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Abstract: Metabolite structure identification remains a significant challenge in nontargeted
metabolomics research. One commonly used strategy relies on searching biochemical databases using
exact mass. However, this approach fails when the database does not contain the unknown metabolite
(i.e., for unknown-unknowns). For these cases, constrained structure generation with combinatorial
structure generators provides a potential option. Here we evaluated structure generation constraints
based on the specification of: (1) substructures required (i.e., seed structures); (2) substructures not
allowed; and (3) filters to remove incorrect structures. Our approach (database assisted structure
identification, DASI) used predictive models in MolFind to find candidate structures with chemical
and physical properties similar to the unknown. These candidates were then used for seed structure
generation using eight different structure generation algorithms. One algorithm was able to generate
correct seed structures for 21/39 test compounds. Eleven of these seed structures were large enough
to constrain the combinatorial structure generator to fewer than 100,000 structures. In 35/39 cases,
at least one algorithm was able to generate a correct seed structure. The DASI method has several
limitations and will require further experimental validation and optimization. At present, it seems
most useful for identifying the structure of unknown-unknowns with molecular weights <200 Da.

Keywords: nontargeted metabolomics; mass spectrometry; liquid chromatography; in silico
structure generation

1. Introduction

Most current metabolomic studies rely on biochemical databases (e.g., Human Metabolite
Database (HMDB) [1,2], Kyoto Encyclopedia of Genes and Genomes (KEGG) [3] and Metlin [4])
for structure identification. When high performance liquid chromatography-mass spectrometry
(HPLC-MS) is used, the identification strategy typically involves searching these databases with an
exact mass and in some cases also using predicted or experimental MS-MS spectra [5–7]. Unfortunately,
a large percentage of detectable mass spectrometric features observed in biological samples cannot
be identified using this approach. This is partially because many of the features being detected are
experimental artifacts (adducts, fragments, clusters, etc. [8,9]), but is also likely due to the limited
number of compounds included in most databases. Searching a large general-purpose chemical
database, such as PubChem [10], greatly improves the odds of finding an unknown, provided there is
an efficient way to filter out false positives. However, there is still the chance that the correct compound
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will not be present in PubChem. Additionally, there will always be “unknown” unknowns that cannot
be identified by searching databases since there will always be compounds that have never before been
identified. Thus, there is a critical need within the metabolomics community to develop automated
methods that do not rely on having the correct structure in a database. Combinatorial structure
generators [11–14] provide a means to generate new chemical structures (unknown-unknowns) when
a match is not found in an existing database. A combinatorial structure generator enumerates all
possible chemical structures for a given elemental formula. However, due to the combinatorial nature
of chemical structure generation, the number of output molecules grows exponentially with the number
of input atoms. Therefore, generating chemical structures using elemental formulae alone is considered
impractical for compounds with more than a few atoms since millions or billions of structures are
produced in most cases. To solve this problem, a series of structure generation constraints can be used to
limit the combinatorial structure space. For example, a prescribed “seed” structure can be used to limit
the structure space to only those containing the “seed” as a substructure. This approach was recently
described as a method to generate maximum common substructures (MCSS) that could be used as
inputs for constraining combinatorial structure generation [15]. The combinatorial structure space can
be narrowed further by eliminating strained ring systems (smaller and larger rings, steric energy index
values) and non-endogenous mammalian structures (for biological applications), i.e., by use of a so
called “bad list”. This approach was recently used in a semi-automated method along with consensus
structure elucidation as an aid in the identification of unknowns in the Critical Assessment of Small
Molecule Identification (CASMI) contest [16,17]. Thus, as shown by these studies, if combinatorial
structure generators are adequately constrained, they can provide a viable approach for solving the
structure identification problem for unknown-unknowns.

The current study focuses on the development of algorithms designed to provide an optimum
MCSS or “seed” structure as input for combinatorial structure generators for fully automated de novo
structure identification using HPLC-MS data. To the best of our knowledge, there is only one previous
study [18] that has addressed this problem without using manual interpretation of MS/MS data for
confining the structure generation step. In that study, Peironcely et al. identified four compounds
(out of 30 compounds tested) using HPLC-MSn data and MCSS constrained de novo structure generation
based on the initial work of Rojas-Cherto et al. for seed structure generation [15]. The authors were
able to generate “seed” structures for several compounds by matching multi-stage mass spectral
trees of unknowns against a database of mass spectral trees. The seed structures were then used as
templates to constrain structure generation. The spectral tree database, MetiTree [19] used in that
study contained 600 compounds and 900 mass spectral trees. Due to the relatively limited number
of spectral trees found in the MetiTree database, the authors were not able to find at least a partial
match for 11 compounds. They were able to find partial spectral tree matches (a 10% or better match)
for nine compounds, but for five out of these nine compounds, the structure generation could not be
sufficiently constrained to yield a manageable number of candidates.

Here we developed several novel “seed” structure generation algorithms. The algorithms identify
a consensus seed structure using compounds selected from an initial PubChem database search.
The compounds are selected based on having a retention index, Ecom50, drift time and collision
induced dissociation (CID) spectra (as described [20]) that is similar to the unknown. Thus, these
compounds are very close, but not exact matches to the unknown. The proposed database assisted
structure identification (DASI) method uses several existing free metabolomics software platforms such
as MolFind [20], BioSM [21], MetFrag [22], Parallel Molecular Generator (PMG) [18] and the PubChem
database [10]. For this work, we used 40 “putative” unknown-unknowns (i.e., these 40 compounds
were removed from the PubChem database prior to searching) ranging in mass from 103 to 608 Da.
The implementation details of different seed generation algorithms, combinatorial structure generation,
filtering, identification, and limitations of the proposed method are discussed.
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2. Results

Of the 40 putative unknown unknowns included in this study 39 were usable. In one case,
MolFind eliminated all candidates except the unknown (Niacinamide) from the PubChem bin. Table 1
summarizes the performance of the eight different seed generation algorithms. The seed similarity
score was calculated as the percent ratio between the number of atoms in the seed structure that exactly
matched the target structure (i.e., the unknown). As shown in Table 1, Algorithm-1 (Top MetFrag
Fragment from filtered candidates) generated the highest number (24) of correct seed structures.
However, only nine of these 24 seed structures lead to fewer than 100,000 combinatorial structures.
Of the remaining 15 correct seed structures, there were 10 cases where PMG based structure generation
resulted in more than 100,000 structures and five cases where the program failed to generate any
structures before it timed out.

Table 1. Number of correct seed structures generated by different seed generation algorithms.

Algorithm Number of Correct
Seed Structures (/39)

Average % Seed
Similarity

% Seed Similarity
Range

Algorithm-1 24 49.5 31.8–76.9
Algorithm-2 19 49.7 15.7–87.5

Algorithm-3–1 13 71.4 29.4–90.9
Algorithm-3–2 13 71.4 29.4–90.9
Algorithm-3–3 20 66.1 29.4–92.0
Algorithm-3–4 14 63.7 29.4–90.9
Algorithm-3–5 18 69.0 37.5–92.0
Algorithm-3–6 21 66.7 37.5–89.5

The nine targets and PMG seed structures identified with Algorithm-1 are listed in Table 2.
The target MIMWs of these nine structures ranged from 103.0633 to 190.0954. The seed to target
similarities of the nine structures ranged from 29.2% to 77.7%. Refiltering PMG bins with MolFind
eliminated an average of 95% of the incorrect candidates. In 5 out of 9 cases, the correct compound was
ranked within the top 10 candidate structures with MetFrag Score ranking. The target monoisotopic
molecular weights (MIMWs) of the 15 incorrect seed structures (39 total—24 correct) ranged from
226.1066 to 608.2734. The seed to target similarities of incorrect seed structures ranged from 31.2%
to 62.5%.

Table 2. Putative unknowns identified with Algorithm-1.

Target PMG-Seed Number of PMG Structures Number after MolFind MetFrag Score Rank of
the Correct Structure
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Table 2. Cont.
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Algorithm-3-6 generated the second highest (21) number of correct PMG-Seed structures. Of the 
21 correct seeds 11 produced fewer than 100,000 PMG structures. In eight cases PMG generated more 
than 100,000 structures. In the other two cases, PMG failed to generate any structures before it timed 
out. The putative unknowns identified with Algorithm-3–6 are listed in Table 3. The target MIMWs 
of correct PMG-seed structures ranged from 117.0790 to 267.0968. All correctly identified putative 
unknowns except Deoxyguanosine (267.0968) were under 200 Da. The seed to target similarities of 
the correctly identified putative unknowns ranged from 50.0%–89.5%. In general, different variants 
of Algorithm-3 resulted in larger seed structures. However, the relatively large seeds generated with 
Algorithm-3 were not large enough to constrain the structure generation for putative unknowns 
larger than 200 Da. Refiltering PMG bins with MolFind eliminated on average 86.5% of incorrect 
candidates. In five out of 11 cases, the correct compound was ranked within the top 10 candidate 
structures with MetFrag Score ranking. Seed structure data for all eight algorithms are found in the 
Supplemental Materials. 

Even though we used BioSM to eliminate non-endogenous mammalian structures [21], close 
inspection of the filtered PMG bins that contained more than 250 structures revealed chemical 
structures with highly strained ring systems. Several options were explored to remove these incorrect 
chemical structures. In the first attempt, the filtered bins were clustered with 90% Tanimoto structure 
similarity (using PubChem fingerprints). Then, the average Tanimoto structure similarity between 
the PMG-Seed and the clusters was used to pick the cluster containing the correct candidate. The 
Tanimoto clustering with 85%–90% similarity managed to separate out incorrect structures. 
However, this method failed to pick the cluster containing the correct candidate structure.  

Metabolites 2016, 6, 17 5 of 16 

 

 

1726 99 3 

 

922 30 16 

 

Algorithm-3-6 generated the second highest (21) number of correct PMG-Seed structures. Of the 
21 correct seeds 11 produced fewer than 100,000 PMG structures. In eight cases PMG generated more 
than 100,000 structures. In the other two cases, PMG failed to generate any structures before it timed 
out. The putative unknowns identified with Algorithm-3–6 are listed in Table 3. The target MIMWs 
of correct PMG-seed structures ranged from 117.0790 to 267.0968. All correctly identified putative 
unknowns except Deoxyguanosine (267.0968) were under 200 Da. The seed to target similarities of 
the correctly identified putative unknowns ranged from 50.0%–89.5%. In general, different variants 
of Algorithm-3 resulted in larger seed structures. However, the relatively large seeds generated with 
Algorithm-3 were not large enough to constrain the structure generation for putative unknowns 
larger than 200 Da. Refiltering PMG bins with MolFind eliminated on average 86.5% of incorrect 
candidates. In five out of 11 cases, the correct compound was ranked within the top 10 candidate 
structures with MetFrag Score ranking. Seed structure data for all eight algorithms are found in the 
Supplemental Materials. 

Even though we used BioSM to eliminate non-endogenous mammalian structures [21], close 
inspection of the filtered PMG bins that contained more than 250 structures revealed chemical 
structures with highly strained ring systems. Several options were explored to remove these incorrect 
chemical structures. In the first attempt, the filtered bins were clustered with 90% Tanimoto structure 
similarity (using PubChem fingerprints). Then, the average Tanimoto structure similarity between 
the PMG-Seed and the clusters was used to pick the cluster containing the correct candidate. The 
Tanimoto clustering with 85%–90% similarity managed to separate out incorrect structures. 
However, this method failed to pick the cluster containing the correct candidate structure.  

1726 99 3

Metabolites 2016, 6, 17 5 of 16 

 

 

1726 99 3 

 

922 30 16 

 

Algorithm-3-6 generated the second highest (21) number of correct PMG-Seed structures. Of the 
21 correct seeds 11 produced fewer than 100,000 PMG structures. In eight cases PMG generated more 
than 100,000 structures. In the other two cases, PMG failed to generate any structures before it timed 
out. The putative unknowns identified with Algorithm-3–6 are listed in Table 3. The target MIMWs 
of correct PMG-seed structures ranged from 117.0790 to 267.0968. All correctly identified putative 
unknowns except Deoxyguanosine (267.0968) were under 200 Da. The seed to target similarities of 
the correctly identified putative unknowns ranged from 50.0%–89.5%. In general, different variants 
of Algorithm-3 resulted in larger seed structures. However, the relatively large seeds generated with 
Algorithm-3 were not large enough to constrain the structure generation for putative unknowns 
larger than 200 Da. Refiltering PMG bins with MolFind eliminated on average 86.5% of incorrect 
candidates. In five out of 11 cases, the correct compound was ranked within the top 10 candidate 
structures with MetFrag Score ranking. Seed structure data for all eight algorithms are found in the 
Supplemental Materials. 

Even though we used BioSM to eliminate non-endogenous mammalian structures [21], close 
inspection of the filtered PMG bins that contained more than 250 structures revealed chemical 
structures with highly strained ring systems. Several options were explored to remove these incorrect 
chemical structures. In the first attempt, the filtered bins were clustered with 90% Tanimoto structure 
similarity (using PubChem fingerprints). Then, the average Tanimoto structure similarity between 
the PMG-Seed and the clusters was used to pick the cluster containing the correct candidate. The 
Tanimoto clustering with 85%–90% similarity managed to separate out incorrect structures. 
However, this method failed to pick the cluster containing the correct candidate structure.  

Metabolites 2016, 6, 17 5 of 16 

 

 

1726 99 3 

 

922 30 16 

 

Algorithm-3-6 generated the second highest (21) number of correct PMG-Seed structures. Of the 
21 correct seeds 11 produced fewer than 100,000 PMG structures. In eight cases PMG generated more 
than 100,000 structures. In the other two cases, PMG failed to generate any structures before it timed 
out. The putative unknowns identified with Algorithm-3–6 are listed in Table 3. The target MIMWs 
of correct PMG-seed structures ranged from 117.0790 to 267.0968. All correctly identified putative 
unknowns except Deoxyguanosine (267.0968) were under 200 Da. The seed to target similarities of 
the correctly identified putative unknowns ranged from 50.0%–89.5%. In general, different variants 
of Algorithm-3 resulted in larger seed structures. However, the relatively large seeds generated with 
Algorithm-3 were not large enough to constrain the structure generation for putative unknowns 
larger than 200 Da. Refiltering PMG bins with MolFind eliminated on average 86.5% of incorrect 
candidates. In five out of 11 cases, the correct compound was ranked within the top 10 candidate 
structures with MetFrag Score ranking. Seed structure data for all eight algorithms are found in the 
Supplemental Materials. 

Even though we used BioSM to eliminate non-endogenous mammalian structures [21], close 
inspection of the filtered PMG bins that contained more than 250 structures revealed chemical 
structures with highly strained ring systems. Several options were explored to remove these incorrect 
chemical structures. In the first attempt, the filtered bins were clustered with 90% Tanimoto structure 
similarity (using PubChem fingerprints). Then, the average Tanimoto structure similarity between 
the PMG-Seed and the clusters was used to pick the cluster containing the correct candidate. The 
Tanimoto clustering with 85%–90% similarity managed to separate out incorrect structures. 
However, this method failed to pick the cluster containing the correct candidate structure.  

922 30 16

Algorithm-3–6 generated the second highest (21) number of correct PMG-Seed structures. Of the
21 correct seeds 11 produced fewer than 100,000 PMG structures. In eight cases PMG generated more
than 100,000 structures. In the other two cases, PMG failed to generate any structures before it timed
out. The putative unknowns identified with Algorithm-3–6 are listed in Table 3. The target MIMWs
of correct PMG-seed structures ranged from 117.0790 to 267.0968. All correctly identified putative
unknowns except Deoxyguanosine (267.0968) were under 200 Da. The seed to target similarities of
the correctly identified putative unknowns ranged from 50.0%–89.5%. In general, different variants
of Algorithm-3 resulted in larger seed structures. However, the relatively large seeds generated with
Algorithm-3 were not large enough to constrain the structure generation for putative unknowns
larger than 200 Da. Refiltering PMG bins with MolFind eliminated on average 86.5% of incorrect
candidates. In five out of 11 cases, the correct compound was ranked within the top 10 candidate
structures with MetFrag Score ranking. Seed structure data for all eight algorithms are found in the
Supplemental Materials.



Metabolites 2016, 6, 17 5 of 15

Table 3. Putative unknowns identified with Algorithm-3–6.

Target PMG-Seed Number of PMG Structures Number after MolFind MetFrag Score Rank of
the Correct Structure
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As another approach, we used molecular mechanics energies (Table 4) to filter out incorrect 
structures. Molecular mechanics energies were calculated with force field, MMFF94. The lowest 
energy conformer generation and MMFF94 based energy minimizations were carried out with 
ChemAxon’s conformer plugin [23]. An energy cutoff window was established by taking the average 
and standard deviation of the molecular mechanics energies of the PubChem clusters that lead to the 
PMG-Seed structures. An approximate energy window (based on the average of relative standard 
deviations of the other clusters) was established for PubChem clusters with only one structure. PMG 
candidate compounds whose molecular mechanics energies were outside three times the standard 
deviation from the average energy were filtered out. 

Table 4. Structure filtering with Molecular Mechanics (MM) energies. 

Target PubChem ID 
Number of Structures MetFrag Score Ranking of the Correct Structure

Before MM Filter * After MM Filter Before MM Filter * After MM Filter
187790 2 2 2 2 
71593 3 3 1 1 
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* From Table 3  

In 4/11 cases, filtering with molecular mechanics energies resulted in improved rankings. In 1/11 
cases, the correct candidate was filtered out and in 6/11 cases the ranking was not changed. The latter 
group of 6 compounds were those that already had good MetFrag scores (average rank = 5). Filtering 
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Even though we used BioSM to eliminate non-endogenous mammalian structures [21], close
inspection of the filtered PMG bins that contained more than 250 structures revealed chemical structures
with highly strained ring systems. Several options were explored to remove these incorrect chemical
structures. In the first attempt, the filtered bins were clustered with 90% Tanimoto structure similarity
(using PubChem fingerprints). Then, the average Tanimoto structure similarity between the PMG-Seed
and the clusters was used to pick the cluster containing the correct candidate. The Tanimoto clustering
with 85%–90% similarity managed to separate out incorrect structures. However, this method failed to
pick the cluster containing the correct candidate structure.

As another approach, we used molecular mechanics energies (Table 4) to filter out incorrect
structures. Molecular mechanics energies were calculated with force field, MMFF94. The lowest energy
conformer generation and MMFF94 based energy minimizations were carried out with ChemAxon’s
conformer plugin [23]. An energy cutoff window was established by taking the average and standard
deviation of the molecular mechanics energies of the PubChem clusters that lead to the PMG-Seed
structures. An approximate energy window (based on the average of relative standard deviations of
the other clusters) was established for PubChem clusters with only one structure. PMG candidate
compounds whose molecular mechanics energies were outside three times the standard deviation
from the average energy were filtered out.

Table 4. Structure filtering with Molecular Mechanics (MM) energies.

Target PubChem
ID

Number of Structures MetFrag Score Ranking of the Correct Structure

Before MM Filter * After MM Filter Before MM Filter * After MM Filter

187790 2 2 2 2
71593 3 3 1 1
92832 1638 367 106 34
1150 8 8 7 7
138 48 26 43 26

3134 4 4 2 2
11841 531 49 24 16
6057 1124 421 354 148
64969 288 163 5 5

825 22 20 13 13
5962 1001 211 188 Filtered Out

* From Table 3.

In 4/11 cases, filtering with molecular mechanics energies resulted in improved rankings.
In 1/11 cases, the correct candidate was filtered out and in 6/11 cases the ranking was not changed.
The latter group of 6 compounds were those that already had good MetFrag scores (average rank = 5).
Filtering with molecular mechanics eliminated 58% of the candidates on average. In one case (PubChem
chemical ID 11841), filtering with molecular mechanics resulted in 91% reduction of the bin size.
The energy based filter improved the average MetFrag Score ranking from 56 to 25.

The DASI method we used relies on having structures in the database that are similar, but not
exact matches with the unknown. Thus, it would likely be advantageous to use a large database
(such as Pubchem with ~3 ˆ 107 compounds) for this approach. For comparison, the DASI pipeline
was repeated using HMDB (~4 ˆ 104 compounds) as the source database. Of the 40 total compounds,
37 were usable as three were no longer included in the latest release of HMDB. For nearly half of these
37 compounds (18 cases), filtering with MolFind resulted in no candidates in the final bin except the
putative unknown. In 12 cases, there was one structure other than the putative unknown. The other
seven bins had two to five similar structures in the filtered bin. Algorithm-3–6 was able to generate
a correct PMG-seed for five bins when using HMDB as the database (as opposed to 21 bins using
PubChem). It is important to note that we used 40 HMDB compounds as the test dataset; thus, having
some similar compounds (coming from related metabolic pathways) is expected. These results are
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consistent with our hypothesis that there is an advantage of using a large database (such as PubChem)
for the DASI methodology described in this study.

3. Discussion

The DASI method is designed to address the common problem encountered in nearly all
nontargeted metabolomics studies; how to identify an unknown compound when it is not present
in any database. Thus, the approach used here does not require that the chemical database used for
the initial search contains the unknown. However, the DASI method does require that the database
contains structures that are chemically similar to the unknown (i.e., similar MIMW, RI, Ecom50, drift
time and predicted CID spectrum); if similar structures are not present, the method will fail. Therefore,
as we show using a relatively small database, such as HMDB, the lack of chemically similar structures
will limit the utility of the method. Even though very large databases, such as PubChem, are more
likely to meet this requirement, there will clearly be some unknown-unknowns where this is not
the case.

In this work we make the initial assumption that the elemental formula is known; this assumption
is an absolute prerequisite for constraining molecular structure generation algorithms. In a previous
study [24], we found that the MolFind approach resulted in the correct formula in the 1st ranked
candidate in 98% of 102 tested compounds. In the current study, we found that in 29/39 of the
MolFind filtered bins all remaining candidates had the correct molecular formula. Seven bins had
one candidate with an incorrect formula and two bins had more than one candidate with an incorrect
formula. However, in all of these cases, the most frequently occurring formula in the MolFind filtered
bin was the correct one. In only one case was the incorrect formula the most frequent formula in the
filtered bin. Even with MolFind, isotope ratios and using instruments with a MIMW accuracy <1 ppm,
the probability of selecting an incorrect molecular formula dramatically increases as the MIMW of
the unknown increases. If an incorrect elemental formula is used, the method will obviously fail.
However, it is important to note that the focus of this work was to systematically address and compare
computational issues related to generating seed structures for constraining computational structure
generation when the unknown is not present in a database; i.e., for automated de novo identification of
unknown-unknowns.

Algorithm-3–6 failed to produce a correct PMG-seed structure in 18 of 39 cases, and a large
percentage of these were compounds with MIMW > 200 Da. Thus, our results suggest that as the
mass of the unknown increases in size (with a corresponding increase in chemical structure diversity),
it becomes increasingly difficult to find an identical large seed structure in multiple candidates; i.e.,
a consensus seed structure becomes less and less likely. At the same time, as unknown unknown
compounds become larger, it becomes increasingly more important to constrain structure generation.
Given these mutually exclusive limitations, the DASI approach was most useful for compounds
with masses below 200 Da. In addition, reasonably similar structures can be lost during the filtering
step. For example, in the case of Niacinamide (Predicted RI = 183.7, Predicted Ecom50 = 5.49 eV,
BioSM Score = 2.0), a similar structure, Picolinamide (Predicted RI = 189.5, Predicted Ecom50 = 5.04 eV,
BioSM Score = 0.0) was filtered out by the BioSM filter. The only difference between these two structures
is the position of the amide group (in Niacinamide, the amide group is meta to the ring nitrogen; in
Picolinamide, the amide group is ortho to the ring nitrogen). Limitations like these can be alleviated
by improving the predictive models in MolFind. Note that the predictive models we used were given
error windows that are currently not achievable. Thus, our results represent a best-case scenario and
we assume that our predictive models can be improved as more and more known compounds are
added to the modeling process.

Another limitation comes from the lack of unique structural information in the CID spectra of
some compounds. For example, for both cytidine and cytidine 5’-monophosphate, their positive ion
CID spectra lacked sufficient information to aid in the identification process. A CID spectra search
using MassBank [25] revealed that the negative ion CID spectra of these compounds are better suited
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for identification purposes. The limitations of in silico CID prediction algorithms (such as MetFrag used
here) also contribute to the overall error. In the cases of cytidine and cytidine 5’-monophosphate, the
MetFrag algorithm was able to match only one peak. Improved in silico CID fragmentation prediction
algorithms would dramatically improve the success rate of DASI.

As already mentioned, there are several limitations of the DASI approach described here.
In addition to those listed above, a further limitation of this study is that we were not able to use an
independent validation set of compounds. One such option would be to use the set of compounds
provided in the CASMI competition mentioned earlier [16]. Unfortunately, the data provided by
CASMI are not sufficient to benchmark our method because CASMI was designed for an entirely
different purpose. In the CASMI study, the goal was to use MIMW and experimental CID spectra to
identify a “known” unknown compound, i.e., one already contained in a database. Our method, on the
other hand, relies on the effectiveness of MolFind filtering (using RI, Ecom50 and Drift Time models)
to identify compounds in PubChem with chemical and physical properties similar to the unknown.
However, in our approach the unknown compound is not found in any database; i.e., the unknown is
an unknown unknown. Thus, valid benchmarking would require experimental RI, Ecom50 and drift
times for the benchmark compounds. Alternatively, we could use predicted values for the benchmark
compounds and then eliminated them from the database. However, the use of predicted values is
essentially what was done in our manuscript. Thus, the benchmark compounds in the CASMI study
would serve only to augment the 40 compounds that were chosen in our study.

Perhaps, the biggest limitation of the DASI approach is the inability to verify the validity of the
PMG-Seed structure in advance. We attempted to use the cluster averaged MolFind Score as a means to
prioritize seed structures, but this approach was largely unsuccessful. Future research will be directed
towards addressing this important problem. It is also important to note that the final ranking of the
putative unknown can be improved substantially by combining CID matching (MetFrag Score) with
other measurements such as RI, Ecom50 and drift time (i.e., a MolFind Score). We decided not to report
MolFind Score rankings in the current study as calculated RI, Ecom50 and drift times tend to inflate
the ranking of the putative unknown (in almost all cases, the putative unknown was ranked number 1
with MolFind Score ranking). In practice, with experimental RI, Ecom50 and drift time, it is reasonable
to expect a good MolFind Score ranking for the correct compound.

4. Materials and Methods

The combinatorial structure generation procedure developed in this study involves 4 steps.
The steps in order of operation are:

(1) An initial MolFind [20] run using PubChem. Mono isotopic molecular weight (MIMW), retention
index (RI), Ecom50, drift time and collision induced dissociation spectra (CID) of an unknown
are inputted into MolFind’s graphical user interface. MolFind’s built-in QSPR filters and CID
spectra predictor MetFrag will provide a ranked list of PubChem candidates that best match the
input data in JSON and CSV formats. This step ensures that each of the PubChem candidates
selected for subsequent processing (step 2) not only has the correct MIMW, but also has an RI,
Ecom50, drift time and CID spectrum that closely matches the unknown. Thus, although these
compounds are not an exact match to the unknown, they provide a good structural approximation
to the unknown. This step also ensures that there are at least some structurally related “hits” in
PubChem in order to proceed with seed structure generation.

(2) Output from MolFind (step 1, in JSON format) is fed into the “seed” structure generation program
(PMG-Seed); this program will generate one “seed” structure for the combinatorial structure
generation program. The seed structure is available in SDF format and represents a consensus
structural feature that is shared among the PubChem “hits” identified in step 1 above. For the
purposes of this study, during this step the actual unknown and all of its stereoisomers are deleted
in order to simulate the unavailability of the unknown in the PubChem database.
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(3) Combinatorial structure generation with Parallel Molecular Generator (PMG) [26]; structure
generation is controlled by the seed structure and a list of non-endogenous mammalian structures
(i.e., structures not allowed in the PMG generated structures). PMG takes the molecular formula,
the seed structure (in SDF format) and the list of non-endogenous mammalian structures (in SDF
format) as input. PMG’s output is a list of potential unknowns (i.e., candidates) in SDF format
all of which have the correct molecular formula, contain the consensus seed structure generated
from step 2, and do not contain any non-endogenous mammalian structures.

(4) Finally a second MolFind run is carried out with PMG generated structures from step 3. This step
is identical to step 1 above, but instead of filtering PubChem candidates, we are filtering PMG
generated candidates using RI, Ecom50, drift time and CID spectra matching. Each of these steps
is described in more detail below.

4.1. Initial MolFind Run

First, a “bin” of candidate structures matching a MIMW (˘ mass accuracy of the instrument) is
obtained from the PubChem database (Figure 1). The “bin” is then filtered using the computational
models (Ecom50, RI, Drift Time, BioSM) in MolFind. In a typical MolFind run, experimentally
determined MIMW, Ecom50, Retention Index (RI) and Drift Time values for an unknown compound
are compared with predicted values for candidate compounds from PubChem. Those candidates
with predicted values outside the error range of the predictive models are filtered out. However, for
the purposes of this study, predicted values (rather than experimental values) for Ecom50, RI and
Drift Time were used. Predicted values (found in the Supplementary Materials as an Excel file) were
used in order to ensure that candidates with chemical and physical properties similar to the unknown
(i.e., similar RI, Ecom50 and Drift Time) were selected for seed structure generation. Thus, by using
predicted values for both the unknown and candidate compounds, we reduced bias associated with
using experimental values for the unknown compound and predicted values for candidate compounds.
However, each “unknown” was excluded from the candidate list and thus was not used for generating
seed structures. The remaining candidates are then fragmented and matched with the experimental
CID spectra using the MetFrag algorithm. This results in MolFind Run-1 output (Figure 1), which
includes computationally predicted fragments (MetFrag fragments) for filtered candidates. For the
purposes of this study, it is assumed that the elemental formula of the unknown is known and the
actual unknown or any stereochemically equivalent structure is not present in the PubChem database.
Redundant candidates or candidates with an incorrect elemental formula are eliminated.
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4.2. Seed Structure Generator (PMG-Seed)

Several heuristic algorithms were developed for generating “seed” structures. In the section that
follows, each algorithm will be discussed in detail.

(1) Algorithm-1: Top MetFrag Fragment from Filtered Candidates
(2) Algorithm-2: Top MetFrag Fragment from Top PubChem Cluster
(3) Algorithm-3: Intersecting MetFrag Fragments

4.2.1. Algorithm-1: Top MetFrag Fragment from Filtered Candidates

Algorithm-1 is the simplest of the three. This algorithm starts by combining the MetFrag fragments
(from different candidates) in the MolFind Run-1 output file into a single set. Then, chemical graphs of
these MetFrag fragments are compared to find the unique MetFrag fragments in the set. If a particular
fragment occurs multiple times, the number of occurrences and the relative intensity (experimentally
measured fragment intensity) of the matched peak are recorded as properties of that unique MetFrag
fragment. Finally, MetFrag fragments are sorted by: (1) number of occurrences, and, (2) intensity of the
peaks matched; the MetFrag fragment with the highest number of occurrences and greatest intensity is
used as the “PMG-Seed” If several fragments have the same number of occurrences, the one with the
highest intensity is chosen. If multiple fragments have the same number of occurrences and intensities,
the first item in the sorted list is used.

4.2.2. Algorithm-2: Top MetFrag Fragment from Top PubChem Cluster

Algorithm-2 starts by clustering the candidates in the filtered bin. The filtered candidates are
clustered based on a 90% Tanimoto structure similarity score. The PubChem structure clustering
algorithm was implemented using Chemistry Development Kit (CDK) [27,28] and Hierarchical
Agglomerative Clustering (Hac) library from Software and Programmer Efficiency Research Group
(SAPE) [29]. These PubChem clusters are then ranked by the cluster averaged MolFind Score.
The MolFind Score for a candidate is defined as follows:

MolFind Score “
MetFrag Score `

´

1 ´
|∆RI|

|RI Window|

¯

`

´

1 ´
|∆Ecom50|

|Ecom50 Window|

¯

`

´

1 ´
|∆Dri f t Time|

|Dri f t Time Window|

¯

4

where, ∆RI = Experimental Retention Index ´ Predicted Retention Index [30,31];
RI Window = Maximum RI value deviation based on model statistics [20] (compounds that are within
the experimental RI window are considered potential candidates);
∆Ecom50 = Experimental Ecom50 (the energy in eV required to fragment 50% of a selected precursor
ion) – Predicted Ecom50 [31–33];
∆Ecom50 Window = Maximum Ecom50 deviation based on model statistics [20] (compounds that are
within Experimental Ecom50 ˘ Ecom50 window are considered potential candidates);
∆Drift Time= Experimental Drift Time – Predicted Drift Time;
Drift Time Window = Maximum Drift Time deviation based on model statistics [20];

Following this, a set of MetFrag fragments is constructed from the members of the top ranked
PubChem cluster. The top ranked MetFrag fragment is selected as the “PMG-Seed” structure following
the procedure described in Algorithm-1.

4.2.3. Algorithm-3: Intersecting MetFrag Fragments

This algorithm also starts by clustering the filtered candidates by 90% Tanimoto structure similarity.
The PubChem clusters are then ranked by the cluster averaged MolFind Score. Then, a maximum
common substructure (MCS) is calculated for the top ranked PubChem cluster. Following this, the
MCS of the top ranked PubChem cluster is matched with a set of MetFrag fragments. The number
of times an atom of the MCS is matched with an atom of a unique MetFrag fragment is recorded.
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The “PMG-Seed” structure is constructed by deleting a subset of atoms from the MCS (those MCS
atoms that had no or fewer matches with MetFrag fragments). Atom removals that lead to 2 or more
fragments or disintegration of rings are not allowed. Several variants of Algorithm-3 (Table 5) based
on different MetFrag fragment sets and different atom deletion schemes were tested.

Table 5. Variants of Algorithm-3.

Variant MetFrag Fragment Set Atom Deletion Scheme

Algorithm-3–1 Top cluster Retain MCS atoms with at least 1 match
Algorithm-3–2 All candidates Retain MCS atoms with at least 1 match
Algorithm-3–3 Top cluster Retain MCS atoms with at least 2 matches
Algorithm-3–4 All candidates Retain MCS atoms with at least 2 matches
Algorithm-3–5 Top cluster Retain MCS atoms with at least average number of atom matches *
Algorithm-3–6 All candidates Retain MCS atoms with at least average number of atom matches *

* Average number of atom matches is calculated by averaging the number of matches of atoms with at least
one match.

As an example, Figure 2 illustrates the steps involved in Algorithm-3–3. The seed structure
generation algorithm starts by generating an MCS (for the putative unknown amoxicillin) using
PubChem candidates that clustered together and closely matched amoxicillin. Following this, three
MetFrag fragments are matched with the MCS while updating atom based matching scores. Finally,
the MCS atoms that had fewer than 2 matches are removed. However, the benzene ring (colored in
red) and the carbon atom colored in blue are not removed. The red colored atoms (matching score = 1)
are kept to avoid the disintegration of the benzene ring. Similarly, the blue colored carbon is retained
to prevent the seed structure fragmenting into two pieces.Metabolites 2016, 6, 17 13 of 16 
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source, it can be run on any platform and is easily modifiable.  

We made two modifications to the original PMG program. In the modified version, the valence 
of nitrogen was set to 3. In addition, the program was modified to utilize a list of non-endogenous 
mammalian structures (in SMARTS format). The list of non-endogenous mammalian structures was 
compiled by collecting strained ring systems and bonding patterns that are not typically found in 
mammalian systems (Supplemental Table S1). The PMG-Seed structure (the substructure required in 
all generated structures) and the list of non-endogenous mammalian structures (substructures not 
allowed in generated structures) were used to constrain structure generation. For the work described 
here, PMG structure generation was limited to a maximum of 100,000 structures. PMG uses an 
orderly generation method [34,35] to generate non-duplicate graphs. However, the orderly 
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4.3. Combinatorial Structure Generation

The open source combinatorial structure generator, Parallel Molecular Generator (PMG) [26] was
used for the structure generation. PMG offers several advantages over other proprietary combinatorial
structure generators, such as MolGen [14]. Unlike MolGen, PMG supports multi-threaded architectures
allowing a substantial speedup when multiple processor cores are available. Like MolGen, PMG
provides a way to generate combinatorial structures around a prescribed seed structure. With a
sufficiently large seed substructure, the combinatorial structure space can be narrowed down to a few
hundred or thousand structures. Because PMG is written in java and open source, it can be run on any
platform and is easily modifiable.

We made two modifications to the original PMG program. In the modified version, the valence
of nitrogen was set to 3. In addition, the program was modified to utilize a list of non-endogenous
mammalian structures (in SMARTS format). The list of non-endogenous mammalian structures was
compiled by collecting strained ring systems and bonding patterns that are not typically found in
mammalian systems (Supplemental Table S1). The PMG-Seed structure (the substructure required
in all generated structures) and the list of non-endogenous mammalian structures (substructures not
allowed in generated structures) were used to constrain structure generation. For the work described
here, PMG structure generation was limited to a maximum of 100,000 structures. PMG uses an
orderly generation method [34,35] to generate non-duplicate graphs. However, the orderly generation
algorithm implemented in PMG does not guarantee non-duplicate graphs when a prescribed seed
structure is used. In some cases, generating structures with a prescribed seed structure can lead to
millions of duplicate graphs. Removing these structures once they are generated can be prohibitively
time consuming (several hours or days to generate the first combinatorial structure). Thus, a timeout
(1 h) procedure was used to avoid long running calculations. If PMG failed to output structures after
one hour, the structure generation was terminated.

4.4. Refiltering PMG Generated Structures

PMG generated structures were refiltered with MolFind’s predictive models and, as described
above, the refiltering was done only on PMG generated bins with fewer than 100,000 structures.
Refiltering of bins with more than 100,000 candidate structures was considered impractical.

4.5. Test Dataset and Calculations

The test data set was comprised of 40 human metabolome database (HMDB) compounds with
MIMWs ranging from 103.0633 to 608.2734. CID spectra for each of these 40 test compounds were
acquired in positive ion mode. Detailed information on acquisition of CID spectra is presented in
the Supplementary Materials. The PubChem bins (MIMW ˘ 10 ppm) corresponding to putative
unknowns were downloaded and filtered using computational models in MolFind. Computationally
predicted retention index (RI) [30,31], Ecom50 [31–33], drift time [20], and BioSM [21] were used in the
filtering. The calculations were done with a RI window of ˘ 40 RI units, Ecom50 window of ˘ 0.5 eV
and a drift time window of ˘ 0.35 ms. The filtered candidates were then fragmented and matched
with the experimental CID spectra using the MetFrag algorithm. The output from each MolFind run
(in JSON format) was fed into the PMG-Seed program along with an identifier (PubChem ID) and
chemical formula of the target. The PMG-Seed structures (in SDF format) were generated with the
algorithms described in Section 4.2. The PMG bins that contained fewer than 100,000 structures were
refiltered and matched with the experimental CID spectra using MolFind.

5. Conclusions

The work presented here describes the use of a database assisted structure identification method
for HPLC-MS based metabolomics as a means to identify the structure of an unknown compound
when that compound is not found in Metlin, HMDB or any other metabolomics database. In the
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current study, we evaluated several algorithms for generating “seed” structures (substructures of
the target compound). Building structures around a prescribed seed structure and including a
large list of not-allowed (i.e., nonbiological) substructures provides constraints to the otherwise
intractable combinatorial structure generation problem. One algorithm (Algorithm-1) was able
generate correct PMG-Seeds for 24 compounds (out of 39), but only nine of these seeds were large
enough to constrain the combinatorial structure generator to fewer than 100,000 structures. Another
algorithm (Algorithm-3–6) was able to generate slightly larger correct PMG-Seeds for 21 compounds.
Eleven of these relatively larger seeds were able to constrain the combinatorial structure generator
to yield a manageable number of candidates. In 35 out of 39 cases, at least one algorithm was able to
generate a correct seed structure. Refiltering PMG bins with predictive models in MolFind eliminated
91% of the combinatorial structures on average. Additional filtering of MolFind filtered PMG bins
with predicted molecular mechanics energies eliminated 58% of the remaining candidates on average.
At the present time, the database assisted structure identification method described in this study is
best suited for compounds smaller than 200 Da and should be considered as an aid for structure
identification using detailed mass spectral interpretation techniques. The success rate of this method is
likely to improve with improved predictive models in MolFind, additional filters, improved CID peak
prediction algorithms and more compounds in the PubChem database.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/6/2/17/s1:
(1) A .xlsx file (PMG_Seed_data.xlsx) containing a list of seed structures generated with different algorithms and
SMARTS patterns of non-endogenous mammalian substructures, and, (2) a .docx file (Supinfo_Experimental.docx)
with detailed information on the acquisition of CID spectra. MolFind, PMG-Seed and modified version of PMG
are available to download from http://metabolomics.pharm.uconn.edu/software; Requirements: Java 1.6 or
higher, a valid ChemAxon (http://www.chemaxon.com) license.
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