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Abstract: Over the last few decades, benefitting from the sufficient sensitivity, high specificity,
nondestructive, and rapid detection capability of the surface-enhanced Raman scattering (SERS)
technique, numerous nanostructures have been elaborately designed and successfully synthesized
as high-performance SERS substrates, which have been extensively exploited for the identification
of chemical and biological analytes. Among these, Ag nanorods coated with thin metal oxide
layers (AgNRs-oxide hybrid array substrates) featuring many outstanding advantages have been
proposed as fascinating SERS substrates, and are of particular research interest. The present review
provides a systematic overview towards the representative achievements of AgNRs-oxide hybrid
array substrates for SERS applications from diverse perspectives, so as to promote the realization
of real-world SERS sensors. First, various fabrication approaches of AgNRs-oxide nanostructures
are introduced, which are followed by a discussion on the novel merits of AgNRs-oxide arrays,
such as superior SERS sensitivity and reproducibility, high thermal stability, long-term activity in
air, corrosion resistivity, and intense chemisorption of target molecules. Next, we present recent
advances of AgNRs-oxide substrates in terms of practical applications. Intriguingly, the recyclability,
qualitative and quantitative analyses, as well as vapor-phase molecule sensing have been achieved
on these nanocomposites. We further discuss the major challenges and prospects of AgNRs-oxide
substrates for future SERS developments, aiming to expand the versatility of SERS technique.

Keywords: surface-enhanced Raman scattering (SERS); Ag nanorods-oxide hybrid array substrates;
oblique angle vapor deposition (OAD); SERS sensitivity; stability; reusability; qualitative and
quantitative analyses; vapor-phase molecule sensing

1. Introduction

Since the discovery of surface-enhanced Raman scattering (SERS) in the 1970’s [1], this vibration
spectroscopic phenomenon has attracted enormous attention both in experimental study [2–4]
and theoretical calculation [5–7]. Compared with normal Raman signals, the Raman scattering
cross-sections of molecules can be enhanced by many orders of magnitude when they are adsorbed
on the rough surfaces of noble metal (Au, Ag, and Cu) nanostructures [8–10]. This remarkable
enhancement is aroused from two types of mechanisms, i.e., electromagnetic (EM) and chemical
(CM) enhancements. The EM enhancement originates from the strongly amplified electric field
at metal surface that is capable of generating localized surface plasmon resonance (LSPR), which
depends significantly on the shape, size, and separation of metallic nanostructures [11–13]. The Raman
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signals of molecules in close proximity to the electromagnetic field are dramatically amplified, with
an enhancement factor (EF) of ~104–107 [14–16]. While the CM enhancement is caused by the
charge transfer between adsorbed molecules and metal surfaces, and always contributes to an EF
of 10–102 [17–19]. Benefiting from the superior sensitivity and specificity, SERS has been widely
implemented in the detection and analysis of molecules at extremely low concentrations, which exhibits
tremendous opportunity for biological [20,21], chemical [14,22], clinical [23,24], environmental [25,26],
and security sensing applications [27,28].

Recently, nanofabrication approaches based on oblique angle vapor deposition (OAD) [29–31]
and anodic aluminum oxide (AAO)-templated growth [32–34] have been developed to produce
uniform and large-area Ag nanorods (AgNRs) arrays as SERS-active substrates. As the combination
of OAD and substrate rotation, the glancing angle deposition (GLAD) [35,36] technique is employed
to produce well-designed nanostructures such as vertical nanopillars [37], L-shaped AgNRs [38],
zigzag columns [39] and spirals [40,41]. Such nanostructures could promote the generation of “hot
spots” that are crucial for SERS enhancement. AgNRs substrates with optimal morphology could
generate a SERS EF as high as 109 [42], and have been utilized successfully for the determination
of chemical molecules [29,33,37], bacteria [43,44], viruses [45,46], amino acids [47], uranyl ion [48],
polychlorinated biphenyls [32,34], and so forth. Nevertheless, the development of the SERS technique
requires substrates that can not only provide giant enhancement, but also are robust, stable, and
easy and relatively inexpensive to fabricate and store. Unfortunately, AgNRs substrates suffer from
some intrinsic drawbacks. First, they have a low melting point of ~100 ◦C [49,50], which causes their
thermal instability and as a result, deteriorates their SERS performance at high-temperature conditions.
Meanwhile, the highly active surfaces of AgNRs are prone to oxidize/sulfurate in air [51–53], and
are readily corroded by external etchants [54–56], leading to a severe decrease in SERS response.
The high costs of SERS detections based on Ag nanostructures also restrict the universality of the
SERS technique.

To overcome these inevitable limitations, covering AgNR arrays with thin metal oxide layers
has been proposed as a strategy to solve the above problems [49,50,56–61]. These oxide materials
include Al2O3, TiO2, SiO2, HfO2, and so on. Taking advantages of the excellent stability and
multi-functions of oxide layers, AgNRs-oxide hybrid array substrates provide superior SERS sensitivity
and reproducibility, high thermal stability, long-term activity in air, corrosion resistivity, and intense
chemisorption of target molecules. These advantages contribute to recyclable and cost-effective SERS
substrates for both qualitative and quantitative analyses. This review introduces the synthesis of
AgNRs-oxide arrays as versatile SERS substrates, summarizes their structural, physical, and chemical
properties, and highlights their practical applications. We further discuss the major challenges and
prospects of AgNRs-oxide substrates for future SERS developments.

2. Fabrication of AgNRs-Oxide Hybrid Array Substrates

2.1. Fabrication of AgNR Arrays

AgNR arrays are synthesized based on OAD technique. OAD is a physical vapor deposition
technique in which the vapor atoms are deposited at a large incident angle θ (>70◦) with respect to
the substrate normal [31,37]. The growth of AgNRs is controlled by shadowing effect and surface
diffusion, and their morphology can be readily tailored by tuning the deposition conditions such as
incident angle, growth time, growth rate, and substrate temperature. Typically, AgNRs were prepared
on Si wafers in an electron-beam system at high vacuum level. During deposition, the incident angle
of vapor flux was set at ~86◦ off the substrate normal. The deposition rate was fixed at 0.75 nm/s to
a desirable thickness read by a quartz crystal microbalance (QCM) [49,57]. As shown in Figure 1A,
the resulted AgNRs are of cylindrical shape, uniformly distributed and well-separated. The detailed
deposition procedure can be found in previous publications [30,31,37,58].
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Figure 1. (A) Scanning electron microscopy (SEM) image of a pristine AgNRs substrate deposited via 
the OAD method at the incident angle of 86°, the deposition rate of 0.75 nm/s to a total thickness of 
500 nm; (B) SEM image of AgNRs coated with an Al2O3 layer by 5 atomic layer deposition (ALD) 
cycles; (C) Transmission electron microscopy (TEM) images of AgNRs coated with Al2O3 layers by 1, 
2, 3, and 5 ALD cycles, respectively (Reprinted with permission from [49]); (D) TEM images of AgNRs 
before and after coating with SiO2 layers for different reaction times (Reprinted with permission  
from [58]. Copyright (2011) American Chemical Society); (E) TEM image of a single AgNR with TiO2 
capping primarily at the nanorod tip (top), and electron diffraction pattern of multiple AgNRs 
(bottom) (Reprinted with permission from [50]. Copyright (2014) AIP Publishing LLC). 

2.2. Fabrication of AgNRs-Oxide Hybrid Array Substrates with Different Oxide Layers 

Several approaches have been exploited to produce oxide layers over AgNR arrays. Because 
SERS is a highly localized effect that depends significantly on the distance between metal surfaces 
and target molecules [62–64], the oxide shells should be thin enough so as not to eliminate the SERS 
enhancement. In this regard, atomic layer deposition (ALD) holds great potential in the oxide 
formation of AgNRs-oxide hybrid substrates. ALD is a unique thin film growth technique by means 
of sequential self-limiting surface reactions of gaseous precursors [65–67]. It is capable of preparing 
high-quality films with precise thickness control at the atomic scale, excellent conformality 
independent of the substrate geometry, low defect density, and large-scale uniformity. As an 
example, Ma et al. have deposited Al2O3 over AgNRs using trimethylaluminum (TMA) and water as 
ALD precursors [49]. High purity N2 was adopted as the carrier and purge gas. Typically, one 
complete reaction cycle consisted of four steps: (1) TMA reactant exposure; (2) N2 gas purging;  

Figure 1. (A) Scanning electron microscopy (SEM) image of a pristine AgNRs substrate deposited via
the OAD method at the incident angle of 86◦, the deposition rate of 0.75 nm/s to a total thickness of
500 nm; (B) SEM image of AgNRs coated with an Al2O3 layer by 5 atomic layer deposition (ALD)
cycles; (C) Transmission electron microscopy (TEM) images of AgNRs coated with Al2O3 layers by
1, 2, 3, and 5 ALD cycles, respectively (Reprinted with permission from [49]); (D) TEM images of
AgNRs before and after coating with SiO2 layers for different reaction times (Reprinted with permission
from [58]. Copyright (2011) American Chemical Society); (E) TEM image of a single AgNR with TiO2

capping primarily at the nanorod tip (top), and electron diffraction pattern of multiple AgNRs (bottom)
(Reprinted with permission from [50]. Copyright (2014) AIP Publishing LLC).

2.2. Fabrication of AgNRs-Oxide Hybrid Array Substrates with Different Oxide Layers

Several approaches have been exploited to produce oxide layers over AgNR arrays. Because
SERS is a highly localized effect that depends significantly on the distance between metal surfaces
and target molecules [62–64], the oxide shells should be thin enough so as not to eliminate the SERS
enhancement. In this regard, atomic layer deposition (ALD) holds great potential in the oxide formation
of AgNRs-oxide hybrid substrates. ALD is a unique thin film growth technique by means of sequential
self-limiting surface reactions of gaseous precursors [65–67]. It is capable of preparing high-quality
films with precise thickness control at the atomic scale, excellent conformality independent of the
substrate geometry, low defect density, and large-scale uniformity. As an example, Ma et al. have
deposited Al2O3 over AgNRs using trimethylaluminum (TMA) and water as ALD precursors [49].
High purity N2 was adopted as the carrier and purge gas. Typically, one complete reaction cycle
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consisted of four steps: (1) TMA reactant exposure; (2) N2 gas purging; (3) water vapor exposure;
and (4) N2 gas purging. This reaction cycle was repeated for different times so as to control the
Al2O3 thickness. TiO2 and HfO2 have also been successfully deposited over AgNRs by ALD [57,60],
with similar reaction cycles but different precursors and reaction time. It is worth noticing that a
low-temperature ALD process at 50 to 80 ◦C is required to avoid the coarsening and fusion of the
underneath AgNR arrays during oxide growth. Besides, based on the hydrolysis reaction of tetraethyl
orthosilicate (TEOS), uniform and conformal SiO2 layers have been coated onto AgNRs to form
AgNRs-SiO2 core-shell nanostructures [58]. The shell growth made porous SiO2 more compact, and
its thickness was tailored by varying the coating time. Moreover, Huang et al. proposed to cover
AgNRs with a thin TiO2 layer directly through OAD fabrication [50]. To be specific, after AgNRs
deposition, they changed the evaporation material from Ag to TiO2, and did the deposition again
at the same substrate orientation. Because this coating approach only requires the OAD system
instead of many complicated apparatuses, it is very efficient and cost-effective and thus promising for
real-world fabrication.

3. Characterization of AgNRs-Oxide Hybrid Array Substrates

3.1. Morphology of AgNRs-Oxide Hybrid Array Substrates

Figure 1B shows the scanning electron microscope (SEM) image of the AgNRs-oxide substrate.
Due to the ultrathin feature of oxide layer, AgNRs-oxide arrays reveal no visible morphology variation
compared with the pristine AgNRs. To have a better observation of the oxide shells, high-resolution
transmission electron microscope (HRTEM) analysis is employed to provide a visual evidence, which
is also applied to investigate oxide thickness growth. As illustrated in Figure 1C,D, the oxide layers
fabricated by ALD and hydrolysis reaction are amorphous in structure and of different thickness,
uniformly and conformally wrapping AgNRs. When the reaction time is very short, the as-prepared
oxide layers possess a few pinholes; as the reaction continues, the shells become thicker and more
compact. HRTEM results also demonstrate that the growth thickness increases linearly with the
ALD cycle/reaction time [49,58], which is beneficial for us to precisely control the layer thickness
to sub-nanometer scale. The thickness of Al2O3, TiO2, and HfO2 shells fabricated by ALD is about
0.6–0.8 nm per ALD cycle [49,57,60], and that of SiO2 grown by hydrolysis reaction is approximately
0.27 nm/min [58]. For TiO2 capping prepared by the OAD method in Figure 1E, it is about 5 nm thick
and mainly located on the top surfaces of AgNRs, and has both amorphous and crystalline regions [50].

3.2. SERS Sensitivity and Reproducibility of AgNRs-Oxide Hybrid Array Substrates

It has been long recognized that the SERS enhancement of metal nanostructures depends strongly
on the distance between metal surfaces and adsorbed molecules. We therefore investigate the coating
effect on the sensitivity of SERS substrates. The results in Figure 2a clearly present that the SERS
efficiency of AgNR arrays decreases to ~65% and ~50% after ~0.7 nm (1 ALD cycle) and ~1.5 nm (2 ALD
cycles) oxide coating, and declines monotonously with further increasing the oxide thickness [49].
We should note that, due to the ultrathin feature of oxide layers, the strong SERS enhancement
of AgNRs is well maintained. All hybrid substrates exhibit satisfactory SERS EFs on the order
of 107 [49,57,60], confirming the remarkable sensitivity of AgNRs-oxide nanocomposites. A low
relative standard deviation (RSD) value with Raman signals of ~5% [56] (see Figure 2b) indicates
that the AgNRs-oxide substrates are uniform in structure and of good reproducibility for SERS
measurements, which is also a prerequisite for quantitative analysis.
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Figure 2. (a) Raman spectra of 5 × 10−6 M methylene blue (MB) molecules adsorbed on the uncoated 
AgNRs substrate (0 cycle) and on AgNR arrays coated with Al2O3 layers by 1, 2, 3, and 5 ALD cycles 
(Reprinted with permission from [49]); (b) SERS intensity distribution of 1 × 10−5 M dipicolinic acid 
(DPA) at 1010 cm−1 band from 20 randomly selected spots over the AgNRs substrate coated with an 
Al2O3 layer by 1 ALD cycle (Reprinted with permission from [56]. Copyright (2015) American 
Chemical Society). 

3.3. Thermal Stability of AgNRs-Oxide Hybrid Array Substrates 

High-temperature SERS detection is a vital part for routine applications, which can be utilized for 
monitoring many in situ reactions, such as thermal crystallization [68], structural variations [69,70], and 
chemical reactions [52,71] at elevated temperatures. For pristine AgNR arrays, their structure begins 
to change at a very low temperature of 50 °C, and collapses completely at 100 °C [49,50]. It is thereby 
highly demanded to improve the thermal stability of AgNRs-based sensors both in morphology 
robustness and SERS sensitivity. Since the melting point of oxides (1700–2700 °C) is much higher than 
that of silver (960 °C), covering AgNR arrays with oxide layers might be effective to address this 
issue. It is illustrated in Figure 3a that the AgNRs substrate coated by 1-cycle Al2O3 (~0.7 nm) are 
robust in morphology at 200 °C, but melt partly at 300 and 400 °C. For AgNRs coated by 2-cycle Al2O3 
of ~1.5 nm thick, no obvious structural change is observed after being heated at 300 and 400 °C [49]. 
The morphology robustness also leads to the stabilized SERS performance at elevated temperatures, 
demonstrated in Figure 3b–c. As such, AgNR arrays coated with ~1.6 nm TiO2 or HfO2 shell also 
sustain their morphology and SERS efficiency at 300–400 °C [57,60]. Moreover, by capping the top 
surfaces of AgNRs with high melting-temperature TiO2 of ~5 nm, the Ag mass transport from tips to 
sides is slowed down. They preserve their shapes well at 100 °C, while they coarsen to some extent 
at 200 °C [50]. These results suggest that the oxide coating/capping functions as a barrier to protect 
AgNRs both in morphology stiffness and SERS sensitivity against high temperatures, and covering 
the entire surfaces of AgNRs is especially useful to achieve these goals. 

Figure 2. (a) Raman spectra of 5 × 10−6 M methylene blue (MB) molecules adsorbed on the uncoated
AgNRs substrate (0 cycle) and on AgNR arrays coated with Al2O3 layers by 1, 2, 3, and 5 ALD cycles
(Reprinted with permission from [49]); (b) SERS intensity distribution of 1 × 10−5 M dipicolinic acid
(DPA) at 1010 cm−1 band from 20 randomly selected spots over the AgNRs substrate coated with
an Al2O3 layer by 1 ALD cycle (Reprinted with permission from [56]. Copyright (2015) American
Chemical Society).

3.3. Thermal Stability of AgNRs-Oxide Hybrid Array Substrates

High-temperature SERS detection is a vital part for routine applications, which can be utilized for
monitoring many in situ reactions, such as thermal crystallization [68], structural variations [69,70], and
chemical reactions [52,71] at elevated temperatures. For pristine AgNR arrays, their structure begins
to change at a very low temperature of 50 ◦C, and collapses completely at 100 ◦C [49,50]. It is thereby
highly demanded to improve the thermal stability of AgNRs-based sensors both in morphology
robustness and SERS sensitivity. Since the melting point of oxides (1700–2700 ◦C) is much higher than
that of silver (960 ◦C), covering AgNR arrays with oxide layers might be effective to address this issue.
It is illustrated in Figure 3a that the AgNRs substrate coated by 1-cycle Al2O3 (~0.7 nm) are robust
in morphology at 200 ◦C, but melt partly at 300 and 400 ◦C. For AgNRs coated by 2-cycle Al2O3 of
~1.5 nm thick, no obvious structural change is observed after being heated at 300 and 400 ◦C [49].
The morphology robustness also leads to the stabilized SERS performance at elevated temperatures,
demonstrated in Figure 3b,c. As such, AgNR arrays coated with ~1.6 nm TiO2 or HfO2 shell also
sustain their morphology and SERS efficiency at 300–400 ◦C [57,60]. Moreover, by capping the top
surfaces of AgNRs with high melting-temperature TiO2 of ~5 nm, the Ag mass transport from tips to
sides is slowed down. They preserve their shapes well at 100 ◦C, while they coarsen to some extent
at 200 ◦C [50]. These results suggest that the oxide coating/capping functions as a barrier to protect
AgNRs both in morphology stiffness and SERS sensitivity against high temperatures, and covering the
entire surfaces of AgNRs is especially useful to achieve these goals.
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Figure 3. (a) SEM images of AgNR arrays coated with Al2O3 layers by 1 and 2 ALD cycles after 
annealing at 300 and 400 °C; Raman spectra of 5 × 10−6 M MB adsorbed on AgNRs substrates coated with 
Al2O3 layers by (b) 1 ALD cycle and (c) 2 ALD cycles, before/after annealing at 200, 300, and 400 °C, 
respectively (Reprinted with permission from [49]). 

3.4. Temporal Stability of AgNRs-Oxide Hybrid Array Substrates 

The effect of oxide coating on the temporal stability of AgNRs in air is investigated as a function 
of shelf time, see details in Figure 4 [49]. For pristine AgNR arrays, due to the highly active surfaces, 
the SERS activity drops drastically in air, which declines by half after 10-day storage time and is about 
one order smaller after 50 days. On the other hand, when AgNRs are uniformly wrapped with oxides, 
the protective shells could suppress their surface reactions with air, and accordingly the shelf life is 
dramatically increased. Specifically, the AgNRs substrate coated with ~0.7 nm Al2O3 presents a slight 
signal decrease after 50 days, which can be explained by the pinhole-containing feature of the 
ultrathin oxide shell. While the substrates coated by ~1.5 nm or thicker Al2O3 remain almost constant 
in SERS response during the whole test period. As a result, a thin but compact coating layer could 
sufficiently passivate the internal Ag NRs so as to stabilize their SERS activity under atmospheric 
conditions for a long period. Similar conclusion has been verified on AgNRs-TiO2 substrates [57]. 

 
Figure 4. The normalized Raman intensities of 5 × 10−6 M MB Raman peak at 1622 cm−1 on the uncoated 
AgNRs substrate and on AgNR arrays coated with Al2O3 layers by 1, 2, 3, and 5 ALD cycles, as a 
function of the measurement time (Reprinted with permission from [49]). 

3.5. Chemical stability of AgNRs-oxide hybrid array substrates 

To function as reliable SERS sensors, the chemical stability is of essential importance especially 
at erosive environments. Because chloride ions [54,72,73], strong oxidants [54,56], and acidic 

Figure 3. (a) SEM images of AgNR arrays coated with Al2O3 layers by 1 and 2 ALD cycles after
annealing at 300 and 400 ◦C; Raman spectra of 5 × 10−6 M MB adsorbed on AgNRs substrates coated
with Al2O3 layers by (b) 1 ALD cycle and (c) 2 ALD cycles, before/after annealing at 200, 300, and
400 ◦C, respectively (Reprinted with permission from [49]).

3.4. Temporal Stability of AgNRs-Oxide Hybrid Array Substrates

The effect of oxide coating on the temporal stability of AgNRs in air is investigated as a function
of shelf time, see details in Figure 4 [49]. For pristine AgNR arrays, due to the highly active surfaces,
the SERS activity drops drastically in air, which declines by half after 10-day storage time and is about
one order smaller after 50 days. On the other hand, when AgNRs are uniformly wrapped with oxides,
the protective shells could suppress their surface reactions with air, and accordingly the shelf life is
dramatically increased. Specifically, the AgNRs substrate coated with ~0.7 nm Al2O3 presents a slight
signal decrease after 50 days, which can be explained by the pinhole-containing feature of the ultrathin
oxide shell. While the substrates coated by ~1.5 nm or thicker Al2O3 remain almost constant in SERS
response during the whole test period. As a result, a thin but compact coating layer could sufficiently
passivate the internal Ag NRs so as to stabilize their SERS activity under atmospheric conditions for a
long period. Similar conclusion has been verified on AgNRs-TiO2 substrates [57].
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Figure 4. The normalized Raman intensities of 5 × 10−6 M MB Raman peak at 1622 cm−1 on the
uncoated AgNRs substrate and on AgNR arrays coated with Al2O3 layers by 1, 2, 3, and 5 ALD cycles,
as a function of the measurement time (Reprinted with permission from [49]).

3.5. Chemical Stability of AgNRs-Oxide Hybrid Array Substrates

To function as reliable SERS sensors, the chemical stability is of essential importance especially at
erosive environments. Because chloride ions [54,72,73], strong oxidants [54,56], and acidic solutions [61,74]
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can severely etch silver atoms and cause the shape transformation of Ag nanostructures (see Figure 5a
as an example), it is crucial to improve the chemical stability of AgNRs against corrosion. We find that
after Al2O3 deposition, the chemical stability of coated substrates is substantially improved, even if
the oxide shell is sub-nanometer and has a few pinholes [56]. As shown in Figure 5b–d, the chemically
inert Al2O3 shell prevents the internal AgNRs from direct contact with external etchants such as NaCl
and H2O2, retaining sufficiently their morphology and SERS efficiency. Additionally, for strong acidic
media where Al2O3 will dissolve quickly, ultrathin HfO2 film has been implemented to protect AgNRs
from failure [61]. This kind of substrate possesses the acid-resistant property, making it applicable in
acid solutions of practical environments.
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costly preparation and disposable property seriously hinder the universality of SERS technique. For 
this reason, it is significant to develop recyclable SERS substrates. One feasible way is the direct 
degradation of adsorbed molecules from substrate surfaces after SERS identification. For AgNR 
arrays coated with photocatalytic material TiO2 [75–77], the self-cleaning ability is realized through 
ultraviolet (UV) light-induced decomposition of organic molecules adsorbed on the substrate, i.e., 
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Figure 5. SEM images of (a) pristine AgNRs and (b) the AgNRs substrate coated with 1-cycle Al2O3

after being merged in a 30 mM NaCl solution for 3 h; (c) reflectance spectra variations of the AgNRs
substrate coated with 1-cycle Al2O3 within a 12 h NaCl erosion time; (d) SERS performance of AgNRs
coated with 1-cycle Al2O3 before/after NaCl (30 mM, 3 h) and H2O2 (2.2%, 0.5 h) immersion, using
1 × 10−6 M 4-aminothiophenol (4-ATP) as probing molecules (Reprinted with permission from [56].
Copyright (2015) American Chemical Society).

4. Applications of AgNRs-Oxide Hybrid Array Substrates

4.1. Reusable SERS Substrates

Given that SERS substrates are generally made of noble metals and are not readily reused, the
costly preparation and disposable property seriously hinder the universality of SERS technique.
For this reason, it is significant to develop recyclable SERS substrates. One feasible way is the direct
degradation of adsorbed molecules from substrate surfaces after SERS identification. For AgNR arrays
coated with photocatalytic material TiO2 [75–77], the self-cleaning ability is realized through ultraviolet
(UV) light-induced decomposition of organic molecules adsorbed on the substrate, i.e., subsequent to
SERS measurements, the substrate can be purified by UV illumination and be reused for further SERS
analysis [57]. As revealed in Figure 6a, four “detection-UV cleaning” circulations are carried out on
the AgNRs substrate coated with ~2 nm TiO2. Strong target signals are observed during SERS sensing,
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and they almost vanish after UV irradiation. More importantly, the results from the subsequent three
circulations show that the Raman intensities are fully recovered at each detection step, which suggests
that the AgNRs-TiO2 structure is capable of enduring multiple UV irradiations with considerable
robustness. Another point to note is that the molecule degradation capability not only comes from
the photocatalysis of TiO2, it also benefits from the intensive interaction between Ag and TiO2 that
optimizes the separation of photo-excited charge carriers and as a result facilitates the degradation
efficiency (see Figure 6b) [78–80].

Thermal annealing is another way to detach molecules from adsorbed surfaces, and accordingly
it might be helpful to clean and regenerate SERS substrates. By virtue of the high melting-temperature
HfO2 [81], the AgNRs substrate coated by ~1.6 nm HfO2 represent good thermal stability and
morphological robustness at temperatures up to 400 ◦C [60]. After SERS detection, the regeneration
of AgNRs-HfO2 can be achieved by heating the substrate on a hot plate within several seconds.
This process leads to the thermal release of adsorbed molecules and refreshes the substrate for
subsequent measurements. From Figure 6c,d, one sees that the hybrid substrate maintains its SERS
efficiency well during 30 “detection-heating” cycles, demonstrating the remarkable stability and
recyclability of AgNRs-HfO2 substrate. As a consequence, reusability could eliminate the single-use
shortcoming of conventional SERS substrates, in which way the high costs for SERS measurements are
substantially reduced and the practicability of the SERS technique is extended.
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Figure 6. (a) Raman spectra of 5 × 10−6 M MB molecules adsorbed on the AgNRs substrate coated with
~2 nm TiO2 in four “detection-UV cleaning” cycles; (b) the schematic for the photocatalytic mechanism
of AgNRs-TiO2 hybrids (Reprinted with permission from [57]); (c) Raman spectra of 1 × 10−6 M MB
on the AgNRs substrate coated with ~1.6 nm HfO2 measured in multiple “detection-heating” cycles
and (d) the 1623 cm−1 peak intensity variations in 30 cycles (Reprinted with permission from [60].
Copyright (2016) American Chemical Society).

4.2. Qualitative and Quantitative SERS Analyses

To make SERS technique a practical and reliable analysis tool, both qualitative and quantitative
abilities are required for desirable SERS substrates. It has been reported that Al2O3 has high affinity
to carboxyl (–COOH) functional groups, ascribed to the strong polar interaction [82,83]. Therefore,
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we adopt AgNRs-Al2O3 substrates to enhance the absorbability and correspondingly SERS detection
efficiency of carboxylic acids. Dipicolinic acid (DPA) is a commonly used biomarker for the recognition
of bacterial spores [83,84], so its sensitive and quantitative probing is particularly important. Figure 7a
shows the Raman spectra of DPA by employing AgNRs coated with 1-cycle Al2O3 as the SERS platform,
with the limit of detection (LOD) down to 10−8 M. Meanwhile, the partial least squares regression
(PLSR) [85,86] model in Figure 7b exhibits good predictability within the concentration ranging from
1 × 10−8 to 1 × 10−5 M, which provides a calibration for the quantification of trace DPA. In addition
to analytes that can directly react with Al2O3 surfaces, for those who have no or weak interaction with
oxides (such as pyridine, acridine, and cyanide [87–89]), the pinhole-containing AgNRs-Al2O3 arrays
provide a channel to anchor them directly onto Ag surfaces through Al2O3 pinholes. For instance, the
LOD of NaCN on the pinhole-containing AgNRs-Al2O3 substrate is as low as 1 ppb, and quantitative
analysis also reveals a satisfactory PLSR predictability [56]. These results suggest that AgNRs-oxide
substrates are appropriate to detect a variety of molecules in both qualitative and quantitative manners.
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Figure 7. (a) SERS spectra of dipicolinic acid (DPA) on the AgNRs substrate coated with an Al2O3 layer
by 1 ALD cycle, with concentrations from 1 × 10−4 to 1 × 10−8 M; (b) The concentration dependence
of DPA peak intensity at 1010 cm−1 as a function of DPA concentrations ranging from 1 × 10−4 to
1 × 10−8 M. The inset illustrates the actual DPA concentrations versus their predicted values between
1 × 10−5 to 1 × 10−8 M with the partial least squares regression (PLSR) model (Reprinted with
permission from [56]. Copyright (2015) American Chemical Society).

From a more realistic perspective, AgNRs-oxide substrates have been adopted to sense food
antiseptics [61]. It is known that food antiseptics with appropriate amount could inhibit bacteria
and extend food’s shelf life; whereas excessive addition might be harmful for human health [90,91].
Hence, quantitative analysis of antiseptics based on SERS is of great value. Potassium sorbate (PS) and
sodium benzoate (SB) are common food antiseptics. Because they only work in acidic media [92,93],
the AgNRs-HfO2 substrate with acid resistance is applicable for their identification [61]. The LODs of
these two antiseptics are both 300 µg/L, which are much lower than their dosage standard in food.
Therefore, the SERS substrate meets the demand of identifying PS and SB in practice. Moreover, the
PLSR relationship between the concentrations and SERS spectra of a series of PS solutions performs
quite well. As for the mixture of PS and SB, even if some of their characteristic peaks overlap, the
two respective PLSR models of them are both accurate and reliable (see Figure 8). That is to say, the
Raman peaks corresponding to SB in spectra do not interfere the quantification of PS molecules, and
vice versa.
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Figure 8. (a) The black, blue, and red lines represent the Raman spectra of PS solution, mixture
solution containing PS and SB molecules, and SB solution measured with SERS substrates, respectively;
the pink and blue rectangles mark the characteristic peaks of PS and SB that are employed to calibrate
PLSR model; (b) PS concentration predicted by the PLSR model established with Raman spectra
corresponding to PS characteristic peaks; (c) difference between predicted PS concentration of each
mixture and average predicted PS concentration of solution with the same PS concentration; (d) PS
concentration in the test solution with different compositions predicted by the PLSR model of PS
(Reprinted with permission from [61]).

4.3. Vapor-Phase Molecule Sensing

Aside from revealing the feasibility of SERS determination in liquids, AgNRs-oxide arrays also
provide real-time monitoring of vapor-phase molecules at ultralow concentrations [60]. To capture
and sense target gases, the AgNRs-HfO2 substrate is placed in a homemade gas detection system
presented in Figure 9a. 2-naphthalenethiol (2-NAT) is selected as the model gas, and high purity
N2 is utilized as the carrier gas. During gas detection, N2 is injected into the analyte solution, and
target molecules in the vapor phase are carried out together with the N2 flow and are captured by the
AgNRs-HfO2 platform. SERS spectra are recorded simultaneously during gas passing. It is shown in
Figure 9b that the 2-NAT signals ascend continuously with the gas flowing until the saturation of the
substrate surface. The LOD of 2-NAT is down to 20 ppb, verifying the effectiveness of AgNRs-HfO2

substrate for gas detection. Furthermore, we explore the renewability of AgNRs-HfO2 arrays during
gas recognition, i.e., after SERS measurement, the substrate is heated on a hot plate at 250 ◦C for 30 s
to desorb molecules. The results in Figure 9c reveal that the Raman intensities of 600 ppb 2-NAT
at 1379 cm−1 peak escalate with vapor passing and after each annealing treatment, the substrate
is free of 2-NAT while it is totally recovered in the following “vapor exposure-thermal cleaning”
cycles. We believe this highly robust and versatile SERS platform could act as a recyclable sensor
for in situ monitoring of complex gases from realistic environments, such as air pollutants [94,95],
explosives [96,97], volatile organic compounds [98,99], and chemical warfare agents [100,101].
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intensity variations of 600 ppb 2-NAT during the repetition of “vapor exposure-thermal cleaning” cycles
on the substrate (Reprinted with permission from [60]. Copyright (2016) American Chemical Society).

5. Conclusions

This review provides insights for the synthesis, characterization, and applications of AgNRs-oxide
hybrid array substrates as SERS sensing platforms, all in order to emphasize our understanding and
utilization of the SERS technique. AgNR arrays are prepared based on the OAD method, and oxide
shells are readily coated onto AgNRs by diverse approaches with controllable thickness and excellent
uniformity. The characterization of these nanocomposites is detailed in aspects of shell growth, SERS
sensitivity, and reproducibility, as well as thermal, temporal, and chemical stability. By virtue of the
ultrathin thickness, uniformity, and stability of oxide layers, AgNRs-oxide substrates possess large
SERS EFs, outstanding reproducibility, and excellent stability. In addition, the reusability, quantification,
and gas sensing have been achieved on the substrates, which hold great potential for the identification
of trace analytes in real systems.

Although AgNRs-oxide array substrates have proved their extraordinary advantages, they are
still in their infancy for practical SERS applications, and several challenges are yet to be addressed.
First, AgNRs-oxide hybrid arrays possess satisfactory reproducibility and reliability exceeding the
performance of commonly used nanoparticles, which are crucial for biosensing. The qualitative and
quantitative detection of DPA, an anthrax biomarker, has been achieved on the AgNRs-Al2O3 substrate.
As for the SERS-based immunoassay and nucleic acid detection, AgNRs-oxide arrays offer potent
capture substrates to bind SERS nanotags. The close proximity of the substrate–nanotag interface
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provides additional plasmonic coupling that further increases the SERS enhancement. It is thus urgent
to demonstrate the SERS determination of bacteria, viruses, nucleic acids, and proteins on AgNRs-oxide
arrays before the substrates can be routinely applied. Second, surface functionalization [102–104]
should be realized on AgNRs-oxide substrates to further boost their widespread employments. Third,
because different oxide materials possess various unique features according to their chemical or
physical properties, further exploration of the diverse functions of AgNRs-oxide nanocomposites
is still in great demand, which is essential for developing multifunctional SERS sensors in certain
conditions. Moreover, aside from oxides, combining AgNR arrays with other attractive materials, e.g.,
graphene [105–107] and MoS2 [108,109], is another advisable method for future SERS developments.
Overall, along with the growing study, deeper understanding, and better optimization of AgNRs-oxide
nanostructures, these substrates hold great promise as affordable and portable SERS sensors, and
would open up a new era for practical SERS applications.
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