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Abstract

Background: Common genetic variation and rare mutations in genes encoding calcium channel subunits have
pleiotropic effects on risk for multiple neuropsychiatric disorders, including autism spectrum disorder (ASD) and
schizophrenia. To gain further mechanistic insights by extending previous gene expression data, we constructed
co-expression networks in Timothy syndrome (TS), a monogenic condition with high penetrance for ASD, caused
by mutations in the L-type calcium channel, Cav1.2.

Methods: To identify patient-specific alterations in transcriptome organization, we conducted a genome-wide
weighted co-expression network analysis (WGCNA) on neural progenitors and neurons from multiple lines of
induced pluripotent stem cells (iPSC) derived from normal and TS (G406R in CACNA1C) individuals. We employed
transcription factor binding site enrichment analysis to assess whether TS associated co-expression changes reflect
calcium-dependent co-regulation.

Results: We identified reproducible developmental and activity-dependent gene co-expression modules conserved in
patient and control cell lines. By comparing cell lines from case and control subjects, we also identified co-expression
modules reflecting distinct aspects of TS, including intellectual disability and ASD-related phenotypes. Moreover, by
integrating co-expression with transcription factor binding analysis, we showed the TS-associated transcriptional
changes were predicted to be co-regulated by calcium-dependent transcriptional regulators, including NFAT, MEF2,
CREB, and FOXO, thus providing a mechanism by which altered Ca2+ signaling in TS patients leads to the observed
molecular dysregulation.

Conclusions: We applied WGCNA to construct co-expression networks related to neural development and
depolarization in iPSC-derived neural cells from TS and control individuals for the first time. These analyses illustrate
how a systems biology approach based on gene networks can yield insights into the molecular mechanisms of neural
development and function, and provide clues as to the functional impact of the downstream effects of Ca2+ signaling
dysregulation on transcription.
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Background
The L-type calcium channel, Cav1.2, plays a central role in
regulating an activity-dependent signaling network that is
essential for neuronal function [1-6]. A particularly salient
example of a perturbation in Cav1.2 function is Timothy
syndrome (TS), a rare genetic disorder caused by domin-
ant mutations in the gene CACNA1C, which encodes the
α subunit of the voltage-gated calcium channel Cav1.2. TS
mutations in this subunit result in a conformational
change of Cav1.2, leading to delayed channel inactivation
and elevation of intracellular calcium upon depolarization
[7-9]. TS patients typically exhibit a spectrum of severe
nervous system abnormalities, including autism spectrum
disorder (ASD) in up to 80% of the patients [8-10]. Given
the increasing appreciation for rare monogenic contribu-
tions to ASD [11-13], TS provides a powerful avenue for
understanding both basic neurobiological processes and
ASD pathophysiology.
Given the pleiotropic manifestation of CACNA1C muta-

tions in TS and the recent implication of common vari-
ation in CACNA1C across multiple neuropsychiatric
disorders [14], we reasoned that characterization of the
Cav1.2-dependent signaling network in TS would help elu-
cidate its molecular basis and prioritize genes for thera-
peutic development. Although it has been known that
calcium influx triggers massive transcriptional changes by
acting through several transcription factors, including cal-
cium response factor (CaRF) [15,16], myocyte enhancer
factor-2 (MEF2) [17,18], nuclear factor of activated T-cells
(NFAT) [19,20], and cAMP response element-binding pro-
teins (CREB) [21-24], little is known about their down-
stream targets in human neurons and how these processes
are altered in disease states such as TS. Here, we reasoned
that identifying alterations in mRNA transcript levels in
TS patient-derived cortical progenitors and developing
neurons would help clarify, not only how calcium regu-
lates gene expression in TS, but more broadly inform our
understanding of the molecular mechanism of ASD.
Previously, we reported that the TS mutation was associ-

ated with abnormalities in cortical neurogenesis, activity-
dependent dendrite retraction, and an excess production of
catecholamines [25,26]. Here, to provide a higher order
view of the transcriptional changes caused by the TS muta-
tion in CACNA1C, we constructed genome-wide transcrip-
tome networks in control and TS neural progenitors and
differentiated neurons at rest and following depolarization.
Using Weighted Gene Co-expression Network Analysis
(WGCNA) [27,28], we identified gene co-expression mod-
ules associated with neural development, as well as de-
polarization shared across both patient and control lines.
By comparing TS and control networks, we identified dis-
tinct TS related modules enriched in intellectual disability
(ID) genes and ASD susceptibility genes. By further inte-
grating the co-expression network with transcription factor
binding analysis, we identified candidate regulators for
disease-associated modules, including NFAT [19,20], MEF2
[17,18], CREB [21-24], and forkhead box proteins O
(FOXO) [29-32]. Our results provide a functional genomic
framework for a calcium-dependent signaling network by
highlighting the downstream transcriptional targets of
Cav1.2 dysregulation, and yields insights into molecular
mechanisms relevant to both TS and ASD.

Methods
Expression data set
Expression data were obtained from Paşca et al. [25]
(GSE25542). As previously described, cortical neural pro-
genitors and neurons were generated from independent
differentiation of four control iPSC lines from two normal
subjects, three TS iPSC lines from one TS patient, and one
human embryonic stem cell line (H9). All three subjects
included in this expression projects are females. To obtain
activity-dependent gene co-expression networks, neurons
were treated with 67 mM KCl or vehicle, and harvested
after 9 h. The maturation of the specific neuronal cultures
has been assessed with Fluidigm Dynamic Arrays and
functional characterizations, including patch-clamp re-
cording and live calcium imaging [25]. The analysis
showed that at day 42 of differentiation in vitro most of
the cells were electrically active, and expressed neuronal
markers [25]. Moreover, most of the cells are lower layer
cortical neurons, and around 20% are upper layer cortical
neurons [25]. In terms of electrophysiological features,
there are no significant differences between the TS cells
and controls cells with regard to their action potential
threshold or amplitude, resting membrane potential, input
resistance or capacitance [25]. However, by time-lapse
video microscopy assay with calcium indicator Fura-2,
Paşca et al. showed electrophysiological abnormalities in
these patient cells compared to controls, including abnor-
mal calcium currents after depolarization and longer ac-
tion potentials [25].
Total RNA was extracted using the RNeasy Mini kit

(QIAGEN). cDNA labeling and hybridization on Illumina
HumanRef-8 v3 Expression BeadChips (Illumina) were per-
formed according to the manufacturer’s protocol. Micro-
array data were analyzed with custom R scripts calling
Bioconductor packages. Outlier arrays were detected based
on low inter-sample correlations. Raw expression data were
log2 transformed, and quantile normalized. Probes were
considered robustly expressed if the detection P value was
<0.05 for at least half of the samples in the data set. Conse-
quently, a total of 13,255 expressed genes from 12 neural
progenitor cell lines, 15 neuronal cell lines at rest, and nine
KCl-depolarized neurons from cases and controls were
used for network analysis.
Reproducibility is often an issue in iPSC studies. Here,

although we only have one TS patient, two controls, and
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an additional control H9 ES cell line, we have five neur-
onal lines from the TS patient, and multiple lines for each
control, both at rest and with K+ induced depolarization.
Within each cell type, cell lines derived from the same
subject clustered more closely together than to the cell
lines from different subjects. Particularly, the five TS neur-
onal lines all tightly clustered together. The average intra-
subject variance between lines is low: 0.042, 0.053, 0.058,
and 0.066 for the TS patient, H9, and the two controls, re-
spectively. Additionally, the experimental data from Paşca
et al. showed that these lines generated reliable and repro-
ducible cell types at the genome-wide level [25].

Weighted Gene Co-expression Network Analysis (WGCNA)
We conducted signed co-expression network analysis using
the R WGCNA package [27] as previously described
[33-35]. WGCNA is based on topological overlap mea-
surements derived from pairwise correlation-based adja-
cency values to estimate the neighborhood similarity
among genes, followed by hierarchical clustering to iden-
tify gene co-expression modules. Instead of focusing on
individual genes, WGCNA is highly effective for charac-
terizing the features of co-expressed gene modules [36],
each of which is represented by a color classifier. Here, the
correlation values were raised by a power of 12 to satisfy
scale-free criteria [27]. The minimum module size was set
to 40 genes and the height for merging modules was set to
0.25, which required at least 25% dissimilarity among
modules in expression. We identified a total of 18 modules
(Additional file 1: Table S1), each summarized by its eigen-
gene (ME, defined as the first principal component of the
standardized expression values [37]). The significance of
module eigengene-phenotype association (cell type, muta-
tion status, and resting vs. depolarization) was evaluated
by a linear regression model using the R lm function. As-
sociations with FDR (Benjamini-Hochberg (BH) correc-
tion [38]) less than 0.05 was considered as significant.
Genes were prioritized based on their correlation with the
module eigengene (kME) [37]. The top connected genes
(either kME >0.6 or the top 200, depending on which was
smaller to facilitate visualization) were used to generate
the module network plots via the R igraph package [39].

Module preservation analysis
Module preservation analysis was performed to investi-
gate if density and connectivity based network measures
were preserved across data sets and conditions [40]. A
Zsummary statistic was computed to aggregate various
preservation measures, and a threshold of 2 based on
200 permutations was used to determine significantly
preserved modules.
We first assessed the preservation of modules identified

in combined case and control samples in two independent
data sets: (1) expression profiles of differentiating primary
human neural progenitor cells in vitro over 12 weeks
(phNPCs) (GSE57595) [41], and (2) expression data from
developing human cortex (post conception week 4 through
6 months after birth) from Kang et al. (GSE25219) [41,42].

Differential expression
Differentiation-induced expression changes were assessed
for cases and controls separately using the linear models
in the R limma package [43]. The neural progenitors and
neurons were paired if they were differentiated from the
same iPSC clone and plated for differentiation in one ex-
periment. The interaction effect was further evaluated
using factorial designs implemented in limma. To be iden-
tified as showing dynamic expression changes upon differ-
entiation in TS versus controls two criteria needed to be
satisfied: (1) significant differential expression upon dif-
ferentiation in either controls or TS, but not both; (2) a
significant interaction effect between cell type (neural pro-
genitor and neurons) and TS mutation status. The signifi-
cance threshold was set at P <0.05 unless otherwise
specified.

Functional enrichment analysis
Functional enrichment analysis was assessed using GO-
Elite Pathway Analysis [44]. Two enrichment analyses
were performed on the genes of interest by assessing: (1)
enriched Gene Ontology (GO) categories, and (2) enriched
KEGG pathways. GO-Elite performs permutations to ob-
tain over-representation Z scores and enrichment P values
for each GO term. In our analysis, we performed 10,000
permutations to evaluate enrichment significance. The
background was set to the total list of genes expressed in
this data set. GO categories with a permuted P <0.05 were
reported.

Gene set over-representation analysis
A one-sided Fisher exact test was performed to assess
over-representation of module genes in other gene sets
using the R function fisher.test. Depolarization-associated
gene lists were curated from two publications (McKee et al.
[45] and Kim et al. [46]). The ASD susceptibility genes were
curated from the SFARI gene database [47]. Genes catego-
rized as Syndromic (S) and those with associated scores in
the range of 1 to 4 were used in our analysis. The ASD-
associated co-expression modules asdM12 and asdM16
were obtained from Voineagu et al. [33]. The ID-associated
genes were curated from four reviews [48-51] resulting in
401 genes as reported in Parikshak et al. [34].

Transcription factor binding site (TFBS) enrichment
analysis
TFBS enrichment analysis was conducted by scanning
the promoter sequence of the genes in the analyzed
modules for enrichment of known transcription factor
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binding motifs using the Clover algorithm [52]. For every
gene, we considered 1,000 bp upstream of its transcription
start site as the candidate promoter region. The putative
binding motifs were obtained from TRANSFAC [53,54] in
the format of position weight matrix. To comprehensively
evaluate the statistical significance of the enrichment re-
sults, we utilized three different background datasets:
1,000 bp sequences upstream of all human genes, human
CpG islands and the sequences of human chromosome
20. We calculated the enrichment P values from the null
distribution generated by repeatedly drawing 1,000 ran-
dom sequences of the same length from the background
sequences. Significant events were defined at P <0.05
across all three backgrounds.
To confirm the validity of the predicted motif enrich-

ment, we determined if existing chromatin immunopre-
cipitation (ChIP) data for transcription factors supported
the predicted binding sites. The ChIP data sets were ob-
tained from ENCODE [55,56] and ChIP Enrichment
Analysis resource (ChEA) [57]. We reported the number
of predicted binding targets that could be verified by
corresponding transcription factor ChIP data from any
tissues or cell lines where available. Statistical signifi-
cance was evaluated by assessing the cumulative hyper-
geometric probability using phyper function in R. The
population size was defined as the total number of genes
expressed in this data set.

Results
Network construction and module detection
To elucidate the transcriptional changes relevant to TS mu-
tation at key stages, we constructed a co-expression net-
work based on the expression profiles of cortical neural
progenitor cells (N = 12) and differentiated cortical neurons,
both at rest (N = 15) and after KCl-induced depolarization
(N = 9) (Figure 1A). As previously shown, iPSC lines were
validated and the stages of neural differentiation in vitro
were carefully characterized using a variety of immunocy-
tochemical, physiological, and molecular assays, including
Fluidigm Dynamic Arrays, patch-clamp recording, and live
calcium imaging, to demonstrate the derived neurons
expressed the appropriate molecular markers, were elec-
trically active and fired action potentials [25] (Methods).
Using a signed network analysis [27], we identified a total
of 18 gene co-expression modules which were comprised
of genes sharing highly similar expression patterns across
samples. As shown in Figure 1B, genes that clustered into
modules based upon co-expression also shared functional
annotations, indicating that they participate in common
biological processes.
We next assessed the reproducibility and generalizability

of the network structure. We used module preservation
analysis [40] to compare the identified modules with inde-
pendent expression profiles from in vivo human brain
development and in vitro neuronal differentiation of pri-
mary human neural progenitor cells (phNPCs) (Methods).
Remarkably, the co-expression structure of 10 modules
can be reproducibly identified in either of two independent
expression datasets, differentiating phNPCs in vitro [41] or
in vivo cortical development from post-conception week
(PCW) 4 to 6 months after birth (Table 1; Additional file 2:
Figure S1) [41,42]. Given the biological (different cells and
tissues) and methodological differences (different RNA
preparation and microarrays) between these studies, the
correspondence with previous in vivo and in vitro expres-
sion data provides important validation of the transcrip-
tional networks we identified in iPSC-derived neural cells.

Network analysis identifies differentiation and activity-
dependent expression changes
We first sought to investigate if the identified co-expression
networks recapitulate molecular processes related to neur-
onal differentiation and neuronal depolarization in general.
We used the module eigengene (first principal component
of the expression pattern of the corresponding module
[27,37]) to summarize gene expression trajectories across
samples, and evaluated the relationship of the 18 module
eigengenes with differentiation and depolarization status.
We found 10 modules strongly correlated with neuronal
differentiation and nine modules significantly associated
with KCl-induced neuronal depolarization (FDR <0.05),
observed in both case and control cell lines (Table 1;
Additional file 2: Figure S2). Representative examples
with module eigengene trajectories and enriched GO
terms are shown in Figure 1.
Importantly, as highlighted above, we found that many

of differentiation and depolarization associated modules
were present in independent in vivo and in vitro expression
data sets (Table 1), providing independent validation for
these in vitro iPSC-derived networks. For instance, as com-
pared to in vivo human fetal brain transcriptional net-
works, the modules corresponding to iPSC-derived cortical
neurons faithfully recapitulated biological processes driving
in vivo cortical development, including neurogenesis and
differentiation (blue and yellow modules), axonogenesis
and dendrite growth (turquoise), as well as synaptogenesis
(turquoise and green yellow modules) (Figure 1; Table 1;
Additional file 2: Figure S3) [41,42]. Additionally, the genes
within depolarization-associated modules (brown, tan,
green yellow, and midnight blue modules) demonstrated
significant overlap with previously defined depolarization-
associated gene sets defined in mouse cortical neurons
[46] and human neuroblastoma cells (IMR-32) [45] before
and after KCl treatment (Figure 1J). In particular, the two
modules downregulated upon depolarization (brown and
tan) were enriched for GO categories related to mito-
chondria, suggesting altered energy consumption upon
prolonged neuron depolarization, in agreement with
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Figure 1 WGCNA identifies co-expression modules associated with neuronal differentiation and depolarization. (A) Flowchart illustrating
the experimental procedures and expression analysis. (B) Hierarchical clustering of genes based on gene co-expression pattern across progenitors,
neurons at rest, and after depolarization. Identified co-expression modules were represented by color classifiers, noted across the top of the
dendrogram. The ‘differentiation’, ‘depolarization’, and the ‘TSmutation’ color bars represent the correlation values between gene expression and
three biological traits: differentiation, depolarization, and CACNA1C G406R mutation status, respectively. Red signifies upregulation, while blue signifies
downregulation. Only the genes with a trait correlation larger than 0.5 or smaller than -0.5 are marked in the plot. (C-I) Module eigengene patterns
and enrichment scores of the top five enriched GO categories for module (C) turquoise, (D) blue, (E) brown, (F) tan, (G) yellow, (H) midnightblue, and
(I) green. Samples are ordered by control progenitors (CP), patient progenitors (TP), control resting neurons (CN), patient resting neurons (TP), control
depolarized neurons (CN+), and patient depolarized neurons, as illustrated by the key at the bottom. (J) Module-level enrichment for previously
identified differentiation- and depolarization-associated gene sets curated from: (1) Kang et al. developing postmortem human brain [41,42]; (2) Stein et al.
phNPC expression study (phNPC_wk1vswk8_up/down) [41]; (3) McKee et al. [45]; and (4) Kim et al. [46] KCl-induced depolarization expression studies.
‘brain_s1vss8_up/down’ represent the genes that are either up- or downregulated between stage 1 vs. stage 8, while ‘phNPC_wk1vswk8_up/down’
are the group of the genes up- or downregulated between week 1 vs. week 8 differentiation, as defined in the paper [41,42]. Cells are colored to reflect
enrichment significance with ceiling of 10-4. Enrichment odds ratios are shown in the table if the P <0.05 (*FDR <0.05).
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McKee et al. in human neuroblastoma IMR-32 cells
[45]. Together these findings demonstrate the power of
WGCNA in identifying generalizable, functionally im-
portant gene modules.
Interestingly, a subset of modules was enriched for

genes affected by both differentiation and depolarization
(Figure 1J; Additional file 3: Table S2), which could pro-
vide a molecular basis for modulation of neuronal dif-
ferentiation by depolarization [58-60]. For instance, the
brown module, whose module eigengene showed dramatic
down-regulation in depolarized neurons, also followed
a significant decrease with neuronal differentiation
(Figure 1E). On the other hand, the module eigengenes of
the yellow, tan, black, and midnight blue modules, showed
opposite directions upon differentiation as compared
with depolarization (Figure 1F-H). These observations
were consistent with the notion that neuronal plasticity
can recapitulate processes involved in neuronal devel-
opment [61-63].

Gene co-expression modules dissect pathways related to
different aspects of TS symptoms
Next, we asked if we could identify modules associated
with TS mutation status, which would provide insight
into dysregulation of molecular networks in TS and dis-
ease pathophysiology. By comparing the module eigengene
patterns across patient and control cells, we identified
seven modules that were significantly associated with the
TS mutation (FDR <0.05). Remarkably, the top two most
disease correlated modules (light green and light cyan; R-
square >0.8; Figure 2A and B) included dysregulated genes
previously implicated in neurodevelopmental diseases,
such as YWHAE (Miller-Dieker Syndrome) [64], ERC1
(12p13.31 deletion associated developmental delay) [65],
and VAV3 (schizophrenia) [66] (Figure 2B).
A further critical question is: to what extent these TS-

associated modules can inform us about the molecular
mechanism of TS-related abnormalities? Here, we inves-
tigated every module by GO/KEGG enrichment analysis
and performed over-representation analysis with respect
to curated disease associated genes (Methods). We ob-
served striking enrichment of known ID susceptibility
genes [48-51] in two downregulated modules, light cyan
and salmon (Figure 2C; Additional file 3: Table S3). Spe-
cifically, in the light cyan module, seven ID genes were
identified: LAMP2, GK, IDS, CUL4B, AFF2, PDHA1, and
SLC16A2 (Fisher’s exact test: enrichment odds ratio
(OR) = 3.8; P = 0.004). More importantly, these seven
ID candidate genes form a sub-cluster within the light
cyan module (Figure 2D), suggesting their tight func-
tional dependence. Moreover, this module was enriched
for GO categories involved in organelle membrane, and
the KEGG pathway of ubiquitin mediated proteolysis,
which agrees with previous reports of the causal rela-
tionship between impaired proteasomal activity and cog-
nitive disorders, including ID [67]. The salmon module,
which contained genes downregulated in cells carrying
the TS mutation, was even more enriched for ID suscep-
tibility genes, containing 18 genes known to cause ID
(OR = 3.3, P = 3e-05) (Figure 2E). Together the identi-
fication of these two downregulated modules provides
an unbiased starting point based on gene expression
for exploring the molecular connections between the
TS mutation and the molecular mechanisms of ID [9].
In contrast to the salmon and light cyan modules

enriched for ID genes, the black downregulated module
was enriched for ASD candidate risk genes curated from
the SFARI gene database [47] (Figure 2C; Additional file 3:
Table S4). Six known ASD candidate susceptibility genes
were identified in the black module (OR = 2.5, P = 0.04),
and three of them, ASTN2, ARNT2, and RPS6KA2, were
hubs (Figure 2H). More importantly, the top connected
genes in the black module (kME >0.7) significantly over-
lapped with a previously defined co-expression module,
called asdM12, identified via unbiased transcriptome ana-
lysis in postmortem ASD brains (OR = 2.4, P = 0.02) [33],
but not preserved in control tissues. asdM12, which
contains genes involved in synaptic development and



Table 1 Summary of co-expression modules associated with neuronal differentiation and depolarization, and TS mutation

Module
color

Trait association (FDR <0.05) Preservation Top enriched GOs Top 5 connected
genes by kMEDifferentiation Depolarization TS mutation In vivo In vitro

Green
yellow

↑ ↑ Mammary gland epithelium development,
midbrain - hindbrain boundary development,
hemopoietic stem cell proliferation

LMX1A, RSPO3,
WLS, TM4SF1,
ATF3

Turquoise ↑ ↑ Preserved Preserved Synapse part, synaptic transmission, neuron
projection

SNAP25, C12orf68,
MYT1, MAP6,
EEF1A2

Black ↑ ↑ ↑ Nervous system development, nucleobase
catabolic process, hydrolase activity

RPS6KA2, ATP9A,
KIAA1549L,
FAM229B, AKT1

Tan ↑ ↓ Preserved Mitochondrial membrane part,
ribonucleoside triphosphate metabolic
process, unfolded protein binding

KIAA0368, ZNF706,
SRI, C9orf169,
OPA1

Cyan ↑ Preserved Skeletal muscle thin filament assembly,
platelet-derived growth factor binding,
actin-mediated cell contraction

CAV1, SPP1, ME1,
SPP1, VSX1

Grey60 ↑ De novo’ post-translational protein folding,
mitochondrion, mitochondrial part

TBCE, EBNA1BP2,
CCT4, ASPH, AK2

Midnight
blue

↓ ↑ Cell morphogenesis involved in
differentiation, C21-steroid hormone
metabolic process, positive regulation of fat
cell differentiation

TPD52L1, GJA1,
BMP2, IL17RD,
KRT15

Yellow ↓ ↑ Preserved Nuclear body, positive regulation of cell
growth, Golgi vesicle transport

MRPS6, PCID2,
PPP6C, GBA2,
SETD4

Brown ↓ ↓ Preserved Preserved Intracellular organelle lumen, oxidation-
reduction process, NADH dehydrogenase
complex

DOCK1, COMMD4,
STRADB, SLC16A9,
ORC3

Blue ↓ Preserved Preserved Cell cycle phase, cell division, nuclear division NIF3L1, LIN28A,
TEX10, AMMECR1,
NCAPG

Green ↑ Preserved Vesicle coating, positive regulation of
I-kappaB kinase/NF-kappaB cascade,
autophagy

NUP98, DNAJA1,
DHX37, ETNK1,
CGGBP1

Red ↓ ↑ Preserved Preserved Nucleobase metabolic process, nuclease
activity, proteasome core complex

USP13, PSMG1,
RTN4IP1, PTCD2,
PSMG1

Light
green

↑ tRNA processing, positive regulation of lipid
metabolic process, response to virus

CRYBB2, SNHG5,
EXOC1, IFITM2,
VAV3

Magenta ↑ Type 1/2 fibroblast growth factor receptor
binding; neuron recognition; growth factor
activity

CTSF, ZNF626,
ZNF521, PLEKHA5,
COL4A6

Purple ↑ Preserved Preserved ncRNA processing; nuclear body,
ribonucleoprotein complex biogenesis

RRS1, RRP15,
PUS1, NOLC1,
ABCE1

Light
cyan

↓ Lytic vacuole, integral to organelle
membrane

TRAPPC2, ZNF177,
HLA-A, ZNF559,
RPS26P47

Salmon ↓ Actin filament bundle assembly, regulation of
establishment of protein localization in
plasma membrane, regulation of type I
interferon-mediated signaling pathway

NDUFB11, MSN,
UPRT, GPKOW,
TSR2

The top five connected genes ranked by kME and the top three enriched GO terms are listed for each module. Modules are labeled if they were preserved in
independent in vivo and in vitro expression data sets [41,42] according to module preservation analysis [40] (Methods).
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Figure 2 Gene co-expression modules associated with the TS mutation. (A) Heatmap showing expression pattern of the module genes and
a barplot showing the module eigengene pattern across samples for the light cyan and light green modules. (B) Log2 transformed fold changes
of the top 20 connected genes in the light cyan and light green modules in cases as compared to controls at the three experimental stages.
(C) Module-level enrichment for previously identified ASD and ID associated genes. Enrichment odds ratios are shown in the table if the P <0.1
(*P <0.05, **FDR <0.05). (D-H) Visualization of the co-expression network among the top connected genes (kME >0.6 or top 200 depending on
which one is smaller) based on multidimensional scaling of their pairwise co-expression correlations in the (D) light cyan, (E) salmon, (F) light
green, (G) magenta, and (H) black module. Genes with multiple probes are labeled separately. Pie chart: ID susceptibility genes (red); ASD
susceptibility genes from the SFARI database (yellow) [47]; genes in the Voineagu et al. asdM12 module (purple) [33]; genes in the Voineagu et al.
asdM16 module (green) [33]. Only the top 1,000 connections are shown in each module.
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function, was downregulated in cerebral cortex from ASD
subjects, in parallel with the observed decrease of the black
module genes in TS observed here. Consistent with
asdM12 annotation, the black module also was enriched for
postsynaptic density (PSD) associated genes [68] (OR = 1.9,
P = 0.001) that are critical regulators of synaptic signaling
and plasticity. These observations suggest convergent syn-
aptic dysfunction in this monogenic form of ASD caused
by TS studied here and idiopathic ASD more broadly. The
non-overlapping relationship of known ID and ASD sus-
ceptibility genes to specific modules was also consistent
with recent work demonstrating differing in vivo expression
patterns of genes causing these two clinically distinct condi-
tions [34].
We next evaluated the upregulated modules in TS

neurons. As shown in Figure 2C, the light green and ma-
genta modules show significant overlap with asdM16, a
module of genes upregulated in ASD postmortem brain
[33] (Additional file 3: Table S5). The biological func-
tions enriched in this module include immune response,
which is consistent with immune dysfunction observed
in TS [9,10,69]. In particular, 18 genes in the ASD post-
mortem asdM16 module were identified in the magenta
module, and four were identified in the light green mod-
ule (Figure 2F-G). Remarkably, IFITM2 and IFITM3,
two interferon response genes that have been shown to
be the hub genes in asdM16 [33], were also identified as
hubs in this light green module, showing parallel dys-
regulation in ASD and TS patients. In the light green
module, we also identified INPP5E, a gene involved in
phosphatidylinositol signaling system and known to
mobilize intracellular calcium. Mutation of this gene
leads to Joubert syndrome, which is a rare monogenic
condition with high penetrance for ASD [70-73]. In
summary, both down- and upregulated modules in TS
show changes parallel with those observed in postmor-
tem brain of idiopathic ASD, consistent with the exist-
ence of convergent molecular pathways in multiple
forms of ASD [74].

Network analysis reveals differentiation defects in TS
We previously showed that the cell lines derived from
TS patients had abnormalities in differentiation at the
cellular level [25]. Here, we sought to investigate if we
can use the unbiased transcriptomic approach to find
the molecular mechanisms driving this differentiation
deficit. By comparing the module eigengene expression
patterns during neuronal differentiation across TS and
control cells, we observed that the black module was up-
regulated upon differentiation in controls, but not in pa-
tient cells (Figure 3A and B). Comparison of expression
fold changes of the top 15 connected genes in the black
module during the progenitor to neuron transition are
shown in Figure 3C, demonstrating the dramatic attenu-
ation in differentiation related expression changes in pa-
tient versus control neurons. This parallels with the
overlap of black module genes with asdM12, which as
described above, is down regulated in post mortem ASD
brain versus control [25].
To further characterize the differentiation abnormalities

in the TS patient cells, we used a factor design to identify
genes showing altered expression trajectories during dif-
ferentiation in TS and control cells (Methods). We iden-
tified 1,155 genes with a significant interaction effect
between developmental stage and disease status (P <0.05).
By carefully evaluating their expression patterns in patient
and controls samples (Methods), we further classified
these genes into four categories: (1) genes downregulated
upon differentiation in control but not in TS cells (128
genes); (2) genes upregulated upon differentiation in con-
trol but not in TS cells (163 genes); (3) genes downregu-
lated upon differentiation in TS cells but not in control
(141 genes); and (4) genes upregulated upon differen-
tiation in TS cells but not in control (156 genes). The 15
genes with largest difference between cases and controls
in each group are displayed in Figure 3D. As expected,
the black module significantly overlapped with control-
specific upregulated genes (hypergeometric test; P = 2.39e-6),
again consistent with a defect in synaptic differenti-
ation in TS.
We also found, not unexpectedly, that these four

groups of genes with distinct disease and differentiation
trajectories manifest distinct functional ontologies. For
instance, genes that were downregulated in control neu-
rons, but not in TS neurons, were enriched for func-
tional categories related to cell cycle control, DNA
replication, and cell proliferation (Figure 3D). This sug-
gests a defect in the cell cycle of TS neural progenitors
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Figure 3 Differentiation defects in TS cortical neural progenitors. (A) Heatmap showing gene expression patterns in the black module and a
barplot showing the corresponding module eigengene trajectory. (B) Boxplot comparing the module eigengene patterns between case cells vs. control cells
at three experimental stages. (C) Barplot showing the log2 fold changes of the top 20 connected genes in the black module upon differentiation. Blue bars
show the log2 fold changes in control samples, and pink bars represent the log2 fold changes in patient samples. (D) Differentiation-dependent gene expres-
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(bottom right). The log2 fold changes of the top 15 genes that show largest difference between cases and controls are shown in each group. The top enriched
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that could contribute to the corticogenesis defects we
have previously demonstrated [25]. On the other hand,
genes, such as CTNNA2, SNCA, and SYT7, exhibit
control-specific upregulation pointing to pathways re-
lated to synaptic function, axonogenesis, and nervous
system development (Figure 3D). Similarly, the genes
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exclusively down-regulated upon differentiation in TS pa-
tient cells were enriched for the GO categories of neuron
recognition, PDZ domain binding, and homophilic cell
adhesion, all involved in synaptic development, including
CADM1, FEZF2, and OPCML (Figure 3D). In addition,
the GO terms enriched among TS-specific upregulated
genes were related to cation homeostasis control, and cal-
cium ion binding activities, such as AGTR1, ANXA7, and
ITSN1 (Figure 3D), which were consistent with the bio-
physical dysfunction of the ion channels carrying the TS
mutation. Taken together, our findings suggest a global ef-
fect of the CACNA1C G406R mutation on neuronal differ-
entiation and point to specific pathways and genes that
warrant further experimental study.

TS associated co-expressed genes are co-regulated by
calcium-dependent transcription factors
As shown in Paşca et al., increased [Ca2+]i elevations were
observed in TS-derived neural progenitors and neurons
after depolarization [25]. Thus we investigated how the
identified TS-associated expression features could be re-
lated back to the causal TS calcium channel mutation and
corresponding changes in [Ca2+]i signaling. It is known
that calcium influx regulates activity-dependent gene ex-
pression through a hierarchical transcription network act-
ing through multiple signaling cascades [3,75]. While
simple lists of up- and downregulated genes may not pro-
vide power to identify regulatory mechanisms, we hypoth-
esized that these tight co-expression modules would
reflect calcium-dependent co-regulation. To test this, we
performed transcription factor binding site (TFBS) motif
enrichment analysis on the seven TS associated modules
to investigate whether those modules were enriched for any
calcium-dependent transcriptional regulators (Methods).
For each module, we identified a set of transcription fac-

tor binding sites enriched within a 1 kb window upstream
of the transcription start site, providing strong evidence
for the co-regulation hypothesis. Moreover, this TFBS ana-
lysis identified four important calcium-regulated transcrip-
tion factor families in the TS related modules: NFAT
[19,20], MEF2 [17,18], CREB [21-24], and FOXO [29-32].
Among them, FOXO proteins, which regulate neuronal
polarization and positioning [76] and synaptic function
and memory consolidation [30], have binding targets
enriched in six out of seven TS-associated modules (light
cyan, salmon, magenta, black, purple, and red) (Figure 4).
A total of 1,249 predicted targets were identified in these
six modules, and 229 of them were validated through data
from chromatin immunoprecipitation (ChIP) experiments
[55-57], providing a significant validation of the bio-
informatic predictions (hypergeometric test; P = 7.73E-12;
Methods).
The other TF enrichments were limited to smaller

subsets of modules. Perhaps most remarkable is the
enrichment of NFAT targets in two modules upregulated
in TS, magenta and light green (also asdM16 associated,
which is upregulated in idiopathic ASD [33]; Figure 4).
Four of the five members in this protein family, NFATc1,
NFATc2, NFATc3, and NFATc4, are known to be regulated
via calcium signaling [19,20,77,78]. Forty-two genes (68%)
in the light green module and 262 genes (82%) in the ma-
genta module were predicted to contain at least one NFAT
binding site in their promoter regions. No ChIP data are
available from developing neurons, but in lymphoblasts
[55,56], we were able to observe direct binding to 25 neur-
onal targets (hypergeometric test; P = 2.02E-2). Taken to-
gether, these results suggest that the two upregulated
modules (light green and magenta), which also represent
the convergence of TS and ASD at the level of gene ex-
pression, are likely to be mediated via the calcium/NFAT
signaling pathway.
MEF2, a well-studied calcium or neuronal activity

dependent transcription factor family number [3,17,18],
was enriched in the promoter regions within genes con-
tained in four TS associated modules: black (downregu-
lated in TS and with activity, asdM12 associated), magenta
(upregulated in TS, asdM16 associated), purple, and red
(Figure 4). Of the four different MEF2 family members,
MEF2A, MEF2B, MEF2C, and MEF2D, three (MEF2A/C/
D) had their binding sites enriched in all four modules.
Specifically, 309 genes (76.5%) in the black module, 246
genes (77%) in the magenta module, 214 genes (75%) in
the purple module, and 354 genes (77%) in the red module
contain at least one MEF2 binding site. Using experimen-
tal ChIP-seq and ChIP-chip data [55-57], we were able to
validate a total of 358 predicted MEF2 binding targets
(hypergeometric test; P = 6.58E-20) (Methods). Remark-
ably, MEF2A and MEF2C were previously reported to
have binding sites enriched in idiopathic ASD associated
co-expression modules, consistent with the notion of
involvement of activity-dependent dysregulation in idio-
pathic ASD pathogenesis [3,34].
Targets of two CREB proteins, CREB1 and CREB2, were

also enriched in the black (downregulated in TS and with
activity, asdM12 associated), and magenta (upregulated in
TS, asdM16 associated) modules (Figure 4). CREB tran-
scription factors bind to the cAMP-responsive element
(CRE), and are regulated by calcium influx [1,21-23,79].
One hundred and sixty-one (40%) genes in the black
module and 134 genes (42%) in the magenta module were
predicted to have at least one CREB binding site, 164 of
which could be validated through available ChIP experi-
ments [55-57] (hypergeometric test; P = 4.15E-63) (Methods).
Moreover, we observed overlap of the predicted targets
between the CREB-transcriptional machinery and the
MEF2 proteins (Additional file 2: Figure S4), although
their binding motifs are quite different. One hundred and
forty-eight genes have at least one predicted binding site
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for both MEF2 and CREB proteins in the black module
and 123 (39%) in the magenta module, respectively,
strongly implicating a synergistic interaction between the
two pathways upon calcium influx.
Taken together, our results not only demonstrate sig-

nificant co-regulation among the co-expressed genes,
but also provide specific regulatory links for associating
distinct co-expression modules. More importantly, these
findings provide a path for bridging the observed down-
stream transcriptional alterations back to the mutation
in the L-type calcium channel Cav1.2 via their regulation
by calcium dependent transcription factors.

Discussion
TS is a rare and complex disorder characterized by a
broad spectrum of phenotypic abnormalities. There are
few TS patients available for study and the data used
here represent the only gene expression data set avail-
able in this disorder. Here, we studied multiple cell lines
from independent differentiation experiments with four
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control iPSC clones from two normal subjects, four TS
iPSC clones from one TS patient carrying a dominantly
acting mutation, and one human embryonic stem cell
line (H9; additional control) to mitigate the concerns
about the effect of induction of pluripotency, or other
confounding factors that could bias the results. Through
analysis of data from iPSC-derived cortical neural pro-
genitors and neurons, we identified distinct gene expres-
sion modules that are associated with human neuronal
differentiation and neuronal depolarization across all
conditions. We further demonstrate that the networks
identified in control and TS iPSC-derived neural pro-
genitors and neurons can be validated in independent
in vitro and in vivo data sets. Moreover, we identified
several co-expression modules that were correlated with
TS mutation status, highlighting potential molecular
pathways that may contribute to distinct phenotypic as-
pects of TS. Remarkably, by integrating the transcrip-
tional networks defined by our co-expression analysis
with TFBS enrichment analysis, we showed that the TS-
associated expression changes are co-regulated by a set
of calcium-dependent transcriptional factors. Further-
more, many of the specific genes and processes identi-
fied here in this monogenic condition overlap with those
identified in postmortem brains from patients with idio-
pathic ASD. Consequently, the module hub genes and
the identified transcription factors provide an important
source of new candidate genes for therapeutic targeting.
These intriguing results indicate that study of additional
TS patient lines, when available, will be valuable.
As with other single gene disorders, how a mutation in

a single gene yields such pleotropic CNS phenotypes pro-
vides a significant challenge [80]. Here, our bio-informatic
analysis links specific molecular pathways perturbed in TS
neurons to different aspects of TS, including ID, alter-
ations in immune response, and behavioral phenotypes
overlapping with ASD [8-10]. The identification of mod-
ules highly enriched for genes that either cause or increase
risk for ID and ASD, provides new avenues to investigate
the pathways that may mediate divergence between these
disorders [34]. In particular, the enrichment for genes that
were dysregulated in idiopathic ASD brain (asdM12 and
asdM16) [33] demonstrates the existence of previously
suggested convergent molecular pathways in idiopathic
ASD in this monogenic highly penetrant form of ASD
[33-35]. In parallel with recent findings, our analysis also
indicates distinct modules associated with ASD (black,
light green, and magenta) and ID (light cyan, salmon),
consistent with divergent molecular mechanisms for ASD
and ID [34]. Our analysis also prioritizes important gene
sets (module hub genes) and pathways for further ana-
lyses. These genes can be helpful to understand how di-
verse genetic syndromes converge on ASD and how they
are modulated. For example, two interferon response
genes, IFITM2 and IFITM3, that are dysregulated in ASD
brains [33] and the light green module in TS, as well as
RPS6KA2 and AKT1 in the black module, highlight po-
tential convergent molecular links between TS and ASD
that warrant future experimental investigation.
Network analysis allowed us to determine disease-

associated alterations at the level of transcriptional co-
regulation. TFBS enrichment analysis prioritized several
candidate transcription factors as putative regulators of
disease-associated modules, most of which could be con-
firmed by experimental data. These findings provide direct
evidence for our hypothesis that module gene co-regulation
reflects transcription factor binding. More importantly, our
analysis identified four known calcium-dependent gene
transcription factor families that regulate key genes within
these modules: FOXO [29-31], NFAT [19,78], MEF2
[17,18], and CREB [21-23]. Moreover, by showing the over-
lap of the TF targets within modules, our analysis also
implicates coordination among those calcium-dependent
transcriptional regulation pathways. In particular, we pre-
dict a synergistic effect between MEF2 and CREB proteins
in TS cells, consistent with the observation that phos-
phorylation of both MEF2 and CREB proteins leads to
recruitment of CREB-binding protein (CBP) to activate
downstream transcription [81]. Lastly, since several mod-
ules regulated by these calcium-dependent pathways are
also associated with ASD, these data support previous sug-
gestions that dysregulation of activity-dependent signaling
plays a more general role in ASD pathogenesis [3].
Also, of note, our analysis also highlights the potential

role for RSK (ribosomal S6 kinase) proteins as putative
regulators of genes in the black module. RSK proteins
have been implicated in disorders of cognition and behav-
ior, and mutations in RSK2 lead to Coffin-Lowry syn-
drome, an X-linked dominant genetic disorder that causes
severe mental problems [82]. RPS6KA2 (also known as
ribosomal s6 kinase 3, RSK3), RPS6KA4, and AKT1, all ki-
nases that are known to regulate CREB [79,83-86], were
identified in the black module, where RPS6KA2 and
AKT1 were hub genes. Additionally, several known RSK
and AKT substrates were found in the black module, in-
cluding GSK3A, BEX1, CTNND2, and PAK1, which were
centrally located in the protein-protein interaction net-
work of the black module (Additional file 2: Figure S5).
These observations lead us to speculate that RSK3/AKT1/
CREB have key regulatory roles in the black module, and
that downregulation of the black module in TS samples is
due to downregulation of RSK/AKT pathways, a hypoth-
esis that can be directly tested through experimental
investigation.
Neuronal development signaling and plasticity depends

on electrical activity [3,61-63]. For instance, KCl-mediated
depolarization of neurons changes the chromatin accessi-
bility of several differentiation-associated genes, such as
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NCAM and TH, and can subsequently alter the differen-
tiation path of neurons [58,60]. However, neuronal
depolarization has rarely been investigated at the genome-
wide scale in human derived neural progenitors and neu-
rons. Here, we identified five modules (brown, tan, yellow,
midnight blue, and black) that were highly correlated with
both differentiation and depolarization, providing a mo-
lecular network connecting these processes. An illustrative
example is the black module, which is associated with the
TS mutation, and was upregulated upon differentiation
and downregulated upon depolarization. Importantly, as
implicated by the black module trajectory, TS derived
neural progenitors exhibited significant differentiation def-
icits, strongly implicating the involvement of Cav1.2 in
neural development. This is supported by changes in sev-
eral genes involved in cation homeostasis control, includ-
ing AGTF1, ANXA7, CD55, HMOX1, SFXN4, SLC11A2,
SLC39A14, and SLC4A11, which were exclusively upregu-
lated in TS progenitors upon differentiation, consistent
with large-scale changes in the molecular networks associ-
ated with differentiation in TS.

Conclusions
Our results define a transcriptional network outlining a
shared molecular basis for cortical neural differentiation
and neuronal depolarization, but also implicate dysregula-
tion of these common molecular pathways in TS patho-
genesis. We show that several of these molecular pathways
dysregulated by this specific Cav1.2 mutation are shared
with idiopathic ASD based on comparison with data from
in vivo brain gene expression. By defining the core molecu-
lar changes downstream of the Cav1.2 mutation and its
transcriptional regulators, this work illustrates how an inte-
grative approach can be applied to functionally characterize
transcriptional co-regulation under physiological and dis-
ease states, and to generate hypotheses to drive further
mechanistic experimental investigation.
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Additional file 1: Table S1. Module assignment and module
membership (kME) for all probes that passed the robust expression criteria.

Additional file 2: Figure S1. Module-based preservation in independent
expression data sets from human brain development and neuron
differentiation in vitro. Figure S2. Module eigengene correlation with
neuron differentiation and depolarization, as well as the TS mutation status.
Figure S3. Module-level enrichment for in vivo defined modules during fetal
brain development [41,42]. Figure S4. Overlap of MEF2 and CREB predicted
targets. Figure S5. A protein-protein interaction network comprises the top
connected genes in the black module (kME >0.7) [87].

Additional file 3: Table S2. Statistic significance of module-level
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ASD and ID associated genes. Odds ratio, P value, and BH corrected FDR
for significant overlap at P <0.1 are shown. Table S4. A table listing ID
susceptibility genes in the light cyan and salmon modules. Table S5. A
table listing ASD associated genes in the black, light green, and magenta
modules.
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