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Introduction

Diabetes mellitus (DM) is a major health problem affect-
ing individuals around the world. According to the IDF 
2013 published data, Saudi Arabia has the highest preva-
lence (23.9%, excluding prediabetes).1 Approximately 
90% of patients develop type 2 diabetes mellitus (T2DM) 
due to environmental (lifestyle including diet and lack of 
exercise) and genetic factors.2 T2DM is associated with 
major complications that include cardiovascular disease 
(CVD), mainly fatal and non-fatal myocardial infarction, 
heart failure, and cerebrovascular disease.

The UK Prospective Diabetes Study reported a signifi-
cant correlation between intense glycemic control and 
rates of complication. Improved glycemic control, meas-
ured by reductions in HbA1c levels, were associated with 

reduction in microvascular complications (37%), reduc-
tion in myocardial infarction (14%) and a reduction in 
total mortality (21%).2
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Recent studies have shown that Liraglutide, a GLP-1 
analog, improves glycemic control through suppression of 
appetite, delayed gastric emptying, inhibition of glucagon 
release, and stimulation of insulin release in response to 
meal ingestion.3 In addition to improving beta cell function 
a decreasing progression of prediabetes to diabetes liraglu-
tide also helps in weight loss.4 Besides its action on the pan-
creas, GLP-1 receptor expression is widely detected in 
various cells and organs suggesting that GLP-1 may have 
additional roles other than its glucose-lowering effects.5 
One such action has been its role in improving cardiovascu-
lar safety as shown in large randomized trilas.6,7 In general, 
the cardioprotective benefits of liraglutide in T2DM and the 
effect of GLP-1 agonists on adipokines have resulted in an 
improvement in visceral fat and insulin sensitivity.8 GLP-1 
infusion over 72 h has been studied in patients with acute 
myocardial infarction with left ventricular ejection fraction 
(LVEF) less than 35% (established cardiovascular disease), 
which after treatment resulted in improvement in ejection 
fraction. Although the effect of GLP-1 agonists on metabo-
lism and fat distribution has been studied in animals,9 there 
is still limited number of studies in humans. The mechanism 
underlying the reduction in cardiovascular risk in patients 
with diabetes caused by GLP-1 remains unclear, and future 
studies are required to understand this further.

Proteomics is a powerful tool for the study of body 
metabolism for two main reasons. First, changes in protein 
expression reflect physiological situations better than the 
genes themselves and represent the overall changes in the 
body at the metabolic level. Second, given the complex 
multifactorial nature of the metabolism, an approach 
directed at assessing many targets rather than just a few will 
provide additional (and sometimes unexpected) insights. 
Untargeted proteomic profiling identifies changes that rep-
resent overall metabolic changes and is not limited to a sin-
gle organ or system. Several studies have utilized proteomics 
techniques to understand complex metabolic diseases in 
humans10–12 and identify biomarkers for monitoring the pre-
diction and progression of the disease.13 This novel analyti-
cal approach is able to pinpoint individual proteins and 
interaction pathways, providing explanatory clues for the 
potential cardiovascular and metabolic benefits of liraglu-
tide, as well as a strong basis for future biomarkers and drug 
discovery research. In this study, we evaluated the circula-
tory and excretory proteins in patients treated with liraglu-
tide using a proteomics approach and identified protein 
pathways that are altered by the use of liraglutide through 
bioinformatics and network pathway analysis.

Materials and methods

Ethical considerations and informed consent

All study procedures were performed in accordance with 
the ethical standards of the Declaration of Helsinki and the 

universal International Conference on Harmonization-
Good Clinical Practice Guidelines. The Institutional 
Review Board, College of Medicine, King Saud University 
Hospital approved the study protocol (no. E-18-3075). 
Written informed consent was obtained from all the 
participants.

Study subjects

Twenty patients with T2DM followed up in the endocrine 
outpatient clinic at King Saud University Medical City 
with a history of uncontrolled diabetes (HbA1c between 
8% and 11%) were recruited. Patients with indications for 
add-on liraglutide were started on treatment by their physi-
cian in a scaled-up dose from 0.6 mg to 1.8 mg once daily 
subcutaneous injection over a period of 3 weeks. Besides 
the medication the patients were advised to follow similar 
diet control and exercise routine that included suggestion 
for walking for minimum of 30 min daily. The follow-up 
visit was scheduled 3 months after receiving the full dose 
(1.8 mg) of liraglutide. Blood samples were collected by 
venipuncture into plain tubes (Vacutainer, BD Biosciences, 
San Jose, CA, USA) from each patient after a 10 h fast at 
two time points: one sample before and another sample 
after treatment with liraglutide. The plasma was separated 
by centrifugation (15 min, 3000 × g), divided into several 
aliquots, and stored at −80°C for further analysis. The pri-
mary endpoint was a reduction of baseline HbA1c of 
⩾0.5%. The sample size was determined by carrying out a 
power analysis using the Progenesis SameSpots nonlinear 
dynamics statistical software (version 3.3, Nonlinear 
Dynamics Ltd., UK) for determination of the minimum 
number of required biological replicates.

Biochemical analysis

Biochemical analyses were carried out using a Dimension 
Xpand Plus integrated clinical chemistry autoanalyzer 
(Siemens Healthcare Diagnostics, Molecules 2020, 25, 
2831 13 of 18 Deerfield, IL, USA).14 HbA1c was analyzed 
using high-performance liquid chromatography and ion-
exchange chromatography assay (normal range 4.3–5.8%; 
Tosoh Bioscience, San Francisco, USA).

Protein extraction and 2D-DIGE

Proteins were extracted using trichloroacetic acid/acetone 
precipitation, as described by Chen et al.15 The protein con-
centrations were measured in triplicate using a 2D-Quantkit 
(GE Healthcare, Chicago, IL, USA). Equal amounts of pro-
tein (50 μg) from each sample (20 liraglutide pre-treatment 
and 20 liraglutide post-treatment samples) was labeled with 
400 pmol of CyDyes (CyDyeTM Difference gel electropho-
resis (DIGE) Fluor dyes, GE Healthcare, UK) on ice for 
30 min in the dark following manufacturer’s instructions. A 
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mixture of an equal amount of all samples was pooled, 
labeled with Cy2, and used as an internal standard, which 
was normalized and matched across gels to avoid gel-to-gel 
variation. A dye-switching strategy was applied during labe-
ling to avoid dye-specific bias (Supplementary Table S1). 
First-dimension analytical gel electrophoresis was per-
formed, followed by second-dimension sodium dodecyl sul-
fate polyacrylamide gel electrophoresis (SDS-PAGE) on 
12.5% fixed concentration gels, as previously described.10,12 
The gels were scanned with Sapphire Biomolecular Imager 
(Azure Bio systems, Dublin, OH, USA) and digitalized via 
the image analysis software Sapphire Capture system 
(Azure Biosystems, Dublin, OH, USA). For the preparative 
gel, total protein (1 mg) was obtained from a pool of equal 
amounts of protein from the 40 samples. Then, the proteins 
samples were separated by first and second dimensions with 
the same conditions in the DIGE section. The gels were 
fixed in 40% (v/v) ethanol containing 10% acetic acid over-
night and then washed (3 ×, 30 min each, ddH2O). The gels 
were incubated (1 h, 34% (v/v) CH3OH containing 17% 
(w/v) ammonium sulfate and 3% (v/v) phosphoric acid) 
prior to the addition of 0.5 g/L Coomassie G-250. After 
5 days, the stained gels were briefly rinsed with Milli-Q 
water and stored until the spots were picked and identified 
by mass spectrometry.10–12

Statistical analysis

Data for the laboratory values are presented as the mean ± 
SD. The statistical significance of the difference between 
two groups was analyzed by paired Student’s t-test, with a 
value of p < .05 considered as significant. In terms of sta-
tistical analyses for gel image analysis, the 2D-DIGE gel 
images were uploaded into the Progenesis SameSpots soft-
ware (Nonlinear Dynamics, UK) and analyzed using an 
automated spot detection method. Although automatic 
analysis was performed to detect all the spots across all 20 
gels, each selected spot was verified and manually ana-
lyzed wherever necessary. Normalized volumes were used 
to identify the differentially expressed spots. A cutoff ratio 
of ⩾1.5-fold was considered significant using ANOVA 
with a p-value ⩽ .05.

ID Protein by MALDI-TOF mass spectrometry 
analysis

The Coomassie blue-stained gel spots were washed and 
digested, as previously described.10–12 Finally, a mixture 
of tryptic peptides (0.8 μL) derived from each protein was 
spotted onto a Matrix Assisted Laser Desorption/Ionization 
(MALDI) target (384 MTP Anchorchip) (800 μm Anchorchip; 
Bruker Daltonics, Bremen, Germany). The spectra were 
obtained using an UltraflexTerm time-of-flight (TOF) mass 
spectrometer equipped with a LIFT-MS/MS device (Bruker 
Daltonics) at reflector and detector voltages of 21 kV and 

17 kV, respectively, as described previously.10–12 The pep-
tide mass fingerprints (PMFs) were calibrated against a 
standard peptide calibration standard II (Bruker Daltonics). 
The PMFs were assessed using Flex Analysis software (ver-
sion 2.4, Bruker Daltonics). The MS data were interpreted 
using BioTools v3.2 (Bruker Daltonics). The peptide masses 
were searched against the Mascot search algorithm (v2.0.04, 
updated on 09/05/2020; Matrix Science Ltd., UK). The 
identified proteins were screened for Mascot scores higher 
than 56 and p ⩽ .05.

Bioinformatics analysis

Ingenuity pathway analysis (IPA) version 9.0 (Ingenuity 
Systems, Redwood City, CA, USA) was used to analyze 
protein interaction networks and the functions of the 
plasma proteins differentially expressed in liraglutide 
pre-treatment and post-treatment samples. IPA software 
maps UniProt Identification of proteins (IDs) into the 
ingenuity knowledge base, the largest manually curated 
resource combining information from all published sci-
entific studies. This software aids in determining the 
functions and pathways that are most strongly associ-
ated with the MS-generated protein list by overlaying 
the experimental expression data onto networks con-
structed from published interactions. The identified pro-
teins were additionally classified into different 
categories according to their function and location using 
the protein analysis through evolutionary relationships 
(PANTHER) classification system (http://www.pant-
herdb.org) according to their function and location.

Immunoblotting assay

Immunoblotting assay was performed in the current study 
to further confirm the findings. Two proteins with statisti-
cally significant differential abundance were chosen and 
determined by immunoblotting. Primary monoclonal anti-
bodies against Apolipoprotein A-I (mouse, cat # 
SC-376818), retinol-binding protein (RBP, mouse, cat # 
SC-69795) were used. An equal amount of protein 
(2.5 μg) from each sample from the two groups (pre-treat-
ment, n = 20; post-treatment, n = 20, i.e., 50 μg from each 
sample) was taken, pooled together, and then separated by 
One-dimensional discontinuous slab gel electrophoresis 
(12% sodium dodecyl sulfate (SDS)-polyacrylamide gel) 
was used to separate an equal amount of protein from each 
sample (50 μg). A mini trans-blot electrotransfer cell 
(BioRad, California, CA, USA) was employed to transfer 
proteins from the run gels to an Immobilon-P, polyvi-
nylidene difluoride (PVDF) transfer membrane (Millipore, 
Massachusetts, MA, USA). To test the efficiency of the 
transfer, the membranes were stained with Ponceau-S. 
Subsequently, the membranes were blocked with tris-
buffered saline (TBS)–containing 5% fat-free milk (FFM), 
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for 1 h at room temperature, and then the membranes were 
rinsed three times with TBS-T in 10 mm Tris–HCl, 150 mm 
NaCl, 0.1% Tween 20 buffer. After rinsing, the mem-
branes were incubated with the selected primary antibod-
ies at dilution of (1:200) using a blocking buffer. 
Membranes were then incubated with the matched immu-
noglobulin G (IgG)–horseradish peroxidase (HRP)-
conjugated secondary antibody, and the enhanced 
chemiluminescence (ECL, Thermo Fisher Scientific, 
Massachusetts, MA, USA) was used to detect the immu-
noreactive bands. These bands were visualized by scan-
ning with Sapphire Biomolecular Imager (Azure Bio 
systems, Dublin, OH, USA) and digitalized via the image 
analysis software Sapphire Capture system (Azure 
Biosystems, Dublin, OH, USA).

Results

Clinical and biochemical data

The baseline characteristics of the study group are pre-
sented in Table 1. The mean age of the study participants 
was 54.4 ± 9.5 years. After treatment with liraglutide, we 
did not observe any significant changes in body weight, 
BMI, renal function markers, or markers of dyslipidemia 
compared to the pre-treatment data. A statistically signifi-
cant change after treatment with liraglutide was noted in 
the HbA1c levels (p ⩽ .006) with a change of 1.1% from 
the baseline (Supplementary Figure S1). This change was 
clinically significant considering the short duration 
(3 months) of treatment in these patients.

Proteomic analysis and identification of 
differentially expressed proteins

To assess the differential protein expression among 20 
liraglutide-treated individuals (40 samples from 20 gels), 
we performed 2D-DIGE and MALDI-TOF MS. 
Supplementary Figure S2 shows the representative fluo-
rescent protein profiles of a 2D-DIGE of pre-treatment 
samples labeled with Cy3 (Supplementary Figure S2(a)), 
post-treatment samples labeled with Cy5 (Supplementary 
Figure S2(b)), pooled internal control labeled with Cy2 
(Supplementary Figure S2(c)), and merged 2D-DIGE gels 
of samples labeled with Cy3/Cy5 (Supplementary Figure 
S2(d)). Supplementary Figure S2 shows a total of 1100 
spots identified on the gels, among which 128 were sig-
nificantly different (ANOVA, p ⩽ .05; fold change ⩾ 1.5) 
between the pre-treatment and post-treatment samples. 
The spot patterns were reproducible across all 20 gels, 
leading to alignment and further analysis. Normalization 
across the complete set of gels and quantitative differential 
analysis of the protein levels were achieved using an inter-
nal standard with Cy2-labeling. The 128 spots showing 
statistical significance between the two conditions were 
then manually excised from the preparative gel for protein 
identification by MS.

Peptide mass fingerprints successfully identified 72 out 
of the 128 protein spots excised from the preparative gel. 
MALDI-TOF mass spectrometry identified 29 spots to be 
unique protein sequences that were matched to entries in 
the SWISS-PROT database by Mascot with high confi-
dence scores (Supplementary Table S2). The sequence 

Table 1. Clinical and biochemical characteristics of the study population before and after liraglutide treatment.

Pre-treatment Post-treatment p-value

 Mean ± SD Mean ± SD

Height (cm) 158.9 ± 8.7  
Weight (kg) 89.2 ± 13.5 88.4 ± 11.5 .43
BMI (kg/m2) 35.5 ± 5.8 34.9 ± 4.4 .38
HbA1C (%) 9.5 ± 1.1 8.3 ± 1.6 .006*
Total cholesterol (mmol/L) 4.2 ± 1.4 4.1 ± 1.3 .44
LDL (mmol/L) 2.14 ± 1.3 2.18 ± 1.2 .46
HDL (mmol/L) 1.3 ± 0.3 1.2 ± 0.3 .38
TG (mmol/L) 1.7 ± 0.64 1.5 ± 0.42 .20
Urea (mmol/L) 4.8 ± 2.14 6.83 ± 10.30 .22
Creatinine (μmol/L) 64.4 ± 16.5 64.0 ± 18.1 .47
eGFR 95.9 ± 23.9 98.2 ± 22.0 .38
A/C ratio (mg/g) 57.9 ± 65 55.6 ± 53 .42
Diabetes duration 10.1 ± 7.3 years
Ongoing medications Insulin, metformin
Presence of micro or macrovascular complications None

BMI: Body mass index; HbA1C: Hemoglobin A1c; HDL: High-density lipoprotein; LDL: Low-density lipoprotein; TG: Triglyceride; eGFR: Estimated 
glomerular filtration rate. *p < .005.
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coverage of the proteins identified by PMF ranged from 
11% to 95%. In a few cases, variants of the same protein 
were found at several locations on the gel (Supplementary 
Table S2, Supplementary Figure S3). Among the 72 pro-
teins identified, 10 protein spots were upregulated and 62 
were downregulated following treatment with liraglutide 
(Figure 1, Supplementary Table S2, Supplementary Figure 
S3). The significantly upregulated proteins included 
SAHH3 (2.02-fold, p = .003), HBB (1.66-fold, p = .003), 
IC1 (1.71-fold, p = .007), AACT (2.72-fold, p = .008), 
CDK10 (1.53-fold, p = .015), and A1AT (1.5-fold, p = 
.018). The significantly downregulated proteins included 
APOA1 (1.61-fold, p = .019), TRFE (1.69-fold, p = .019), 
CO3 (1.64-fold, p = .024), APOH (1.67-fold, p = .041), 
RET4 (1.54-fold, p = .003), A2MG (1.61-fold, p = .004), 
AKAP9 (2.05-fold, p = .006), and HPT (2.31-fold, p = 
.014); the full list is provided in Supplementary Table S2. 
Among the identified proteins, APOA1, TRFE, CO3, 
CFAB, A2MG, HPT, ALBU, TTHY, APOH, HEMO, 
K2C1, HBB, AACT, and A1AT were found in more than 
one spot on the gels, which could be associated with their 

post-translational modifications, cleavage by enzymes, or 
the presence of different protein species (Supplementary 
Tables S2 and S3).

Principal component and cluster analysis

Principal component analysis was carried out on all 72 
spot features, revealed that the two groups clustered dis-
tinctly from one another with 68% cutoff score (Figure 2). 
The clustering pattern showed that the change in protein 
intensity for selected spots between liraglutide pre-treat-
ment and post-treatment states were significantly different. 
Clusters of expression patterns were exhibited by differen-
tially abundant spots based on hierarchical clustering anal-
ysis (Supplementary Figure S4(a)–(b)).

Network pathway analysis and functional 
classification of proteins

Bioinformatic analysis using IPA was performed for all 72 
differentially regulated proteins. The analysis revealed that 

Figure 1. Graphical representation of the alterations in abundance statistically significant unique proteins identified by 2D-DIGE 
MALDI-TOF analysis between liraglutide pre-treatment and post-treatment states.

Figure 2. Principal component analysis plot of the two first principal components. Both together explained 68% of the selected 
spot’s variability. Pink dots denote the plasma samples pre-treatment and blue dots the post-treatment.
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among 72 proteins, 18 proteins interacted either directly or 
indirectly via protein networks (Figure 3). The software 
computes a score based on the best fit obtained from the 
input data set of proteins and the biological functions data-
base to generate a protein-protein interaction network. The 
generated network is preferentially enriched for proteins 
with specific and extensive interactions, in which the inter-
acting proteins are represented as nodes and their biologi-
cal relationships as a line. Based on the data, five interaction 
networks were identified for proteins exhibiting differen-
tial expression profiles. The highest scoring network (score 
= 42) (Figure 3, Supplementary Figure S5(a)–(b)) incorpo-
rated 18 proteins.

The PANTHER system was used for the classification 
of identified proteins according to their molecular func-
tions (Supplementary Figure 6(a)), biological processes 
(Supplementary Figure 6(b)), cellular components 
(Supplementary Figure 6(c)), and protein classes 
(Supplementary Figure 6(d)). The functional category 
showed that most of the differentially expressed proteins 
identified were enzymes with catalytic activity (35%), 
followed by binding proteins (34%) (Supplementary 
Figure S6(a)). With regards to biological processes, the 

majority of the identified proteins were involved in cel-
lular processes (29%), followed by biological regulation 
and adhesion (26%) (Supplementary Figure S6(b)). The 
majority of the identified proteins were located in the 
cytoskeleton region (64%), followed by the intracellular 
region (29%) (Supplementary Figure S6(c)). Regarding 
the protein class, the majority of the proteins belonged to 
transfer/carrier proteins (26%) and modulators of protein 
binding activity (26%) (Supplementary Figure S6(d)).

Confirmation of changes in selected proteins by 
immunoblotting

Immunoblot assay confirmed the expression of the 
selected proteins that were differentially abundant by 
2D-DIGE analysis (Supplementary Figure S7). The pro-
teins selected for confirmation were Apolipoprotein A-I 
and retinol-binding protein 4. Immunoblots revealed that 
the plasma protein expression of Apolipoprotein A-I and 
retinol-binding protein 4 were decreased respectively, in 
post-treatment group as compared with pre-treatment 
group (p ⩽ .05).

Figure 3. The most enriched interaction network of the differentially expressed proteins in liraglutide pre-treatment compared 
to the post-treatment states. Red nodes indicate upregulated expression; green nodes indicate downregulated expression. The 
central nodes of the pathway related to signaling of the NFKB, ERK1/2, and P38 MAPK were found to be deregulated between 
the two states. Uncolored nodes are proposed by ingenuity pathway analysis and indicate potential targets that were functionally 
coordinated with the differentially expressed proteins. Solid lines indicate direct molecular interactions, and dashed lines represent 
indirect interactions.
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Discussion

In the present study, we aimed to demonstrate alterations 
in the plasma proteome in patients with T2DM before and 
after receiving add-on liraglutide treatment using an untar-
geted proteomics approach. We found that post-treatment 
with liraglutide, the patients showed a significant improve-
ment in their HbA1c levels indicating an improvement in 
their glycemic control. This improvement was seen irre-
spective of the minimal change in patient’s weight or in the 
lipid markers. The patients in our study were given 1.8 mg 
of Liraglutide that is recommended for glycemic control, 
while the recommended dose for effective weight loss is 
3 mg. This could be a reason as to why the weight loss in 
our group of patients was not appreciated while another 
factor could also be due to the short duration of the study. 
Previous studies have shown that changes in weight and 
lipid profile are influenced with duration of liraglutide and 
the dose given. Peradze et al. showed that short-term treat-
ment with high dose liraglutide (3 mg) improved the lipid 
profile while Rondanelli et al. showed that using it in the 
short term did not alter the lipid profile significantly.16–18 
Treatment with liraglutide was also found to improve the 
cardiovascular outcomes6,7,9,19–22 although the underlying 
mechanisms remain unclear. Changes in the plasma pro-
teome reflect changes in whole-body metabolism and pro-
vide an unbiased view of protein dynamics with treatment. 
Our untargeted plasma profiling identified the dysregula-
tion of 72 proteins (62 down and 10 up) between the lira-
glutide pre-treatment compared to the post-treatment 
states, which included proteins involved in regulating the 
acute phase response proteins (APP), enzymes, apolipo-
proteins, complement proteins, cytoskeletal proteins, and 
others.

Proteins decreased post-liraglutide treatment

We identified a decrease in the level of abundance of 62 
proteins in the liraglutide pre-treatment compared to the 
post-treatment states (Supplementary Table S2, Figure 3). 
Liraglutide treatment has been shown to improve the lipid 
and atherogenic profile with dyslipidemia. Following 
treatment with liraglutide, a decrease in the levels of two 
apolipoproteins, Apo A1 and Apo E, are together known to 
be associated with high-density lipoprotein (HDL) parti-
cles. Apo E besides HDL is associated with very low-den-
sity lipoproteins (VLDL), intermediate density lipoproteins 
(IDL), and chylomicron remnants.23 Previous studies have 
reported diverging views regarding the role of HDL in 
CVD, and a few studies have reported decreased HDL lev-
els with liraglutide treatment.16,24 Ariel et al. in their study 
showed that liraglutide administration had a minimal effect 
on the lipoprotein profile in overweight/obese persons 
with prediabetes.25 On the other hand, Engelbrechtsen et 
al. in their study identified 80 lipid particles altered with 

long-term liraglutide treatment. Although their main focus 
was on the reduced levels of ApoB (an atherogenic 
marker), their results also showed a simultaneous signifi-
cant reductions in the levels of ApoA1, similar to our find-
ings.24 The implications of these changes need to be 
confirmed by other studies. In contrast, the decrease in 
ApoE in the post-liraglutide treatment group may reflect a 
decrease in the levels of triglyceride-rich lipoproteins 
(VLDL1, VLDL2, and IDL) and LDL, as noted by other 
studies26

Another protein identified with a decreased abundance 
in our study was beta-2-glycoprotein 1/Apolipoprotein H 
(APOH). APOH is a plasma glycoprotein involved in a 
range of physiological processes. It is known to have role 
in atherosclerosis, clot formation, and fibrinolysis being at 
the interface of inflammation and oxidative stress, making 
it a clinical marker of cardiovascular risk.27,28 Previous 
studies have shown that levels of APOH have been associ-
ated with development of metabolic syndrome, macrovas-
cular and microvascular complications of T2DM.29–32 
Recently, APOH has been shown to interact with propro-
tein convertase subtilisin/kexin-9, a well-known indirect 
regulator of circulating LDL in the bloodstream, whose 
inhibition leads to reductions in LDL cholesterol and 
improvements in CVD33 post-treatment with liraglutide.34 
Although there was a significant reduction in the levels of 
APOH in our study we did not find any associated changes 
in the serum TG levels. Further mechanistic studies are 
needed to evaluate this association further.

It has been reported that GLP-1 has anti-inflammatory 
effects on pancreatic islets and adipose tissue, contributing 
to lowering glucose levels in individuals with diabetes.35 
The anti-inflammatory benefit of liraglutide was observed 
as early as 3 months after treatment initiation. A decrease 
in the acute phase proteins (APP) was noted post-liraglu-
tide treatment group; namely ceruloplasmin, complement 
C3, complement factor B, haptoglobin, fibrinogen-like 
protein 1 (positive APP), retinol-binding protein 4, sero-
transferrin, transthyretin, and hemopexin (negative APP). 
Atherosclerotic CVD is the major cause of morbidity and 
mortality in patients with T2DM, and is one of the causes 
of hyperglycemia and oxidative stress. An increase in the 
CVD risk is accompanied by increase in levels of fibrino-
gen,36 ceruloplasmin,37 and haptoglobin which are accepted 
independent determinants in individuals with T2DM.38 A 
decrease in the levels of these proteins indicates a decrease 
in the systemic inflammatory response and indirectly point 
to a decrease in the development of CVD. In addition to 
the above-mentioned proteins, albumin, alpha-1-acid gly-
coprotein, and alpha 2 macroglobulin, also classified as 
APP, were found to decrease in the liraglutide post-treat-
ment group. A reduction in the levels of these proteins 
could indicate a reduction in the inflammatory state post-
treatment with liraglutide. In addition to the reduction in 
systemic inflammation, liraglutide is also known to reduce 
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inflammation in vascular endothelial cells and protect 
against inflammation-triggered endothelial dysfunction. 
Treatment with liraglutide has been shown to ameliorate 
inflammatory pathways. Our findings are in line with 
Bouchi et al. who reported an improvement in the micro-
inflammation in individuals treated with liraglutide for 
6 months.39

Two complement proteins Complement C3 (CO3) and 
Complement Factor B (CFAB) were noted to have signifi-
cant decreased abundance after liraglutide treatment. CO3 
is an emerging risk marker for cardiovascular and meta-
bolic diseases while CFAB is known to be elevated in adi-
pose tissue and serum from patients with T2DM and 
CVD.40 Interestingly, the reduction of both these proteins, 
whose increase reflects a worsening cardio-metabolic pro-
file, was decreased after short-term liraglutide treatment in 
the present study.

Proteins increased in abundance post-liraglutide 
treatment

Proteomic profiling before and after treatment with lira-
glutide resulted in a significant differential increase in pro-
teins, namely; adenosylhomocysteinase-3, alpha-1-plasma 
protease C1 inhibitor, antichymotrypsin, alpha-1-antit-
rypsin, hemoglobin subunit beta, and cyclin-dependent 
kinase 10. Among these, an interesting protein identified 
in our study was S-adenosyl homocysteinase (SAHH3). 
SAHH3 is an enzyme that participates in the reversible 
hydrolysis of S-adenosyl homocysteine (SAH) to adeno-
sine and homocysteine. Increased plasma homocysteine 
and SAH levels have been associated with an increased 
risk of CVD and heart failure.41,42 Furthermore, elevated 
cellular concentrations of SAH are likely to precede and 
accompany all forms of hyperhomocysteinemia, an inde-
pendent risk factor for CVD.43 Atherogenic mouse models 
have shown that the inhibition of SAHH3 results in ele-
vated plasma SAH levels and induces endothelial dysfunc-
tion44 more than homocysteine. We did not identify any 
previous studies that have identified alterations in the lev-
els of SAHH3 after liraglutide treatment. Further studies 
will be needed to establish its role as a marker of CVD in 
patients treated with liraglutide.

Network pathway analysis highlighted NfKb, p38 
kinases, Akt, ERK1/2, and MAPK1/2 as the central signal-
ing molecules with the highest connectivity to the signifi-
cantly differentially abundant proteins in our data set. The 
identified pathways are mainly responsible for the regula-
tion of the inflammatory pathogenic process contributing to 
the progression of T2DM and the development of CVD. 
NF-κB is recognized as a key nuclear transcriptional factor 
that regulates the expression of a number of inflammation-
related genes. Post-treatment with liraglutide is known to 
ameliorate inflammation, and one of its mechanisms of 
action is through the inhibition of NF-κB phosphorylation 

and its translocation from the cytoplasm to the nucleus. This 
mechanism may underlie the potential anti-inflammatory 
and anti-atherosclerotic effects of GLP-1 agonists. Previous 
studies have shown that liraglutide’s action via the GLP-1 
receptor modulates the ERK1/2 and PI3K/Akt signaling 
pathways and helps in reducing hyperglycemia.45,46 
Liraglutide is known to inhibit NF-κB activation30 and 
ERK1/2 and JNK, which are also involved in its activation 
and the induction of inflammatory cytokines and 
chemokines.35

The strength of the study lies in the fact our study is the 
first to identify proteomics changes in diabetic patients 
treated with liraglutide. On the other hand, limitations of 
study are that the 2D-DIGE mass spectrometry technique 
is both expensive and labor and time intensive that greatly 
increases the cost and time for carrying out the experi-
ments. Another weakness of the study is the smaller num-
ber of patients and the small duration of the treatment for 
the patients.

Conclusion

To summarize, in this study, we report the plasma prot-
eomic profile of patients with T2DM altered with the use 
of liraglutide, a GLP-1 agonist. Benefits of liraglutide 
treatment may stem from the combined effects of altera-
tions in proteins related to inflammation, altered apolipo-
protein regulation, and decreased oxidative stress. These 
changes together help to improve not only glycemia and 
weight loss, but also effectively mediate the anti-athero-
sclerotic and cardio-metabolic effects of liraglutide. The 
findings of our study need to be validated in a larger cohort 
of patients to support the findings of our pilot study and 
also carry out the same for patients using the medication 
for a longer duration of time. The findings from our study 
can be used as potential biomarkers for assessing the car-
diovascular benefit post-treatment with Liraglutide.
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