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Genes and signaling pathways involved in
memory enhancement in mutant mice
Yong-Seok Lee
Abstract

Mutant mice have been used successfully as a tool for investigating the mechanisms of memory at multiple levels,
from genes to behavior. In most cases, manipulating a gene expressed in the brain impairs cognitive functions such
as memory and their underlying cellular mechanisms, including synaptic plasticity. However, a remarkable number
of mutations have been shown to enhance memory in mice. Understanding how to improve a system provides
valuable insights into how the system works under normal conditions, because this involves understanding what
the crucial components are. Therefore, more can be learned about the basic mechanisms of memory by studying
mutant mice with enhanced memory. This review will summarize the genes and signaling pathways that are
altered in the mutants with enhanced memory, as well as their roles in synaptic plasticity. Finally, I will discuss how
knowledge of memory-enhancing mechanisms could be used to develop treatments for cognitive disorders
associated with impaired plasticity.
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Introduction
The brain is the most complex organ in the human body,
containing over 100 billion neurons, which form countless
synapses. Furthermore, numerous signal transduction
pathways interact with each other to build networks in
every single neuron. Considering this complexity, it
might seem naïve to think that manipulating a single
molecule or signaling pathway in a limited area of the
brain can enhance memory. Remarkably, however, it is
not rare for this to happen. In the past two decades,
advances in genetic engineering have permitted the
generation of numerous mutant mouse lines in the field of
neuroscience; these involve the transgenic overexpression,
knockout (deletion), or knock-in (replacement) of specific
genes. Although most of these mutant mice have impaired
brain function, including learning and memory, a remark-
able number show memory enhancement, as reviewed in
this article (Figure 1, Table 1).
Assessing higher cognitive functions such as memory

in rodents became possible due to the development of
diverse animal behavioral tasks. For example, several tasks
examine hippocampus-dependent memory in rodents. The
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Morris water maze and contextual fear conditioning are the
most commonly used hippocampal-dependent tasks. In the
Morris water maze, mice are trained to find and remember
the location of a platform that is hidden under the water,
using spatial cues in the test room. Contextual fear condi-
tioning is a form of associative learning test in which the
animals associate the given context (training chamber) with
noxious stimuli (foot shocks).
Mutant mice have also been used extensively to study

the role of genes and signaling pathways involved in syn-
aptic plasticity. Following the first report of long-term
potentiation (LTP) in the dentate gyrus of the hippocam-
pus by Bliss, Lømo and Gardner-Medwin in 1973 [57,58],
the idea that long-term synaptic plasticity is a cellular
mechanism essential to learning and memory has been
supported and also challenged by a large body of literature
[59-63]. However, recent studies strongly suggest that
such long-lasting changes are indeed induced by learning
in the hippocampus and amygdala [64-66].
In this article, the genes and signaling pathways that

have been successfully manipulated to enhance memory in
mutant mice will be reviewed. In parallel, the correlation
between enhanced memory and increased LTP will also be
discussed to argue that this form of synaptic plasticity plays
a critical role in learning and memory.
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Figure 1 Molecules involved in memory enhancement. Signaling pathways in the presynaptic axonal terminal and the postsynaptic dendritic
spine and nucleus are illustrated in a simplified manner. Green and red arrows indicate positive and negative regulations, respectively. Memory is
enhanced either by the over expression/activation of molecules colored in green or the deletion/inhibition of molecules in red. The detailed roles
of some of these molecules in LTP and memory are described in the text. Cbl-b, casitas B-lineage lymphoma-b; NCX2, Na+/Ca2+ exchanger type
2; GAP-43, growth-associated protein 43; tPA, tissue-type plasminogen activator; HB-GAM, heparin-binding growth-associated molecule; MMP-9,
Matrix metallopeptidase 9; GABA, γ-aminobutyric acid; MAGL, Monoacylglycerol lipase; CaMKII, calcium calmodulin kinase II; BDNF, Brain-derived
neurotrophic factor; Cdk5, Cyclin-dependent kinase 5; Cavβ3, beta intracellular subunit of the voltage-gated calcium channel; PKA, protein kinase
A; PDE, phosphodiesterase; PP1, protein phosphatase 1; MAPK, mitogen-activated protein kinase; CaMKIV, calcium calmodulin kinase IV; CN,
calcineurin; ATF4, activating transcription factor 4; GCN2, general control nonderepressible 2; p-eIF2α, phosphorylated eukaryotic translation
initiation factor 2 subunit α.
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Manipulating excitatory synaptic transmission
Overexpression of NR2B (GluN2B)
The N-methyl-D-aspartate (NMDA) receptors (NMDARs)
are considered to be coincidence detectors that can asso-
ciate two separate events in the brain, since they require
two coincident events for activation: binding of glu-
tamate and removal of Mg2+ by membrane depolarization
[59,63,67]. The subsequent Ca2+ influx activates a variety
of signaling molecules including α-Ca2+/calmodulin-
dependent kinase II (αCaMKII) [59,62,68,69]. NMDAR
comprises an obligatory subunit, NR1 (GluN1), and
other subunits such as NR2 (GluN2A, 2B, 2C, and 2D)
and NR3 (GluN3A and 3B) [67,70,71]. In the 1980s,
Morris and his colleagues demonstrated the critical
role of NMDAR in learning and LTP by showing that
intraventricular infusion of the NMDAR blocker AP5
impaired spatial learning and LTP [72]. Later, this classical
pharmacological experiment was revisited using elegant
gene-knockout technology. Hippocampal CA1-specific
deletion of NR1 impaired LTP and spatial memory
without causing any confounding non-spatial learning
ability deficit [73]. In addition, deletion of NR1 in the
CA3 and dentate gyrus hippocampal subregions also
impaired memory, though affecting its different aspects
[74-76]. Among NR2 (GluN2) subunits, NR2A (GluN2A)
is predominantly expressed and its deletion causes deficits
in hippocampal LTP and hippocampus-dependent learning
tasks [77,78]. The expression of another subunit, NR2B
(GluN2B), is decreased during development and the
duration of NR2B (GluN2B)-mediated currents is longer
than that of NR2A (GluN2A)-mediated currents, which
can allow more Ca2+ influx through NMDARs [71].
Tsien, Zhuo, Liu, and their colleagues generated a

transgenic mouse overexpressing NR2B in the forebrain
to study its role in memory and synaptic plasticity [1].
Prolonged NMDAR activation led to enhancement of
LTP in the hippocampus of the NR2B transgenic mouse,
and these mutants outperformed their wild type litter-
mates in several learning and memory tasks. Firstly, the
transgenic mice showed better performance than wild
type littermates in the hidden-platform version of the
water maze [1,79]. Secondly, both contextual and cued
fear memory were enhanced in the NR2B transgenic
mice. In addition, fear extinction, which is also NMDAR-
dependent and thought to be another form of active learn-
ing, was also facilitated in the mutants. It was later shown
that this superiority in learning and memory is retained
in aged transgenic mice [2]. The memory enhancing



Table 1 Mutant mice with enhanced memory

Mutant Memory phenotypes LTP phenotypes References

Excitatory synaptic transmission

NR2B (GluN2B) Tg Enhanced in MWM, CFC, ORT, NMT Enhanced CA1 LTP [1-4]

Cdk5 cKO Enhanced in CFC, reversal learning in MWM Enhanced CA1 LTP [5]

p25 Tg Enhanced in MWM, CFC Enhanced CA1 LTP [6]

Kif17 Tg Enhanced in MWM, DMT Not determined [7]

ORL1 KO Enhanced in MWM, CFC, PA Enhanced CA1 LTP [8,9]

Hgf Tg Enhanced in MWM Not determined [10]

Cavβ3 KO Enhanced in MWM Enhanced CA1 LTP [11]

Dao KO Enhanced in MWM Enhanced CA1 LTP [12]

Presynaptic function

H-ras Tg Enhanced in MWM, CFC Enhanced CA1, cortical LTP [13]

Ncx2 KO Enhanced in MWM, CFC, ORT Enhanced CA1 LTP [14]

Cbl-b KO Enhanced in MWM (remote memory) No change in CA1 LTP [15]

Gap43 Tg Enhanced in MWM Enhanced CA1 LTP [16]

Inhibitory synaptic transmission

GABAAR α4 (Gabra4) KO Enhanced in CFC, TFC Not determined [17]

Magl KO Enhanced in MWM, ORT Enhanced CA1 LTP [18]

Pkr (Eif2ak2) KO Enhanced in MWM, CFC, AFC Enhanced CA1 LTP [19]

GABAAR α5 (Gabra5) KO Enhanced in MWM Trend of enhanced CA1 LTP [20]

Grpr KO Enhanced in CFC, AFC Enhanced amygdala LTP [21]

Network activity

Bec1 KO Enhanced in MWM, YM No change in CA1 LTP; Impaired LTP in Tg [22]

Kvβ1.1 KO Enhanced in MWM (aged mice only) Enhanced CA1 LTP (aged mice only) [23]

Hcn1 KO Enhanced in MWM Enhanced perforant path LTP [24]

Transcriptional regulation and its upstream molecules

CREB-Y134F Tg Enhanced in MWM, CFC, SR, CD Enhanced CA1 LTP [25]

CREB-DIEDML Tg Enhanced in CFC, SR Not determined [25]

eIF2αS51A KI Enhanced in MWM, CFC, AFC Enhanced CA1 LTP [26]

Gcn2 KO Enhanced in MWM, impaired in CFC Enhanced CA1 LTP [27]

ATF4, C/EBP CI Enhanced in MWM Enhanced CA1 LTP [28]

CamkIV Tg Enhanced in CFC Enhanced CA1 LTP [29]

Ac1 Tg Enhanced in ORT Enhanced CA1 LTP [30]

Ap oa1 Tg Enhanced in CFC, ORT Enhanced CA1 LTP [31]

Pde4d KO Enhanced in MWM, RAM, ORT Not determined, but see [32] [33]

Pde8b KO Enhanced in MWM, CFC Not determined [34]

Calcineurin CI Enhanced in MWM, AFC, ORT Enhanced CA1 LTP [35,36]

PP1 CI Enhanced in MWM, ORT Enhanced CA1 LTP [37,38]

Translational regulation

Paip2a KO Enhanced in MWM, OLT, CFC Enhanced CA1 L-LTP [39]

Fkbp12 KO Enhanced in CFC Enhanced CA1 L-LTP [40]

Epigenetic regulation

Hdac2 KO Enhanced in CFC, AFC, NMT Enhanced CA1 LTP [41]

miRNA biogenesis

Dicer1 KO Enhanced in MWM, CFC, TFC Enhanced CA1 LTP [42]
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Table 1 Mutant mice with enhanced memory (Continued)

Extracellular molecules

Mmp9 Tg Enhanced in MWM, ORT Enhanced CA1 LTP [43]

tPA (Plat) Tg Enhanced in MWM Enhanced CA1 LTP [44]

HB-GAM (Ptn) Tg Enhanced in MWM Enhanced CA1 LTP [45,46]

Other manipulations

Ncs-1 Tg Enhanced in MWM, ORT Enhanced perforant path LTP [47]

Rgs14 KO Enhanced in MWM (learning), ORT Enhanced CA2 LTP [48]

5-HT3R Tg Enhanced in CFC Not determined [49]

Maoa KO Enhanced in CFC, AFC Not determined [50]

Hdc KO Enhanced in MWM, CFC, AFC Enhanced CA1 LTP [51,52]

Def45 KO Enhanced in MWM, ORT Not determined [53,54]

EC-SOD Tg Enhanced in MWM, impaired CFC Enhanced CA1 LTP [55]

S100b KO Enhanced in MWM, CFC Enhanced CA1 LTP [56]

Tg, transgenic; KO, knockout; KI, knock-in; cKO, conditional KO; CI, conditional inhibition; MWM, Morris water maze; CFC, contextual fear conditioning; AFC, auditory
fear conditioning; TFC, trace fear conditioning; ORT, object recognition test; OLT, object location test; RAM, radial arm maze; SR, social recognition; DMT, delay
matching to place task; NMT, non-match to place task; YM, Y-maze; L-LTP, late phase LTP.
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effects of NR2B overexpression go beyond hippocampus-
dependent tasks. NR2B transgenic mice also showed
enhanced working memory performance in the delay
non-match-to-place T-maze task [3]. Accordingly, cortical
LTP was also found to be enhanced in NR2B mutant mice
[3]. Recently, Wang and colleagues overexpressed NR2B
in the forebrains of rats and found that these rats showed
enhanced memory and hippocampal LTP, which demon-
strates that the up-regulation of NR2B results in memory
enhancement in multiple species [4].

Post-translational regulation of NR2B
The function of proteins can be regulated by multiple
post-translational processes such as covalent modifica-
tions, subcellular localization, and degradation. NR2B is
transported along microtubules by a neuron-specific
motor protein kinesin family protein 17 (KIF17) [80]. Inter-
estingly, overexpression of KIF17 increased the synaptic
expression of NR2B and enhanced spatial and working
memory in transgenic mice [7], suggesting that enhanced
transport of NR2B could be the cause of the enhanced
learning ability, at least to some degree.
Calpain is activated by Ca2+ entering through NMDARs,

and it rapidly cleaves NMDAR subunits, which are
clustered with a scaffolding-protein complex that contains
PSD-95; subsequently, it decreases functional NMDAR
expression [81,82]. The proteolysis of NR2B by calpain is
accelerated by interaction of the latter with Cdk5 [5].
Hawasli and colleagues generated a conditional knockout
of Cdk5 in mice and found that the deletion of Cdk5 in
the adult forebrain enhances contextual fear conditioning,
fear extinction, reversal learning in the water maze,
and LTP [5]. In addition, Cdk5 deletion was associated
with a reduction of NR2B degradation that resulted in
augmentation of NMDAR-mediated currents. Recently,
disrupting the NR2B-Cdk5 interaction via a small interfer-
ing peptide has been shown to increase NR2B surface
levels, facilitate synaptic transmission, and subsequently,
improve memory in contextual fear conditioning [83].
Consistent with this, chronic activation of p25, a strong
activator of Cdk5, resulted in deficits in learning and synap-
tic plasticity [6,84]. However, paradoxically, the transient
expression of p25 in mouse forebrain enhanced synaptic
plasticity and hippocampus-dependent memory, including
contextual fear conditioning and learning in the Morris
water maze [6]. This memory enhancement was accom-
panied by increases in numbers of dendritic spines and
synapses [6]. While both NR2A phosphorylation and
NMDA-mediated currents are shown to increase after
the transient overexpression of p25 [6], neither NR2B
expression nor NR2B-mediated currents have been ex-
amined in this conditional transgenic mutant.

Other mutants with enhanced NMDAR function
Other manipulations have indirectly enhanced NMDAR
function and subsequently enhanced memory. Mice
lacking the nociception receptor, opioid receptor-like-1
(ORL1), showed enhanced learning and memory in the
Morris water maze, passive avoidance task, and con-
textual fear conditioning [8,9]. Moreover, LTP was sig-
nificantly enhanced in this mutant. Since ORL1 was
initially reported to inhibit adenylyl cyclase via G pro-
teins [85], an increased level of cAMP was postulated
as the underlying mechanism for enhanced plasticity
and learning in ORL1 knockout mice. However, a
recent study showed that the deletion of ORL1 increases
CaMKII activity and enhances NMDAR function, sug-
gesting that enhanced NMDAR function might be
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responsible for the enhanced cognition in ORL1 knock-
out mice [8].
Transgenic mice overexpressing hepatocyte growth

factor (HGF) also showed enhanced learning and memory
performance in the Morris water maze [10]. Biochemical
analysis revealed that NR2A and NR2B expression was
significantly increased in the hippocampus of HGF trans-
genic mice. Taken together, these studies demonstrate that
up-regulation of NMDAR function is one of the common
molecular mechanisms for genetic enhancement of learn-
ing and memory. Moreover, these studies support the idea
that NMDAR-dependent LTP is strongly associated with
memory performance in a diverse set of behavioral tasks.

Enhancing excitatory presynaptic function
Studies of mice expressing a constitutively active form of
H-ras (H-rasG12V) in axons of pyramidal neurons in the
post-natal hippocampus revealed a role for Ras signaling
in presynaptic neurotransmitter release in LTP and
memory [13]. Presynaptic expression of H-rasG12V re-
sulted in increased activation of mitogen-activated protein
kinase (MAPK) and phosphorylation of its presynaptic
substrate, synapsin I. In addition, these mutants showed
a number of other convergent presynaptic phenotypes,
including a higher number of docked vesicles, an in-
creased frequency of mEPSCs, and altered paired-pulse
facilitation. Moreover, both hippocampal LTP and hip-
pocampal memory were enhanced in the transgenic
mice [13]. Importantly, a synapsin I mutation, which
alone had no measurable effect on LTP or learning, re-
versed the physiological and behavioral enhancements
of the H-rasG12V mice, indicating that H-Ras/MAPK-
dependent phosphorylation of synapsin I played a key
role in the learning enhancements of these mutants.
These results provide strong evidence that the learning
enhancements described were caused by increased phos-
phorylation of synapsin I, and the subsequent enhance-
ment of excitatory presynaptic function. Recently, Kaneko
and colleagues showed that the rate of change in ocular
dominance in response to monocular deprivation is accel-
erated in the mutants, as well as the rate of the recovery
from the deprivation [86]. In addition, presynaptic LTP
is enhanced in the primary visual cortex of developing
H-rasG12V mice (P26-30) [86].

Manipulating inhibition
Disruption of the excitation/inhibition balance has been
proposed as a mechanism underlying many psychiatric
disorders such as Schizophrenia, autism, and learning
disabilities [87-89]. However, evidence is accumulating
that memory can be enhanced by modulating inhibition.
For example, pharmacological suppression of inhibition
has been shown to enhance memory consolidation [90,91].
Moreover, a picrotoxin treatment that reduces inhibitory
synaptic transmission lowered the threshold for LTP induc-
tion [92]. The effect of genetic reduction of tonic inhibition
was examined in GABAAR α4 subunit knockout mice [17].
GABAAR α4 knockouts showed enhanced trace and con-
textual fear conditioning, suggesting that reducing tonic
inhibition can enhance hippocampus-dependent forms of
memory [17]. LTP and other forms of synaptic plasticity
have yet to be tested in this mutant.
Beyond direct manipulation of the GABA receptor,

some manipulations enhance memory by indirectly
affecting inhibition. Monoacylglycerol lipase (MAGL) is
one of the enzymes that regulate endocannabinoid (eCB)
signaling by hydrolyzing the eCB 2-arachidonoylglycerol
(2-AG). Deletion of MAGL increases the level of 2-AG in
the brains of MAGL knockout mice [18]. Exogenous
cannabinoids impair learning and memory. In contrast,
increasing the levels of 2-AG in the MAGL knockout
mice enhanced learning and memory in the Morris
water maze and object recognition tasks [18]. This cog-
nitive enhancement is also accompanied by enhanced
LTP in the hippocampus [18]. The cannabinoid receptor
CB1 is predominantly expressed in inhibitory neurons
and therefore, eCBs are implicated in the regulation of
inhibitory synaptic transmission. Electrophysiological
recordings suggest that the LTP enhancement in MAGL-
null mutants is mediated by 2-AG-induced suppression of
inhibition [18].
GABA release can be inhibited by interferon-γ, whose

translation is negatively regulated by a double-stranded
RNA-activated protein kinase (PKR) and eIF2α. In PKR
knockout mice, the increased translation of interferon-γ
has been shown to increase neuronal activity in the hippo-
campus by reducing GABA release [19,93]. Accordingly,
GABAergic inhibition was decreased in PKR knockout
mice [19]. PKR knockouts showed memory enhancement
in the Morris water maze, and contextual and auditory
fear conditioning. Memory extinction in contextual fear
conditioning was also enhanced in PKR mutants [19].
Network excitability was increased in hippocampal slices
from PKR knockout mice due to reduced GABAergic in-
hibition [19].
One of the key molecules for regulating neuronal ex-

citability is the potassium channel. BEC1 (KCNH3) is a
member of the ether-a-go-go (KCNH) family of voltage-
gated K+ channels that is preferentially expressed in the
forebrain. Deletion of BEC1 increased the excitability of
hippocampal pyramidal neurons and enhanced working
memory, spatial memory, and attention [22]. In contrast,
overexpression of BEC1 in the forebrain impaired memory
and LTP [22]. Taken together, these results suggest that
manipulating the balance of excitation/inhibition by either
reducing inhibition or increasing network excitability
within an appropriate range might be a promising strategy
for cognitive enhancement.
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Manipulating transcriptional regulation
Enhancing CREB function
The formation of long-term memories requires synthesis
of new mRNA and proteins. Synaptic stimulation or
learning activates multiple signaling pathways to orches-
trate gene transcription and translation. Accordingly, over-
expression of transcriptional activators such as CCAAT
enhancer-binding protein (C/EBP) and LAPS18-like protein
(LLP) has been shown to lower the threshold for long-term
synaptic plasticity in the marine snail Aplysia [94,95].
cAMP response element-binding protein (CREB), a

basic leucine zipper transcription factor, is critically
involved in long-term plasticity and memory in both
invertebrates and vertebrates [60,96-102]. In mammals,
CREB-deficient mice have impaired LTP and long-term
memory [96]. By contrast, the threshold for late phase LTP
(L-LTP) was lowered in the hippocampus of mice express-
ing the constitutively active form of CREB (VP16-CREB)
[103]. Kida and colleagues generated two transgenic mouse
lines expressing dominant active CREB mutations in the
forebrain: CREB-Y134F, which displays a higher affinity
for PKA and CREB-DIEDML, which constitutively interacts
with CBP [25]. CREB-Y134F mutant mice outperformed
their wild type littermates in social recognition, contextual
fear conditioning, context discrimination, and the Mor-
ris water maze task. Similarly, the CREB-DIEDML mutant
also showed enhanced memory in social recognition and
contextual fear conditioning, which are hippocampus-
dependent tasks [25]. LTP was also enhanced in CREB-
Y134F mutant mice, demonstrating that enhancing
CREB function facilitates both synaptic plasticity and
memory [25].
CREB activity can be modulated by other regulatory

proteins [104]. Overexpression of CREB2, which is a
negative regulator of CREB in Aplysia, blocked long-
term facilitation, while inhibiting CREB2 lowered the
threshold for long-term facilitation induced by serotonin
treatments [105,106]. This suggests that the balance
between positive and negative regulation of CREB can
determine the polarity and/or strength of synaptic plas-
ticity and memory both in invertebrates and vertebrates.
Activating transcription factor-4 (ATF4), a mammalian
homolog of Aplysia CREB2, is a negative regulator of
CREB in vertebrates [107]. Chen and colleagues found that
the forebrain-specific expression of a broad-spectrum dom-
inant negative inhibitor of the C/EBP family (EGFP-AZIP)
suppresses ATF4 expression [28]. This manipulation shifted
the transcriptional balance in favor of activation of CREB-
downstream genes and lowered the threshold for LTP and
memory formation [28]. Mutant mice showed enhanced
learning when they were trained in the Morris water maze
using a relatively weak training protocol, and a single train
of tetanus, which normally induces only E-LTP, could in-
duce transcription-dependent L-LTP in the mutants [28].
These data suggest that relief of transcriptional repression
can be an evolutionarily conserved strategy for enhancing
learning and memory.
Phosphorylation of the α-subunit of eIF2 can stimulate

the translation of ATF4 mRNA [108,109]. Deletion of
GCN2, a conserved eIF2α kinase, has been shown to
reduce the phosphorylation of eIF2α and suppress the
translation of ATF4 mRNA [27]. The threshold for L-LTP
was lowered and spatial memory was enhanced by this
manipulation when the mutants were trained using a weak
training protocol [27].
To directly examine the role of eIF2α phosphorylation

in synaptic plasticity and memory, eIF2α heterozygous
knock-in mice (eIF2α+/S51A) were generated, in which
the phosphorylation of eIF2α is blocked [26]. In this
mutant, the protein level of ATF4 was significantly re-
duced. Similarly to GCN2 knockout mice, the threshold
for L-LTP was lowered and the mutants showed im-
proved learning and memory in a variety of behavioral
tasks, including contextual and cued fear conditioning,
conditioned taste aversion, and latent inhibition [26].

Positive regulators of CREB
Adenylyl cyclases (ACs) play crucial roles in synaptic
plasticity and memory in the mammalian brain by coup-
ling Ca2+ currents through NMDARs to cAMP signaling
[110]. Of the ACs, AC1 and AC8 are neuron-specific
[110]. Wang and colleagues overexpressed AC1 in mouse
forebrain to examine whether up-regulation of AC1 can
enhance memory [30]. AC1 overexpression enhanced
LTP, and AC1 transgenic mice showed enhanced mem-
ory in the object recognition task. After training in
the object recognition task, activation of MAPK and
CREB was significantly higher in mutants compared
to the control mice, supporting the hypothesis that
up-regulation of CREB function is associated with mem-
ory enhancement [30].
Isiegas and colleagues developed a novel transgenic

system that can conditionally activate cAMP signaling in
mouse forebrain by overexpressing a Gs-coupled octopa-
mine receptor cloned from Aplysia [31,111]. Administra-
tion of octopamine, which is not endogenously expressed
in the mammalian nervous system, activated cAMP
signaling and enhanced hippocampal LTP and memory
in the object recognition task [31].

Negative regulators of CREB
Phosphodiesterases (PDEs) hydrolyze cAMP, and there
are 11 families of PDEs in mammals. Among the four
subtypes of PDE4s (A, B, C, and D), PDE4D knockout
mice have shown memory enhancement in the radial
arm maze, Morris water maze, and object recognition
test [33]. Activation of CREB was also increased in the
PDE4D knockout. Recently, deletion of PDE8B was shown
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to enhance memory in contextual fear conditioning,
the Morris water maze, and an appetitive instrumental
conditioning task [34].

Manipulating translational regulation
Translation of protein can be regulated at multiple levels,
from the initiation of translation to protein degradation.
PABP-interacting protein 2 (PAIP2) negatively regulates
translational initiation by inhibiting poly (A)-binding
protein (PABP). PAIP2A was found to be degraded in
response to either neural activation or behavioral training
in contextual fear conditioning, suggesting that PAIP2A
might be a negative regulator of plasticity and learning
[39]. To examine whether PAIP2A is indeed involved in
memory formation, Khoutorsky and colleagues generated
PAIP2A knockout mice [39]. PAIP2A knockouts showed
memory enhancements in multiple behavioral tasks in-
cluding the Morris water maze, contextual fear condition-
ing, and object-location memory tasks, which all depend
on the hippocampus. PAIP2A knockout mice also showed
a lowered threshold for the induction of L-LTP [39].
Mammalian target of rapamycin (mTOR) signaling

regulates translational initiation and is involved in memory
formation and synaptic plasticity [112,113]. Dysregulation
of mTOR signaling is also associated with cognitive
disorders such as tuberous sclerosis [114,115]. Several
mTOR-interacting proteins can regulate this signaling
pathway. Among these, FK506-binding protein 12 (FKBP12)
inhibits mTOR. Accordingly, activation of mTOR signal-
ing is enhanced in brain-specific FKBP12 knockout mice
and L-LTP and contextual fear memory was enhanced in
the mutants [40].

Manipulating epigenetic regulations
In addition to transcriptional and translational regula-
tions, histone modification and DNA methylation are
involved in regulating learning and synaptic plasticity.
Pharmacological manipulations of histone acetylation by
treating with histone deacetylase (HDAC) inhibitors have
been shown to enhance memory and synaptic plasticity in
both mammals and invertebrates [116,117]. In addition,
reducing histone acetyltransferase activity impaired both
long-term memory and LTP in mice [118,119]. Guan and
colleagues generated both transgenic and knockout mice
for different HDACs [41]. HDAC2-, but not HDAC1-
overexpressing mice show deficits in memory and LTP,
suggesting that HDAC2 might be a major target of HDAC
inhibitors associated with memory enhancement [41].
Consistently, HDAC2 knockout mice showed enhanced
memory and increased LTP [41]. Chromatin immunopre-
cipitation experiments showed that HDAC2 is associated
with genes previously known to be involved in synaptic
functions such as Bdnf, Egr1, Fos, Camk2a, Creb1, Crebbp,
NRXN3, and the NMDAR subunit genes [41].
Manipulating microRNA biogenesis
MicroRNAs (miRNAs) are small non-coding RNA mole-
cules that inhibit the translation of their target mRNAs.
The miRNAs regulate various cellular functions including
synaptic plasticity, learning, and memory [120]. Dramatic
changes in the expression of miRNA have been shown to
occur in response to NMDA-dependent neuronal activa-
tion or behavioral training in contextual fear conditioning
[121]. Dicer, a type III ribonuclease, is a key enzyme for
generating the mature form of miRNAs. Konopka and
colleagues investigated the effects of miRNA using con-
ditional knockout mice expressing Cre recombinase,
which is under the control of tamoxifen [42]. Deletion
of Dicer1 in the adult brain reduced the abundance of
mature miRNAs, but did not cause neuronal death or
abnormalities in motor function, anxiety, or circadian
rhythm, for up to 14 weeks after induction of the Dicer1
mutation. Interestingly, however, Dicer1 conditional
knockout mice showed enhanced learning and memory
in the Morris water maze and fear conditioning tests
[42]. Dicer1 deletion also altered the morphology of den-
dritic spines and increased the levels of synaptic proteins
related to plasticity, such as brain-derived neurotrophic
factor (BDNF), AMPA receptor, post-synaptic density
protein 95 (PSD-95), and matrix metalloproteinase-9
(MMP-9). These results suggest that miRNA might be
another important player in memory enhancement [42].

Manipulating extracellular molecules
Long-term synaptic plasticity is accompanied by synaptic
structural remodeling and, therefore, manipulating any
molecules that modify synaptic structures may affect
synaptic plasticity and memory. MMPs are zinc-dependent
proteases that are involved in the remodeling of the pericel-
lular environment by degrading the extracellular matrix.
Overexpression of MMP-9 in the forebrain enhanced mem-
ory in the Morris water maze and the object recognition
task, and LTP was also enhanced in the MMP-9 transgenic
mice, demonstrating that MMP-9 is a positive regulator of
LTP and memory [43].
Tissue-type plasminogen activator (tPA) is an extracel-

lular serine protease [122]. Deletion of tPA caused defi-
cits in L-LTP and several forms of memory [123-125].
Consistently, neuronal overexpression of tPA enhanced
both LTP and hippocampus-dependent spatial memory
[44]. However, the mechanism underlying enhanced
memory and LTP remained unclear. It has also been
reported that tPA is involved in the processing of a
neurotrophic factor, brain-derived neurotrophic factor
(BDNF) [126]. The overexpression of tPA may increase
the production of mature BDNF, which is one of the
key molecules involved in L-LTP and long-term memory
[127,128], with consequent enhancement of hippocampal
LTP and spatial memory.



Lee Molecular Brain 2014, 7:43 Page 8 of 14
http://www.molecularbrain.com/content/7/1/43
The Role of LTP in memory enhancement
Interestingly, there are mutant mice that show enhanced
LTP without changes in behavior, or even with deficits
in learning and memory (Table 2). For example, PSD-95
knockout mice showed severe deficits in spatial learning
and memory, whereas they showed a dramatic increase
in hippocampal LTP [129]. It has been extensively de-
bated whether LTP is both necessary and sufficient for
memory storage [130]. As well as the PSD-95 knockout,
the other studies summarized in Table 2 also seem to
support the idea that LTP is not strongly associated with
memory. This may mean that long-term synaptic plasti-
city such as LTP is not sufficient for long-term memory
storage. So far, it is difficult to draw a firm conclusion
based on the studies using mutant mice. As discussed by
Neves, Cooke, and Bliss [130], in order to establish the
causality of LTP for memory, one needs to design an
experimental system (a mutant mouse) in which only LTP
is manipulated without affecting any other biological pro-
cesses. However, most of the mutant mice listed in Table 2
show other behavioral and physiological phenotypes in
addition to LTP enhancement. Firstly, other synaptic
structures and functions in addition to LTP are affected
in the mutants. For example, deleting PSD-95 affected
AMPA receptor functions [131] and dystrophin knockout
altered GABAergic inhibition [132]. Secondly, genetic
manipulations caused abnormalities in other physiological
processes. For example, FMR2 knockout mice show in-
creased latency to paw withdrawal in the hot-plate test,
suggesting that pain perception has been altered in the
mutant, which might affect the learning and memory
phenotype in fear conditioning [133].
In this review, the analysis began from the perspective

of enhanced learning, not from that of enhanced LTP.
Table 2 LTP enhancement without memory enhancement

Mutant LTP phenotypes M

Psd-95 KO Enhanced CA1 LTP Im

Limk-1 KO Enhanced CA1 LTP N

Syndecan-3 KO Enhanced CA1 LTP Im

PTPδ KO Enhanced CA1 and CA3 LTP Im

IRSp53 KO Enhanced CA1 LTP Im

Giα1 KO Enhanced CA1 LTP Im

Tropomodulin-2 KO Enhanced CA1 LTP Im

Dystrophin KO Enhanced CA1 LTP Im

Tsc2 KO Enhanced CA1 LTP Im

GluR2 (GluA2) KO Enhanced CA1 LTP Im

Fmr2 KO Enhanced CA1 LTP Im

dnPAK Tg Enhanced cortical LTP Im

Inositol 1,4,5-triphosphate 3-kinase KI Enhanced CA1 LTP N

KO, knockout; Tg, transgenic; KI, knock-in; MWM, Morris water maze; RAM, radia
PA, passive avoidance; *impaired in contextual discrimination test.
As discussed above, even if LTP is enhanced by a muta-
tion, the same genetic manipulation could cause ab-
normalities in other cellular processes required for
normal learning and memory, which makes it more dif-
ficult to draw conclusions about the role of LTP in
memory. However, a better correlation between LTP
and memory was observed when LTP was analyzed in
the mutants that do show memory enhancement, sup-
porting the hypothesis that the genes and signaling
pathways involved in LTP are crucial to the cellular
mechanisms of memory. Moreover, bi-directional manipu-
lations of several genes have resulted in corresponding
bi-directional changes in both LTP and memory. For
example, deletion of tPA in mice resulted in deficits in
LTP and several forms of memory such as contextual
fear conditioning, object exploration, and active avoidance
tasks [123,124]. In contrast, transgenic expression of tPA
enhanced both LTP and hippocampus-dependent spatial
memory [44]. Bi-directional manipulations of memory
phenotypes are highly correlated with similar changes in
LTP in several mouse mutants that each carrying a differ-
ent genetic mutation, suggesting that this form of synaptic
plasticity does play a critical role in learning and memory.
This review may support the concept that LTP enhance-
ment is necessary for memory facilitation. Of the 47
mutants listed in Table 1, LTP has been examined in 38,
and 36 of those 38 show enhanced LTP. Two mutants,
the Cbl-b knockout and BEC1 knockout, demonstrated
enhanced memory without an enhancement of LTP
[15,22], which may disprove the necessity of LTP en-
hancement for memory enhancement. However, there
are plausible explanations for this. It is well known that
there are multiple protocols for LTP induction and a
particular gene might only be involved in a form of LTP
emory phenotypes Reference

paired in MWM [129]

ormal initial learning, impaired reversal learning in MWM [134]

paired in MWM [135]

paired in MWM, RAM [136]

paired in MWM, ORT [137]

paired in CFC, PA, ORT; but normal in MWM [138]

paired in CFC, MWM [139]

paired in MWM, ORT [140]

paired in MWM, CFC* [114]

paired in MWM [141,142]

paired in CFC, but normal in MWM [133]

paired in MWM (21 days), CFC (1 day) [143]

o change in MWM [144]

l arm maze; ORT, object recognition test; CFC, contextual fear conditioning;



Lee Molecular Brain 2014, 7:43 Page 9 of 14
http://www.molecularbrain.com/content/7/1/43
that is induced by a specific protocol. For example, deleting
GluR-A (GluA1) caused a large deficit in the LTP induced
by high frequency stimulation (100 Hz tetanus), but spared
the LTP induced by a theta-burst pairing protocol
[145,146]. Although the hippocampal LTP induced by high
frequency stimuli was not enhanced in Cbl-b knockout
mice, other protocols for enhancing LTP have not yet been
tested in these mice [15]. Another possibility is that LTP
enhancement might be observed in other brain areas of
those mutants, because different brain areas are involved
in different forms of memory. Interestingly, the spatial
memory enhancement in Cbl-b knockout mice was more
pronounced when memory was tested 45 days after train-
ing [15]. It has been shown that episodic memory is
initially processed in the hippocampus and is then
gradually transferred to the cortical areas for long-term
storage [147]. Thus, long-term synaptic plasticity could be
enhanced in cortical areas in Cbl-b knockout mice.
Neither high frequency nor theta-burst stimulation

resulted in LTP enhancement in the hippocampus of
BEC1 knockout mice [22]. Interestingly, prominent
enhancements were observed in working memory and
attention tests [22], which involve cellular mechanisms
in other brain regions. Synaptic plasticity in other
brain areas such as the prefrontal cortex has not yet
been examined in this mutant. Therefore, the studies
involving Cbl-b and BEC1 knockouts cannot necessarily
disprove the necessity of LTP enhancement for memory
enhancement. However, it is possible that the performance
in memory tasks might be enhanced by LTP-independent
mechanisms in some mutants. For example, increased
attention or other physiological changes could be respon-
sible for the enhancement of behavioral performance
by BEC1 knockout mice in spatial and working memory
tests [22].
It is worth noting that causality between a genetic

manipulation and LTP enhancement is not always clear.
The mechanism for each mutant summarized in this review
might not be the root cause of the observed enhancements
and should be regarded as tentative. For example, although
the mechanism underlying memory enhancement by acute
expression of p25 is categorized as altered ‘excitatory synap-
tic transmission’ (Table 1), this might not be the proximal
cause for the memory enhancement. Instead, the impact of
the mutation on synaptic structures, such as the increased
number of spines, could be the direct cause for the en-
hancement [6]. It will also be necessary to investigate which
stages of memory processing are facilitated by the smart
mutations, and these are not clear in most cases.

Potential therapeutic strategies involving memory
enhancement
Elucidating memory-enhancing mechanisms will provide
valuable insights into treatment options for disorders
associated with memory impairments. As discussed above,
reducing HDAC activity enhances memory in normal
mice [41,116]. Manipulating HDAC activity has been
suggested as a potential treatment for a specific cognitive
disorder. Rubinstein-Taybi syndrome (RTS) is a genetic
disorder associated with intellectual disabilities and skel-
etal abnormalities. RTS is caused by mutations in CREB
binding protein (CBP), which has histone acetyltransferase
(HAT) activity. Either the heterozygous deletion of Cbp or
the expression of a mutant CBP lacking HAT activity
caused deficits in LTP and memory in mice [119,148]. In
these mouse models of RTS, administration of the HDAC
inhibitors, SAHA or TSA, significantly improved both the
behavioral and physiological phenotypes [119,148]. There
is evidence that reducing the phosphorylation level of
eIF2α can enhance memory in mice [26]. Interestingly, de-
letions of the eIF2α kinases GCN2 or PERK have been
shown to prevent deficits in synaptic plasticity and spatial
memory in mice expressing familial Alzheimer's disease-
related mutations in APP and PSEN1 [149]. Taken together,
these data suggest that genes implicated in memory en-
hancement in mutant mice may be potential targets for
drugs designed to improve physiological conditions and
behavioral outcomes in diseased brains.

Adverse effects of mutations that enhance memory
It is important to note that unexpected and adverse be-
havioral effects can accompany genetic manipulations that
enhance memory. For example, NR2B transgenic mice
have shown enhanced chronic pain [150,151]. In addition
to the hippocampus, NR2B was also overexpressed in
pain-related forebrain areas of the transgenic mice, includ-
ing the anterior cingulate cortex [150]. While NR2B trans-
genic mice and their wild-type littermates showed similar
responses in an acute pain test, the NR2B transgenic mice
displayed enhanced responsiveness to a peripheral injec-
tion of inflammatory stimuli that induce chronic pain,
suggesting that the overexpression of NR2B in the fore-
brain can affect pain perception in mice [150].
Another deficit associated with memory enhancement

is the loss of memory flexibility. As discussed, overexpres-
sion of AC1 enhances memory in an object recognition
test [30]. However, the AC1 transgenic animals showed
slower extinction for contextual fear memory [30], sug-
gesting that this mutant might have lost its behavioral
flexibility. Memory extinction does not simply involve for-
getting, but is an active learning process that is critical for
behavioral adaptation [152]. Similarly, while calcineurin
inhibition facilitated memory in fear conditioning and
conditioned taste aversion tests, it impaired the extinction
of previously formed contextual fear memory and condi-
tioned taste aversion memory [35,153]. FKBP12 knockout
mice that have shown enhanced memory in contextual
fear conditioning have also displayed abnormalities in
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other behavioral tests [40]. The mutant mice showed a
performance comparable to their wild-type littermates
during initial learning in the water maze and Y-maze
tasks. [40]. However, the knockout mice showed deficits
in reversal learning, in which the mice need to learn new
locations for the escape platforms [40]. Moreover, FKBP12
mutants showed a preference for the familiar object over
the novel object in an object recognition test, and dis-
played increased repetitive behavior in a marble-burying
test [40]. These findings suggest that the other smart
mutants might also display unknown behavioral or
physiological side-effects.
This issue will be critical when attempts are made to

develop treatments for brain disorders based on memory
enhancing mechanisms. It is recommended that the re-
searchers in this field should standardize a set of rigorous
behavioral tests to examine whether a memory mutant
has any other behavioral and physiological phenotypes,
including changes in motor function, locomotion, pain,
anxiety, social behavior, and behavioral flexibilities.
Unfortunately, it is not clear why some mutations have
an adverse impact on behavior. It is well known that
different brain areas are involved in different aspects of
learning and memory. For example, different areas are
involved in consolidation and extinction of fear memory
[154]. Most of the genetic manipulations described in this
review affect the whole body or at least the whole fore-
brain of the mouse. Thus, it is not surprising that a
manipulation that is beneficial to one brain function
could have negative effects on another. Applying more
advanced genetic techniques that are region- and/or
cell-specific may help in the design of smart mice with
reduced risk of side-effects.

Conclusions
Genetic mutations that enhance memory in mice fre-
quently result in a concomitant increase in LTP, sug-
gesting that this form of synaptic plasticity plays a
crucial role in learning and memory. Although there
are still many issues to be addressed, it is clear that
studies on the molecular and cellular mechanisms leading
to enhanced memory in mutant mice have generated
important insights into the pathways and mechanisms
involved in plasticity and memory, which may help in
the future development of broadly applicable approaches
to treating neurological disorders.
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