the human TC ELISA Kit and
human TG ELISA Kit, following the manufacturer’s instructions.
Ad-Mock-infected cells and HepG-2 cells were used as
negative controls.

Migration and Invasion Detection
HepG-2 cells were seeded at 1 × 104 cells per well in a 24-well
plate and cultured for 24 h at 37°C with 5% CO2. The cells were
infected with Ad-Vp3 at 50 MOI for 24 and 48 h. After
trypsinization, the HepG-2 cells were seeded in the upper
chamber of the cell culture inserts and cultured for 24 h. The
cells that migrated through the membrane were counted under a
microscope and after they were fixated by carbinol and stained
with crystal violet. The experimental procedure of matrigel
invasion assay was similar to the transwell migration assay
except for incubation with matrigel on the upper chamber for
1 h and before cells’ seeding. Ad-Mock-infected cells and HepG-
2 cells were used as negative controls.

Scratch Test
HepG-2 cells were seeded at 7 × 105 cells/well into a 25 Culture-
Inserts 2 well for self-insertion, cultured for 24 h at 37°C with 5%
CO2 and then the Culture-Inserts were taken down. The cells
were infected with Ad-Vp3 at 50 MOI for 0, 24, 48, and 72 h.
Scratches were performed, and their widths were measured by
ImageJ (version 1.51j8; National Institutes of Health, USA) at the
indicated time points and according to the formula: migration
rate = (0 h scratch widths – 24 h or 48 h or 72 h scratch widths)/
(0 h scratch widths. Ad-Mock-infected cells and HepG-2 cells
were used as negative controls.

In Vivo Studies
The xenograft models were established via subcutaneous
injection of HepG-2 cells (5 × 106/100 ml) with Matrigel®

Matrix Basement Membrane (yielding a 1:1 ratio) into mice
right legs. When the tumors were clearly observable (usually at
14 days), the mice were divided randomly into three groups (n =
39): group 1 was infected with 1 × 108 plaque forming units
(PFU) of Ad-VT in 100 ml of PBS, group 2 was infected with 1 ×
108 PFU of Ad-Mock in 100 ml of PBS and group 3 was injected
February 2021 | Volume 11 | Article 614082
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with 100ml of PBS. All groups were treated via intratumoral
injection from day 14. The injections were given every 3 days for
15 days. The xenograft tumors’ length and width were measured
and observed every 7 days for 42 days using Vernier calipers. The
survival condition of the tumor-bearing nude mice was recorded
every 7 days for 56 days. During the experiment, tumors from
three mice and from each group were harvested. We selected the
ER stress, lipid metabolism, migration, and invasion related
proteins, such as PERK, Calnexin, Ero1-La, BIP, ACC, p-ACC,
FASN, PLD1, p-PLD1, SCD1, Palladin, N-Cadherin, E-
Cadherin, and Vimentin, for in vitro assessment using
immunohistochemistry staining. We commissioned the
Servicebio to complete the immunohistochemical detection.

Statistics
The statistical analyses were performed using the Statistical
Package for the Social Sciences (SPSS) statistical software
package (version 15.0; SPSS Inc., Chicago, IL, USA), and the
results were obtained using GraphPad Prism version 7.0
(GraphPad Software Inc., La Jolla, CA, USA). Student’s t-test
or one-way analysis of variance followed by Tukey’s post hoc test
were used. Differences with a p < 0.05 or p < 0.01 or P < 0.001
were considered statistically significant. Data are presented as the
mean ± standard deviation (SD) values.

The immunohistochemical analysis was performed using the
Image-Pro Plus 6.0 (Media Cybernetics, Inc., Rockville, MD,
USA). At least three fields of vision were randomly selected for
each slice and in each group. When taking photos, we made a full
organization of the whole field of vision to ensure that the
background light of each photo was consistent. The analytical
method of KI67 and Tunel was based on the presence of a
brownish yellow staining of the nucleus and that was selected as
the uniform standard to judge the positive cells in all photos, and
a blue nucleus was selected for the other cells. The number of
positive cells in each photo and the total number of cells were
obtained using Image-Pro Plus 6.0. Positive rate = Positive cells
number/Total cell count × 100%. The analytical method used to
assess the expression of other proteins was also based on the
presence of brownish yellow staining was selected as a unified
standard to judge positivity. The accumulated optical density
(IOD) and the area of the tissue (AREA) were obtained using
Image-Pro Plus 6.0. Areal density = IOD/AREA. A larger areal
density value indicated a higher positive expression level.
RESULTS

Inhibition of HepG-2 Cells’ Proliferation
Inhibited by Apoptin
The proliferation of HepG-2 cells can be significantly suppressed
by Apoptin (Figure 1A). There was no significant difference in
growth suppression between Ad-Vp3 and Ad-Mock infected
cells at MOI of 10 (p > 0.05). While at MOI of 50 or 100, the
growth suppression of Ad-Vp3-infected cells was significantly
higher than that in Ad-Mock-infected cells 48 and 72 h post-
infection (p < 0.05), however the difference was not significant at
Frontiers in Oncology | www.frontiersin.org 4
24 h. Nuclear fragmentation assessed by Hoechst staining, was
readily observed in Ad-Vp3-infected cells (Figure 1B). While at
MOI of 100, Ad-Mock had some inhibitory effects on inhibiting
HepG-2 cells. Therefore, we determined Ad-Vp3 optimal MOI
as 50 MOI. HepG-2 cells’ apoptosis can be significantly induced
by Apoptin (Figures 1C, D). Apoptosis assessed by Annexin V-
FITC/PI staining, was readily observed in Ad-Vp3-infected cells
at 48 and 72 h post-infection. The apoptotic rate in Ad-Vp3-
infected cells was significantly higher than that in Ad-Mock-
infected cells and HepG-2 cells at 48 and 72 h post-infection (p <
0.05). HepG-2 cells’ ROS level can be significantly induced by
Apoptin (Figure 1E). ROS level in Ad-Vp3-infected cells was
significantly higher than that in Ad-Mock-infected cells and
HepG-2 cells 24, 48, and 72 h post-infection (p < 0.05). HepG-
2 cells’ mitochondrial membrane potential can be significantly
reduced by Apoptin (Figures 1F, G). Following JC-1 staining,
fluorescence in HepG-2 cells rapidly turned from red to green
24 h and 72 h after infection with Ad-Vp3 at MOI of 50. The
relative fluorescence (Red/Green) of Ad-Vp3-infected cells was
significantly lower than that of Ad-Mock-infected cells and
HepG-2 cells 24, 36, 48, and 72 h post-infection (p < 0.05).
These results showed that HepG-2 cells’ growth, ROS level and
mitochondrial membrane potential can be significantly
suppressed by Apoptin in vitro.

Apoptin Induction of Endoplasmic
Reticulum Stress
The effect of Apoptin on the ER functional structure of HepG-2
cells was evaluated using flow cytometry and fluorescence. The
Green fluorescence intensity of endoplasmic reticulum in Ad-
Vp3-infected cells was significantly lower than that in Ad-Mock-
infected cells and HepG-2 cells 36, 48 and 72 h post-infection
(Figures 2A, B) (p < 0.05). The variation trend of the green
fluorescence intensity was similar to that shown by flow
cytometry (Figure 2C). The expression of ER related proteins
can be significantly affected by Apoptin (Figures 2D, E). The
expression of PERK, Calnexin, Ero1-La and BIP in Ad-Vp3-
infected cells were significantly higher at 12 and 24 h, and
significantly lower at 36, 48, and 72 h post-infection when
compared with the Ad-Mock infected cells (p < 0.05). The
expression of IRE1a in Ad-Vp3-infected cells was significantly
higher than that in Ad-Mock-infected cells at and at all-time
points (p < 0.05). There were no significant differences in the
expression of PDI in HepG-2 cells infected with Ad-Vp3 and Ad-
Mock (p > 0.05). These results indicate that the partial expression
of ER related proteins can be increased by ER stress, and some of
these proteins can be reduced by ER stress injury. Therefore, ER
stress in HepG-2 cells can be induced by 50MOI Ad-Vp3, 12 and
24 h post-infection. ER functional structure can be damaged by a
strong and lasting ER stress, which was induced by 50 MOI Ad-
Vp3, 36, 48, and 72 h post-infection.

Effect of Apoptin on Lipid Metabolism
The lipid metabolism of HepG-2 cells can be significantly
affected by Apoptin. TG level in Ad-Vp3-infected cells was
significantly higher than that in Ad-Mock-infected cells and
February 2021 | Volume 11 | Article 614082

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhu et al. Apoptin-Induced Endoplasmic Reticulum Stress
HepG-2 cells, 12 and 24 h post-infection (p < 0.05), while that in
Ad-Vp3-infected cells was significantly lower than that in Ad-
Mock-infected cells and HepG-2 cells, 48 and 72 h post-infection
(Figure 3A) (p < 0.05). TC level in Ad-Vp3-infected cells was
significantly lower than in Ad-Mock-infected cells and HepG-2
cells, 12 and 24 h post-infection (p < 0.05), while that in Ad-Vp3-
infected cells was significantly higher than in Ad-Mock-infected
cells and HepG-2 cells, 36, 48 and 72 h post-infection (Figure
3B) (p < 0.05). The expression of lipid metabolism related
enzymes can be significantly affected by Apoptin (Figures 3C, D).
The expression of lipid metabolism related enzymes ACC, FASN,
PLD1, p-PLD1, and SCD1 in Ad-Vp3-infected cells were
significantly higher at 12 and 24 h, and significantly lower at 36,
48, and 72 h post-infection when compared with the Ad-Mock
infected cells (p < 0.05). The variation trend of p-ACC expression is
opposite to that of ACC, due to ACC inactivation that could be
Frontiers in Oncology | www.frontiersin.org 5
caused by phosphorylation. There was no significant difference in
ACLY expression between Ad-Vp3-infected and Ad-Mock-infected
cells at various time points (p > 0.05).

Apoptin Reduced the Migration and
Invasion Abilities of HepG-2 Cells
The migration and invasion of HepG-2 cells can be significantly
reduced by Apoptin. The number of migrating cells in HepG-2
cells infected with Ad-Vp3 for 24 and 48 h, was significantly
lower than that in the other groups (Figure 4A) (p < 0.01). The
number of invading cells in HepG-2 cells infected with Ad-Vp3
for 24 and 48 h, was significantly lower than that in the other
groups (Figure 4B) (p < 0.01). The migration rate of HepG-2
cells can be significantly suppressed by Apoptin (Figure 4C) (p <
0.01). The migration rate suppression in Ad-Vp3-infected cells
was significantly lower than that in Ad-Mock-infected cells and
A B

C

F G

D E

FIGURE 1 | Inhibitory effect of Apoptin on HepG-2 cells in vitro. Apoptin can significantly induce apoptosis, increase activity level and decrease mitochondrial
membrane potential of Ad-Vp3-infected HepG-2 cells. (A) The results of inhibitory effect in Ad-Vp3-infected HepG-2 cells detected by Cell Counting Kit-8 and LDH
ELISA Kit. (B) Hoechst staining (200×). (C) Annexin V-FITC/PI staining (200×). (D) Annexin V-FITC/PI flow cytometry detection. (E) Intracellular reactive oxygen
species detection by ELISA. (F) JC-1 staining (200×). (G) JC-1 relative fluorescence detection. Data are presented as mean ± SD, *p < 0.05, **p < 0.01.
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HepG-2 cells, 24, 48, and 72 h post-infection (p < 0.05). These
results showed that lipid metabolism and migration rate can be
significantly affected by Apoptin. Furthermore, the expression of
migration and invasion related proteins Girdin, Palladin,
Vimentin, N-Cadherin, and E-Cadherin in HepG-2 cells can
be significantly suppressed by Apoptin expression (Figures 4D, E).
The expression levels of Girdin, Palladin, and N-Cadherin, in Ad-
Vp3-infected cells were significantly lower than those in Ad-Mock-
infected cells at 48 and 72 h (p < 0.05). The expression level of E-
Cadherin in Ad-Vp3-infected cells was significantly higher at 12
and 24 h than that in cells infected with Ad-Mock, but were
significantly lower at 36 h, 48 h, and 72 h post-infection (p <
0.05). The expression level of Vimentin in Ad-Vp3-infected cells
was significantly lower than that in Ad-Mock-infected cells and at
all-time points (p < 0.05). These results showed that Apoptin can
significantly reduce migration and invasion of HepG-2 cells, as also
reflected by the decrease in the expression of migration and invasion
related proteins.
Frontiers in Oncology | www.frontiersin.org 6
Apoptin Inhibited the Proliferation of
HepG-2 Cells In Vivo
The proliferation of HepG-2 cells can be significantly suppressed
by Apoptin in tumor bearing nude mice. The tumor volume in
the Ad-Vp3 group was significantly lower than that in the Ad-
Mock group and HepG-2 group, 28 to 42 days after tumor
xenografting. (Figures 5A, B) (p < 0.01). The survival rate of the
Ad-Vp3 group was 70%, while that of the Ad-Mock and HepG-2
groups were 20% and 10%, 56 days after tumor xenografting,
respectively. The survival rate in the Ad-Vp3 group was significantly
longer than that in the Ad-Mock and HepG-2 groups, 56 days after
tumor xenografting (Figure 5C) (p < 0.01). The KI67 positivity rate
in the Ad-Vp3 group tumors was 17.08%, while that of the Ad-
Mock and HepG-2 groups were 65.47% and 65.81%, respectively.
The KI67 positivity rate in the Ad-Vp3 group tumors was
significantly lower than that in the Ad-Mock and HepG-2 groups
(Figure 5D) (p < 0.01). The Tunel positivity rate in the Ad-Vp3
group tumors was 8.57%, while that of the Ad-Mock and HepG-2
A

C

D

E

B

FIGURE 2 | Endoplasmic reticulum related detection. The endoplasmic reticulum stress of Ad-Vp3-infected HepG-2 cells can be stimulated by Apoptin, 24 h and
48 h post-infection, and ER functional structure is gradually impaired gradually from 36 h to 72 h post-infection. (A, B) Flow cytometry detection of ER using the ER-

Tracker™ Green. (C) Endoplasmic reticulum ER-Tracker™ Green staining (200×). (D, E) Western-blot detection of endoplasmic reticulum stress related proteins.
Data are presented as mean ± SD, *p < 0.05, **p < 0.01.
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groups were 0.31% and 0.27%, respectively. The Tunel positivity
rate in the Ad-Vp3 group tumors was significantly higher than that
in the Ad-Mock and HepG-2 groups (Figure 5E) (p < 0.01). These
results showed that Apoptin could significantly inhibit HepG-2 cell
proliferation in vivo.

Immunohistochemical Detection of ER
Stress, Lipid Metabolism, and Invasion
Related Proteins in Tumor Tissues
The ER stress, lipid metabolism and invasion related protein can be
significantly affectedbyApoptin in vivo. These changes canbe assessed
using immunohistochemistry (IHC). The immunohistochemical
detection results of ER stress proteins are shown in Figures 6A–D.
The areal densities of PERK, Calnexin, Ero1-La, and BIP in the Ad-
Vp3grouptumorsweresignificantlyhigher thanthose intheAd-Mock
and HepG-2 groups (p < 0.01). The IHC results of lipid metabolism
related proteins are shown in Figures 7A, B. The areal densities of
FASNandACCin theAd-Vp3group tumorswere significantlyhigher
Frontiers in Oncology | www.frontiersin.org 7
than those in theAd-Mock andHepG-2 groups (p<0.01). IHCresults
of invasion related proteins are shown in Figures 7C, D. The areal
densities ofN-Cadherin andE-Cadherin in theAd-Vp3 group tumors
were significantly higher than those in the Ad-Mock and HepG-2
groups (p < 0.01). These IHC results showed that Apoptin could
significantly induce the expression of partial ER stress and lipid
metabolism related proteins, and significantly reduce the expression
of partial invasion related proteins in vivo. There were no significant
differences in theexpressionof theothersendoplasmicreticulumstress,
lipid metabolism, migration, and invasion related proteins, such as p-
ACC, PLD1, p-PLD1, SCD1, Palladin, and Vimentin, for each group.
Therefore, these results have been omitted.
DISCUSSION

ER stress is a physiological and pathological process in which the
function of ER is disturbed due to various reasons. During this
A C

B

D

FIGURE 3 | Lipid metabolism related detection. Detection of Lipid metabolism and migration rates. Apoptin can significantly change TG and TC levels, affect
expression of lipid metabolism related enzymes, and reduce migration rate in Ad-Vp3-infected HepG-2 cells. (A) TG level Elisa detection. (B) TC level detection
by Elisa. (C, D) Western blot analysis of the expression levels of enzymes closely related to migration and invasion in lipid metabolism. Data are presented as mean
± SD, *p < 0.05, **p < 0.01.
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process, the body can upregulate the expression of ER
chaperones, inhibit protein translation, start the degradation of
ER related proteins, improve the physiological state of cells and
strengthen the self-repair function of endoplasmic reticulum
through increasing the expression of the stress related proteins
PERK, Calnexin, Ero1-La, PDI, IRE1a, and BIP. PERK (12–14)
is a transmembrane protein of the eIF2a kinase that is located in
ER, and that couples the ER stress signal and inhibit translation.
Calnexin (15–17) is an ER calcium binding protein that assists in
protein folding and participates in quality control. Ero1-La (18–
20) is a key molecule that mediates PDI (21, 22) catalyzed protein
oxidative folding to form disulfide bonds. They work together to
provide disulfide bonds for newly synthesized proteins to ensure
the formation of natural conformations. IRE1a (23–25) is an
endoplasmic type I transmembrane protein with a serine/
threonine kinase and ribonucleic acid endonuclease activities,
that participates in cell apoptosis, induced by unfolded protein
response and endoplasmic reticulum stress response. The main
function of BiP (26–28) is to assist the correct folding of newly
synthesized proteins. In this study, we found that the expression
of the ER stress related proteins PERK, Calnexin, Ero1-l a, BIP,
Frontiers in Oncology | www.frontiersin.org 9
and PDI was significantly higher in the Ad-Vp3-infected HepG-
2 cells compared to Ad-Mock-infected HepG-2 cells, 12 h and
24 h post-infection. These decreases may be caused by ER stress.
However, the expression of these proteins in Ad-Vp3-infected
cells were significantly lower than those in the Ad-Mock-infected
cells and the intensity of the green fluorescence also decreased
significantly, 36 h, 48 h, and 72 h post-infection. By combining
these two results, we speculated that the ER function and
structure may be damaged by the strong and persistent ER
stress, resulting in an increased expression of ER related
proteins, followed by their decrease. In conclusion, we suggest
that Apoptin can damage the ER function in HepG-2 cells by
causing a strong and persistent ER stress.

The strong and lasting ER stress can seriously damage ER
functional structure and affect the cells’ normal lipid metabolism
(29). The enzymes involved in lipid metabolism mainly include
FANS, ACC, ACLY, PLD, and SCD1. FASN (30, 31) is a kind of
multifunctional polypeptide enzyme which can produce fatty
acids. It is the catalyst for the last step of fatty acid synthesis. ACC
(32, 33) is the rate-limiting enzyme in fatty acid synthesis. ACLY
(34, 35) is a key enzyme that converts citric acid into oxaloacetate
A D

E

B

C

FIGURE 5 | Inhibitory effect of Apoptin on HepG-2 cells in vivo. Apoptin significantly inhibits tumor growth and prolongs survival of tumor bearing nude mice.
(A, B) The result of tumor growth inhibition. (C) The results of survival rate. (D, E) The results of immunocytochemistry detection of KI67 and Tunel in tumors’
tissue (400×). Data are presented as mean ± SD, **p < 0.01.
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and fatty acyl-CoA, responsible for the synthesis of new fatty
acids. Phosphatidylcholine (PC) and Phosphatidyl Ethanolamine
(PE), the hydrolysates of PLD (36), are the main components of
membrane lipids and the key molecules of tumor cell invasion
and metastasis (37, 38). Several saturated fatty acyl-CoAs can be
catalyzed by SCD (39, 40), that mainly produces palmitoleic acid
and oleic acid, which provide key substrates for complex lipids
production, such as phospholipids, triglycerides and cholesterol
esters. It has been reported that lipid synthesis and metabolism
can be affected by ER stress (41–43). Among the players
involved, the PERK pathway is involved in the expression of
lipid metabolism related genes, and PERK functional loss can
reduce the expression of the fatty acid synthesis related genes
FASN, ACL, and SCD1 (44). In this study, we found that the
changing trend in FANS, ACC, PLD1, and SCD1 expression was
basically the same as that of the ER stress related proteins. The
expression of these enzymes in the Ad-Vp3-infected cells were
significantly higher than those in the Ad-Mock-infected HepG-2
cells, 12 h and 24 h post-infection, while the expression of these
enzymes in the Ad-Vp3-infected cells were significantly lower
than those in the Ad-Mock-infected HepG-2 cells, 36 h, 48 h, and
72 h post-infection. Therefore, we speculate that the expression
of lipid metabolism related enzymes may be affected by the ER
stress damage.

The results of migration and invasion experiments showed
that Apoptin can affect the expression of proteins involved in
Frontiers in Oncology | www.frontiersin.org 10
HepG-2 migration and invasion and therefore, reduce their
abilities to migrate and invade. Some enzymes involved in lipid
metabolism are closely related to tumor cell migration and
invasion. FASN participates in the synthesis of phospholipids
required for cell membranes’ construction. Meanwhile, FASN
main product is palmitic acid, which is the main component of
cell membrane decoupling. FASN overexpression is closely
related to the degree of malignant tumor progression (45–47).
ACC high expression is also significantly related to the
characteristics of multiple aggressive clinical liver cancer cases,
such as vascular infiltration and poor differentiation) (48).
However, this activity is inhibited by ACC phosphorylation (p-
ACC), which inactivates ACC (49). SCD1 is located in the ER
and is involved in lipid biosynthesis and invasion (50). PLD1
induced expression through the RAF/ERK and NF-kB signaling
pathways, leads to MMP-9 increased secretion (51), which
promotes tumor invasion and metastasis. There is a definite
relation between these lipid metabolism related enzymes and
tumor cell migration and invasion. Therefore, we preliminarily
speculated that the abnormal expression of these enzymes during
lipid metabolism may be the one of the main inducements that
affect HepG-2 migration and invasion.

The liver is rich in ER and mitochondria and has a high lipid
metabolism. Therefore, to explore the effect of endoplasmic
reticulum stress, induced by Apoptin on lipid metabolism,
migration and invasion, we selected HepG-2 as a cellular model
A

B

C

D

FIGURE 6 | Immunohistochemical detection of endoplasmic reticulum stress related proteins in tumor tissues. (A–D) The expression of endoplasmic reticulum stress
related proteins (PERK, Calnexin, Ero1-La, BIP) in tumors’ tissue were detected by immunocytochemistry (400×). Data are presented as mean ± SD, **p < 0.01.
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to study the relationship between the 3 above processes. To further
confirm the role of Apoptin in the induction of ER stress, we also
studied Apoptin involvement in the other hepatoma cell lines
SMMC-7721 and QGY-7703. However, we did not obtain the
expected results. Western-blot detection results of endoplasmic
reticulum stress related proteins showed that the endoplasmic
reticulum stress response in SMMC-7721 and QGY-7703 cells,
infected by 50 MOI Ad-Vp3, were not significantly different. In the
next step, we may choose to use other hepatoma cells or other types
of tumor cells to verify the universality of Apoptin-induced ER
stress. We will also further explore the effect of Apoptin induced
endoplasmic reticulum stress damage on the apoptotic pathway and
Ca2 + level in HepG-2 cells’ ER.We need also to further explore the
effects of Apoptin-induced ER stress injury on the ER apoptotic
pathway and Ca2+ level in HepG-2 cells.
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**p < 0.01.
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