
OR I G I N A L R E S E A R C H

Identification of Candidate Genes and

Therapeutic Agents for Light Chain Amyloidosis

Based on Bioinformatics Approach
This article was published in the following Dove Press journal:

Pharmacogenomics and Personalized Medicine

Wenxiang Bai1,2,*

Honghua Wang1,*

Hua Bai1,3

1Comprehensive Cancer Center,

Xiangshui People’s Hospital, Xiangshui
224600, People’s Republic of China;
2Department of Respiratory Medicine,

Xiangshui People’s Hospital, Xiangshui,
224600, People’s Republic of China;
3Department of Hematology, The

Affiliated Drum Tower Hospital of

Nanjing University Medical School,

Nanjing 210008, People’s Republic of

China

*These authors contributed equally to

this work

Objective: Systemic amyloid light chain (AL) amyloidosis is a rare plasma cell disease.

However, the regulatory mechanisms of AL amyloidosis have not been thoroughly uncov-

ered, identification of candidate genes and therapeutic agents for this disease is crucial to

provide novel insights into exploring the regulatory mechanisms underlying AL amyloidosis.

Methods: The gene expression profile of GSE73040, including 9 specimens from AL

amyloidosis patients and 5 specimens from normal control, was downloaded from GEO

datasets. Differentially expressed genes (DEGs) were sorted with regard to AL amyloidosis

versus normal control group using Limma package. The gene enrichment analyses including

GO and KEGG pathway were performed using DAVID website subsequently. Furthermore,

the protein–protein interaction (PPI) network for DEGs was constructed by Cytoscape soft-

ware and STRING database. DEGs were mapped to the connectivity map datasets to identify

potential molecular agents of AL amyloidosis.

Results: A total of 1464 DEGs (727 up-regulated, 737 down-regulated) were identified in AL

amyloidosis samples versus control samples, these dysregulated genes were associated with the

dysfunction of ribosome biogenesis and immune response. PPI network and module analysis

uncovered that several crucial genes were defined as candidate genes, including ITGAM, ITGB2,

ITGAX, IMP3 and FBL. More importantly, we identified the small molecular agents (AT-9283,

Ritonavir and PKC beta-inhibitor) as the potential drugs for AL amyloidosis.

Conclusion: Using bioinformatics approach, we have identified candidate genes and path-

ways in AL amyloidosis, which can extend our understanding of the cause and molecular

mechanisms, and these crucial genes and pathways could act as biomarkers and therapeutic

targets for AL amyloidosis.

Keywords: light chain amyloidosis, bioinformatics approach, differentially expressed genes,

candidate genes, therapeutic agent

Introduction
Amyloid light chain (AL) amyloidosis is a life-threatening protein deposition

disease and the most common type of systemic amyloidosis.1 Pathologically, AL

amyloidosis is characterized by the accumulation of monoclonal light chain in

multiple organs as amyloid fibrils, predominantly in the kidney, liver, peripheral

nerves and heart.2 Clinically, it has an insidious onset and is difficult to recognize at

an earlier stage. Once the symptoms become evident, visceral damage is usually

irreversible, eventually leading to severe organ damage and shortens survival.3 So

early diagnosis and targeted therapy of this cancer are essential for AL amyloidosis
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patients and to get a better prognosis. As for the early

diagnosis of AL amyloidosis, amyloid deposition is the

most widely used biomarker, but it is required invasive

organ biopsy for HE staining, Congo red staining, and

electron microscopy.4 Moreover, the molecular mechanism

of AL amyloidosis occurrence and progression remains

unclear. Therefore, it will be worthwhile to uncover the

AL amyloidosis etiology for the purpose of identifying

new molecular biomarkers and discovering potential mole-

cular agents.

The gene expression array platform for the analysis of

differentially expressed genes (DEGs) is particularly valuable

as a molecular technique with significant clinical applications:

from molecular diagnosis to classification of cancer typing,

from risk stratification to prognosis evaluation, from the dis-

covery of potential molecular agents discovery to the predica-

tion of treatment response.5,6 With the wide application of

gene chips technique, gene expression profiling studies on

myeloma and AL amyloidosis have been performed in the

last several years using microarray technology, and most of

the microarray data have been deposited in public datasets.

Re-analyzing these public data can provide valuable clues for

new studies. Many comparative analyses of the DEGs have

been carried out on cancers in recent years.7–9 However, none

of the aforementioned studies has been completely investi-

gated in AL amyloidosis.

In this work, we have downloaded the original data

(GSE73040) from NCBI Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/geo/) and reanalyzed them

using bioinformatics approaches, which employ powerful

statistical methods,10 including identification of DEGs in

AL amyloidosis, gene ontology and pathway enrichment

analysis with DAVID (https://david.ncifcrf.gov/), integra-

tion of DEGs PPI network (http://string-db.org), and dis-

covery of small molecules with cMAP (https://portals.

broadinstitute.org/cmap). Subsequently, we provided the

novel insight of AL amyloidosis progression at the mole-

cular level, and also identified the candidate genes for

diagnosis, prognosis, and therapeutic targets.

Methods
Affymetrix Microarray Data
The microarray data of GSE73040 were downloaded from

GEO datasets. GSE73040, which was based on Agilent

GPL6244 platform, was submitted by Paiva et al11

GSE73040 dataset contained 14 samples, including 5

Control samples and 9 amyloidosis samples.

Data Preprocessing and DEGs Screening
The robust multi-array average (RMA) algorithm in affy

package was applied to preprocess the raw expression data

in the R package.12,13 Then, the limma package in

R software was used to identify DEGs between AL amy-

loidosis and control samples,14 with the statistical signifi-

cance of p < 0.05 and the fold change >2.

Gene Ontology and Pathway Enrichment

Analysis of DEGs
To investigate the functional pathways of AL amyloidosis,

Database for Annotation, Visualization and Integrated

Discovery (DAVID) was applied to perform the GO analysis

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways enrichment analysis of DEGs.15 p < 0.05 was

chosen as the cut-off value for enriched functional pathways.

Integration of PPI Network and Module

Analysis
Firstly, Search Tool for the Retrieval of Interacting Genes

(STRING) analysis was performed to investigate DEGs-

encoded proteins and PPI.16 The combined score of >0.4

was considered as the threshold for significant protein

pairs. Then, cytoscape was utilized for visualization and

calculate the capabilities of the PPI network under default

parameters.17 Thirdly, the Network Analyzer plug-in was

utilized to calculate the degree score of hub genes. To

investigate more specific regulatory relationship of pro-

teins, we performed the module analysis of the PPI net-

work by using the MCODE with default setting.18

Identification of Small Molecular Agents
The Connectivity Map (cMap) database provides

a systematic method for discovering connections between

small molecular agents and diseases.19 The query signa-

ture in the CMAP dataset is a list of up-regulated and

down-regulated genes, then, the DEGs in the PPI network

were mapped onto the cMap database. The |connectivity

score| > 0.8 was used as the cut-off value to identify

candidate small molecular agents. So the identified agents

would be forcefully correlated with the query signature,

indicating their potential action with AL amyloidosis.

qRT-PCR
Total RNA was extracted from plasma cells with TRIzol

reagent (Life Technologies, USA). For mRNA detection,

each RNA sample was revere-transcribed into cDNA
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using the reverse transcription kit (Takara, Japan). qRT-

PCR was performed to detect the levels of mRNA using

the comparative Ct method. GAPDH was chosen as the

internal control for mRNA.

Statistical Analysis
The expression differences between two groups were ana-

lyzed by unpaired t-test. Data were presented as mean ±

SE. The data were analyzed by SPSS 22.0 software, and

visualized by GraphPad Prism 6.0. Moreover, a p-Value <

0.05 was considered to be statistically significant.

Results
DEGs Between the AL Amyloidosis and

Control Groups
In total, 1464 genes were identified to be differentially

expressed genes, including 727 up-regulated genes and

737 down-regulated genes in AL amyloidosis. As shown

in the heatmap (Figure 1), DEGs were divided into 2

clusters according to the clustering analysis result.

Meanwhile, normal and AL amyloidosis specimens were

also classified into 2 different groups.

Gene Enrichment and Pathways Analysis

of DEGs
To explore the specific function pattern of DEGs, functional

enrichment analysis was performed by DAVID. GO analy-

sis revealed that up-regulated DEGs were mainly signifi-

cantly enriched in biological processes, including rRNA

processing, mitochondrial translational elongation and ter-

mination; the down-regulated DEGs were mainly enriched

in biological processes, including immune response, regula-

tion of immune response and leukocyte migration. For

molecular function, the up-regulated DEGs were enriched

in poly (A) RNA binding, structural constituent of ribosome

and unfolded protein binding; the down-regulated DEGs

were enriched in RAGE receptor binding, protein binding

and receptor activity. Additionally, GO cell component ana-

lysis showed that the DEGs were significantly enriched in

the nucleolus, mitochondrion, plasma membrane and extra-

cellular region (Table 1).

Moreover, the KEGG pathway enrichment analysis by

up-regulated DEGs and down-regulated DEGs was listed

in Table 2. Among them, the top three up-regulated DEGs

were enriched in ribosome biogenesis in eukaryotes, meta-

bolic pathways and ribosome, while the down-regulated

DEGs were enriched in hematopoietic cell lineage, tuber-

culosis, staphylococcus aureus infection and cell adhesion

molecules (CAMs).

Construction of PPI Network and

Sub-Network
By integrating DEG pairs with combined score >0.4, PPI

network was constructed according to the STRING and

visualized in Cytoscape, involving 1270 nodes (DEGs) and

7818 edges (Figure 2), accounting for 86.74% of all DEGs.

As is shown in Figure 3, the topology property of the PPI

network indicates that the node degree distribution of the PPI

network was in power-law distribution (Figure 3). Based on

the connectivity degree in the giant network, the numbers of

PPI pairs that the gene/protein possessed were screened. In

our study, we identified 5 critical nodal genes, such as

ITGAM (degree, 129), ITGB2 (degree, 103), ITGAX (degree,

94), IMP3 (degree, 62) and FBL (degree, 62), which might

participate in AL amyloidosis progression.

Moreover, biological network consists of several func-

tional modules in which these components of the complex
Figure 1 Heatmap and clustering analysis of DEGs. Red: high expression level; Blue:

low expression level.
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and interactions generally lead to the same biological process.

We extracted several modules from the PPI network using

MCODE analysis. The most highly connected sub-network

(cluster rank 1; Score 26.741) was obtained from PPI network

complex (Figure 4A), consisting of 28 nodes and 361 interac-

tions (in which IMP3 and FBL were involved). Another sub-

network (cluster rank 3; Score 17.537) was obtained from PPI

network complex (Figure 4B), consisting of 96 nodes and 833

interactions (in which ITGAM, PTPRC, ITGB2 and ITGAX

were enriched). Accordingly, for the genes identified in this

PPI sub-network, a total of 20 KEGG pathways were enriched

(Table 3). The top two pathways were Hematopoietic cell

lineage and Primary immunodeficiency.

We utilized the qRT-PCR to detect the expression of key

genes in AL amyloidosis patients. As shown in Figure 5A

and B, the expression of FBL and IMP3were up-regulated in

AL amyloidosis patients compared with healthy control,

while the expression of ITGAM, ITGB2 and ITGAX in AL

amyloidosis were all lower than healthy controls. These

results will support FBL and IMP3 as the biomarker of AL

amyloidosis.

Identification of Small Molecular Agents
Based on the results of cMap database mapping, we found

several small molecular agents from the cMap database that

were potentially correlated to AL amyloidosis. As showed in

Table 4, the top 5 small molecular agent were selected

according to rank and score, indicating their relatively sig-

nificant correlation with AL amyloidosis, such as AT-9283,

Ritonavir, Indirubin, PKC beta-inhibitor and Cholic-acid.

Table 1 Top Five Enriched GO of Downregulated DEGs and Upregulated DEGs

Category Term Court P-value

Up-regulated

GOTERM_BP_DIRECT GO:0006364~rRNA processing 26 1.15E-07

GOTERM_BP_DIRECT GO:0070125~mitochondrial translational elongation 14 6.95E-06

GOTERM_BP_DIRECT GO:0070126~mitochondrial translational termination 14 7.93E-06

GOTERM_BP_DIRECT GO:0000462~maturation of SSU-rRNA from tricistronic rRNA transcript 7 7.16E-04

GOTERM_BP_DIRECT GO:0031167~rRNA methylation 5 0.001446088

GOTERM_MF_DIRECT GO:0044822~poly(A) RNA binding 87 3.22E-12

GOTERM_MF_DIRECT GO:0003735~structural constituent of ribosome 22 3.23E-05

GOTERM_MF_DIRECT GO:0051082~unfolded protein binding 14 1.13E-04

GOTERM_MF_DIRECT GO:0008168~methyltransferase activity 11 0.001551709

GOTERM_MF_DIRECT GO:0070182~DNA polymerase binding 4 0.005574465

GOTERM_CC_DIRECT GO:0005730~nucleolus 60 1.34E-07

GOTERM_CC_DIRECT GO:0005654~nucleoplasm 141 3.06E-07

GOTERM_CC_DIRECT GO:0005739~mitochondrion 80 4.68E-07

GOTERM_CC_DIRECT GO:0005737~cytoplasm 225 9.23E-06

GOTERM_CC_DIRECT GO:0032040~small-subunit processome 9 1.63E-05

Down-regulated

GOTERM_BP_DIRECT GO:0006955~immune response 47 8.12E-11

GOTERM_BP_DIRECT GO:0050776~regulation of immune response 25 5.77E-08

GOTERM_BP_DIRECT GO:0006954~inflammatory response 38 1.17E-07

GOTERM_BP_DIRECT GO:0050900~leukocyte migration 20 1.41E-07

GOTERM_BP_DIRECT GO:0007165~signal transduction 80 1.77E-07

GOTERM_MF_DIRECT GO:0050786~RAGE receptor binding 6 2.49E-05

GOTERM_MF_DIRECT GO:0005515~protein binding 366 2.08E-04

GOTERM_MF_DIRECT GO:0004872~receptor activity 20 4.07E-04

GOTERM_MF_DIRECT GO:0032395~MHC class II receptor activity 5 0.001758722

GOTERM_MF_DIRECT GO:0005089~Rho guanyl-nucleotide exchange factor activity 10 0.001954932

GOTERM_CC_DIRECT GO:0009897~external side of plasma membrane 36 6.86E-14

GOTERM_CC_DIRECT GO:0005886~plasma membrane 232 2.76E-13

GOTERM_CC_DIRECT GO:0070062~extracellular exosome 173 9.96E-13

GOTERM_CC_DIRECT GO:0005887~integral component of plasma membrane 89 5.06E-07

GOTERM_CC_DIRECT GO:0042613~MHC class II protein complex 8 8.82E-06
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Discussion
In our study, a total of 1464 DEGs, including 727 up-regulated

genes and 737 down-regulated genes were identified between

the AL amyloidosis and control groups. These up-regulated

genes weremainly enriched in several functional terms such as

positive regulation of mitochondrion, ribosome and unfolded

protein binding. As we all know, ribosome and mitochondrion

play a vital role in protein synthesis by protein translation

and are also essential for cell growth, proliferation, and

development.20,21 Down-regulated genes were mainly

enriched in several functional terms such as hematopoietic

cell lineage, RAGE receptor binding and immune response.

RAGE receptor has been shown to contribute to several

chronic diseases such as diabetes, amyloidosis, inflammatory

conditions.22 Then, PPI network was constructed and several

hub genes were identified. According to the analysis of the PPI

network, the highly connected module was identified and five

hub genes were selected as candidate genes, including IMP3,

FBL, ITGAM, ITGB2 and ITGAX. Among the five genes,

IMP3 and FBL were enriched in ribosome biogenesis, while

Table 2 The Top Five Enriched KEGG Pathways of DEGs

KEGG Pathway Court P-value Genes

Upregulated

hsa03008:Ribosome biogenesis in eukaryotes 11 5.42E-04 IMP3, FBL, RPP25, EMG1, UTP18, TCOF1, POP1, RPP25L, IMP4,

RPP40, PWP2

hsa01100:Metabolic pathways 60 9.93E-04 GNPDA1, CNDP2, MAN1B1, PIP5K1C, PSPH, PMVK, CMBL, MTHFD1,

ST3GAL6, SPR, NDUFS3, PCYT2, COX17, ATP5H, IDUA, PTDSS2,

QDPR, POLR1A, NDUFA13, POLR1C, POLR1B, COQ5, COQ3, ADO,

MGAT3, NME2, CHSY3, NME1, PLA2G6, MTAP, PYCRL, EXTL3,

POLR2L, POLR2I, AASS, EXTL2, PPAT, TK2, THTPA, ISYNA1, CBR1,

CYP27B1, ATIC, PAFAH1B3, ENO3, UCK1, GALNT12, GALNT13,

PNLIPRP3, NDUFA8, CYP21A2, AMACR, AK9, AMDHD1, PLA2G4A,

B3GAT3, NDUFV1, PHGDH, GAMT, CYP2R1

hsa03010:Ribosome 13 0.001703152 MRPL24, MRPL4, RPS19, MRPS18C, MRPL21, MRPL27, RPL22,

MRPL17, MRPS12, RPLP1, MRPL36, RPS9, MRPL32

hsa00240:Pyrimidine metabolism 10 0.005924413 NME2, POLR2L, NME1, POLR2I, POLR1A, POLR1C, UCK1,

POLR1B, TK2, AK9

hsa03020:RNA polymerase 5 0.020116138 POLR2L, POLR2I, POLR1A, POLR1C, POLR1B

Down-regulated

hsa04640:Hematopoietic cell lineage 28 6.43E-17 ITGAM, IL1R1, CD8A, GYPA, MME, ANPEP, IL7R, CD9, CD44, DNTT,

IL4R, CD22, HLA-DRB5, CSF3R, CD4, CD5, CR1, CD3G, CR2,

CD3D, CD38, CD19, CD36, ITGA6, ITGA5, CD33, CD14, HLA-DRA

hsa05152:Tuberculosis 28 5.33E-09 ITGAM, ITGB2, BID, TLR1, HLA-DMB, TLR6, HLA-DMA, CD74,

NOD2, IL23A, ITGAX, IL10RA, FCER1G, HLA-DRB5, HLA-DPB1,

ATP6V0D1, FCGR3A, SYK, CR1, CAMP, CREBBP, HLA-DQA2,

LAMP1, PLK3, HLA-DPA1, FCGR2A, CD14, HLA-DRA

hsa05150:Staphylococcus aureus infection 15 3.31E-08 ITGAL, C5AR1, FPR1, ITGB2, HLA-DMB, HLA-DMA, HLA-DQA2,

ITGAM, HLA-DRB5, HLA-DPA1, FCGR2A, HLA-DPB1, CFD,

FCGR3A, HLA-DRA

hsa04514:Cell adhesion molecules (CAMs) 23 1.12E-07 ITGAL, PTPRC, CD8A, SELL, ICAM2, CD99, CDH1, ITGB2, HLA-

DMB, HLA-DMA, HLA-DQA2, ITGAM, ITGA6, ICOS, CD58, CD22,

HLA-DRB5, CD4, VCAN, HLA-DPA1, HLA-DPB1, CD226, HLA-DRA

hsa04145:Phagosome 23 3.02E-07 OLR1, NCF2, TUBB2A, NCF4, ITGB2, HLA-DMB, TLR6, HLA-

DMA, HLA-DQA2, ITGAM, LAMP1, CD36, ITGA5, HLA-DRB5,

HLA-DPA1, FCGR2A, HLA-DPB1, FCGR3A, ATP6V0D1, TUBA1A,

CD14, TUBB4A, HLA-DRA
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ITGAM, ITGB2 and ITGAXmight be involved in hematopoie-

tic cell lineage and immune response.

Ribosome biogenesis is a multistage process that involves

transcriptional and posttranscriptional regulation, and it is

over activated in cancer cells.23,24 In our study, overexpres-

sion IMP3 and FBL gene was accordant with GO/KEGG

pathway analysis (hsa03008: Ribosome biogenesis in eukar-

yotes). IMP3 and FBL gene expression are higher in AL

amyloidosis than normal samples, which may suggest that

overexpression IMP3 and FBL play effect in cancer ribo-

somes development. In addition, previous study reported

that IMP3 was an RNA-binding protein required for riboso-

mal RNA processing, which was chosen as a prognostic

marker in a number of human types of cancer.25,26 The over-

expression of FBL contributes to tumorigenesis and is related

to poor survival in patients with cancer.27 High expression of

FBL was accompanied by modifications of the rRNA methy-

lation pattern, impairment of translational fidelity, and an

increase of internal ribosome entry site-dependent translation

initiation of key cancer genes.28 Additionally, P53 is involved

in FBL regulation and suppresses the expression of the rRNA

methyl-transferase fibrillarin by binding directly to FBL.28,29

In summary, molecular signature of AL amyloidosis consists

of 23 genes representing mainly ribosomal proteins, and these

signatures appear pathogenetically supported the effect of

ribosome dysfunction in AL amyloidosis.

Hematopoietic cell lineage is the progress of hemato-

poietic stem cell undergo either self-renewal or differentia-

tion into a multilineage committed progenitor cells. In our

study, the down-regulated DEGs were significantly

Figure 2 The giant network consisting of 1270 nodes and 7818 edges was extracted from the whole PPI network. Key nodes in the giant network are highlighted in different

colors: red corresponds to the up-regulated gene and green corresponds to the down-regulated gene in AL amyloidosis.
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enriched in hematopoietic cell lineage and immune

response, which weakened these pathways about hemato-

poietic and immunologic function, were conducive to

tumor progression. The top four down-regulated genes

with the highest degrees in the PPI network were ITGAM

(CD11b), PTPRC (CD45), ITGB2 (CD18) and ITGAX

(CD11c). Theses aberrant expression of antigens may

play a vital role in regulating immune responses in AL
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amyloidosis patients. Zhu et al have successfully detected

the CD45 deficiency drives Amyloid-β Peptide Oligomers

and accelerates cerebral amyloidosis.30 However, no stu-

dies focus on CD11b, CD18 and CD11c in AL amyloido-

sis. Compose complement receptor type 3 (CR3,

comprising CD11b/CD18) and type 4 (CR4, comprising

CD11c/CD18) belong to the family of β2 integrins, and act

as control points in immunity and cancer.31 For instance,

by interaction with iC3b, CR3 and CR4 mediate the uptake

of opsonized cells and particles by macrophages, neutro-

phils, monocytes and dendritic cells;32 by interaction with

ICAM1, ICAM4 and LFA1, CR3 and CR4 serve the

important task of the formation of the immunological

synapse, crucial the contact between antigen presenting

cells and T lymphocytes.33–35 Furthermore, a former

study showed that pharmacological activation of CD11b/

CD18 could promote pro-inflammatory macrophage polar-

ization and suppress tumor growth in animal models of

murine and human cancer.36 CR3 and CR4 were proved to

enable complement-dependent cell cytotoxicity toward

antibody-coated tumor cells as part of biological

therapy.37 As revealed in our sub-network, KEGG path-

ways were also predicted correlations with the hemato-

poietic cell lineage and immunodeficiency, providing

a clue that ITGAM, ITGB2 and ITGAX might also be

involved in AL amyloidosis progression via regulating

immune response.

Furthermore, the study found candidate small molecules

that may be involved in promoting or suppressing the devel-

opment ofAL amyloidosis. AT-9283was identified to be small

molecular agents with the highest score, which has been

reported that AT-9283 significantly inhibits myeloma cell

growth and promotes apoptosis in vivo and vitro.38 Another

molecule, Enzastaurin (PKC beta-inhibitor) is an oral serine/

threonine kinase inhibitor of the protein kinase C and phos-

phatidylinositol 3 kinase/Akt pathways that promote apoptosis

of myeloma cells in a caspase-independent manner.39 Two

Phase II trials were designed to explore the efficacy of AT-

9283 (NCT01145989) and Enzastaurin (NCT00718419) in

patients with multiple myeloma.40,41 Additionally, ritonavir

could increase the level of endoplasmic reticulum stress in

myeloma cells, which sensitizes bortezomib-resistant cells to

bortezomib-induced apoptosis.42 Importantly, MM have pre-

viously been administered these small molecular agents,

strongly supporting the investigation of repurposing AT-

9283, Enzastaurin and ritonavir for AL amyloidosis therapy.

Conclusion
Taken together, our study has identified several candidate

genes (ITGAM, ITGB2, ITGAX, IMP3 and FBL) that were

involved in the mechanism of AL amyloidosis, and IMP3

and FBL play essential roles in dysfunction of Ribosome

biogenesis. Besides, ITGAM, ITGB2 and ITGAX are cru-

cial for hematopoietic cell lineage and immune response to

AL amyloidosis occurrence and progression. Furthermore,

AT-9283, Enzastaurin and ritonavir may act as potential

molecular drugs for AL amyloidosis treatment. Our results

provide better understanding of AL amyloidosis

Table 3 The Statistically Significant Sub-Pathways Identified by

DEGs (Top 5)

KEGG Pathway Court P-value

Hematopoietic cell lineage 16 7.0E-15

Primary immunodeficiency 8 7.1E-8

Cell adhesion molecules (CAMs) 10 1.1E-5

Cytokine-cytokine receptor interaction 12 1.0E-4

Chemokine signaling pathway 9 9.0E-4

A B

Figure 5 The expression of key genes in AL amyloidosis patients’ clonal plasma cells. (A) FBL and IMP3 were up-regulated in AL amyloidosis patients compared with healthy

control; (B) ITGAM, ITGB2 and ITGAX were down-regulated in AL amyloidosis patients compared with healthy control.
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pathogenesis. Further research of these candidate genes

and therapeutic agents are urgently needed to determine

their effects in AL amyloidosis.
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