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Abstract: The current investigations of the COVID-19 spreading model are presented through the
artificial neuron networks (ANNs) with training of the Levenberg-Marquardt backpropagation
(LMB), i.e., ANNs-LMB. The ANNs-LMB scheme is used in different variations of the sample
data for training, validation, and testing with 80%, 10%, and 10%, respectively. The approximate
numerical solutions of the COVID-19 spreading model have been calculated using the ANNs-LMB
and compared viably using the reference dataset based on the Runge-Kutta scheme. The obtained
performance of the solution dynamics of the COVID-19 spreading model are presented based on
the ANNs-LMB to minimize the values of fitness on mean square error (M.S.E), along with error
histograms, regression, and correlation analysis.

Keywords: COVID-19 spreading model; artificial neural networks; Levenberg-Marquardt backprop-
agation; reference dataset; numerical results

1. Introduction

The development of science, both over technology, as well as information, is related to
the human’s heathy life. In fact, there are numerous complications that are not considered
easy in an individual’s life. In the health sector, a number of infectious diseases are
produced by the bacterial viruses. The diseased infections are a big danger for the society
that always disturbed the economies of the countries, destroyed the sector of education
and demolished the tourism industry. A novel Coronavirus is a dangerous transmittable
virus discovered at the end of the 19th century and spread all around the world [1]. Many
peoples died from coronavirus disease (COVID-19) and the positive cases, along with the
recovery rate, has also a great number [1]. The common COVID-19 symptoms are runny
noses, sore throats, coughs, headaches and fever, or severe breathing symptoms, such as
bleeding, high fever, cough with phlegm, shortness of breath, and chest pain [2].

In recent decades, the researchers considered a favorite topic examining the dynamics
of coronavirus, and they presented many recommendations. Donders et al. [3] expressed
the International Society of Infectious Disease in Obstetrics and Gynecology (ISIDOG)
based recommendations for the COVID-19. Wang [4] suggested a mathematical COVID-19
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system based on the limitations, applications, and potentials. Rhodes et al. [5] designed
a mathematical system to express the public difficulties of the infection control of coro-
navirus. Javeed et al. [6] presented a novel model for COVID-19, including the effects
of government strategies and comparative analysis of different countries regarding pre-
vention of disease. Jewell et al. [7] described the potential impacts of disruption-based
human immunodeficiency virus (HIV) programs in Africa produced by the coronavirus.
Sánchez et al. [8] suggested a fractal susceptible, infection, treatment, and recovery (SITR)
nonlinear model to express the coronavirus dynamics. Khrapov et al. [9] comparatively
analyzed the mathematical system using the dynamics of the coronavirus epidemic growth
in various countries. Elsonbaty et al. [10] proposed a dynamical discrete SITRs fractional
system related to coronavirus. Thompson [11] introduced the epidemiologic system that
is considered a significant tool based on the coronavirus interferences. Umer et al. [12,13]
calculated the numerical results based on the swarming and heuristic schemes for solving
the nonlinear SITR model based on the coronavirus.

Kharis et al. [14] studied a mathematical model, which plays a vital role to avoid the
spread of viruses. Yulida [15] explained that a significant role of mathematics is observed
to explore the outbreak of the dynamics of diseases, spreading and forecasting patterns to
deal stratagems called as epidemiological mathematics. Moreover, the solutions of some
mathematical models are presented analytically that involves epidemic diseases. Hence,
it is important to gain the numerical designs for such problems. Therefore, the stochastic
computational schemes using the artificial neuron networks (ANNs) with the novel features
of the Levenberg-Marquardt backpropagation (LMB), i.e., ANNs-LMB, is implemented to
solve the nonlinear COVID-19 spreading model. The stochastic procedures of ANNs-LMB
have never been applied for solving the nonlinear COVID-19 spreading model. The data
ratio is adjusted for three cases of the coronavirus spreading model are 80%, 10%, and 10%
for training, testing and validation, respectively. The numerical measures are performed
using the ANNs-LMB for solving the coronavirus spreading model and comparison will
be performed through the reference dataset based Runge-Kutta scheme [16]. Some reputed
used of stochastic procedures are the delay differential models [16,17], multi-fractional
systems [18–20], prey-predator model [21], infection based HIV system [22], singular
functional systems [23], Thomas-Fermi equation [24], heat conduction model [25], mosquito
dispersal system [26], and periodic singular model [27,28].

The aim of the study is to present a design of computing framework based on artificial
neural network trained with Livenberg-Marquardt backpropagation (ANNs-LMB) for
analysis of coronavirus spreading model. While a lot of literature is available on the internet
used for reliable and accurate prediction of coronavirus spreading in different regions of
the world using sophisticated computing paradigm of neural networks, deep-learning,
and transfer learning, combined with deterministic and stochastic optimization solver
for global and local search, including a novel hybrid time series model of COVID-19 [29],
neural network prediction of COVID-19 pandemic at the Brazilian Amazon [30], integrated
neuro-evolution heuristics approach [31], transfer learning based computing [12], deep
neural networks [32], nonlinear autoregressive networks [33], and radial base networks [34].
However, the potentials of the proposed ANNs-LMB to solve the coronavirus spreading
model are presented as follows for better understanding of the contribution:

• Artificial intelligence (AI) knacks-based computational procedure via neural networks
models learned with Livenberg-Marquardt algorithm is introduced and implemented
to solve nonlinear coronavirus spreading model represented with 7 classes based
systems of ordinary differential equations (ODEs).

• The comparison of the results obtained through designed computing ANNs-LMB
with numerical solutions are found in good agreement on the basis of absolute error
(AE) values, which approve the value, worth and significance of the ANNs-LMB to
solve the nonlinear coronavirus spreading model.
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• The performance or convergence curves on mean square error (MSE), regression metric
calculations of correlation index, and error histograms (EHs) through exhaustive
simulations further indorse the reliability and consistency of the ANNs-LMB scheme.

The remaining parts are organized as: The designed methodology based ANNs-LMB
is provided in Section 2, numerical simulations are presented in Section 3, and concluding
remarks are provided in Section 4.

2. Material and Methods

The material and methodologies presented here are described in three portions for
solving the nonlinear coronavirus spreading model as follows.

The nonlinear COVID-19 spreading model has seven classes, susceptible (S(y)), ex-
posed population (E(y)), infected (I(y)), removed (R(y)), total population (N(y)), public
perception (D(y)), and cumulative case (C(y)), along with the initial conditions (ICs), given
as [28]: 

S′(y) = − β0E(y)S(y)
N(y) − β(y)I(y)S(y)

N(y) − µS(y), S(0) = I1,

E′(y) = β0E(y)S(y)
N(y) + β(y)I(y)S(y)

N(y) − (µ + σ)E(y), E(0) = I2,
I′(y) = σE(y)− (µ + γ)I(y), I(0) = I3,
R′(y) = −µR(y) + γI(y), R(0) = I4,
N′(y) = −µN(y), N(0) = I5,
D′(y) = −λD(y) + dγI(y), D(0) = I6,
C′ = σE(y), C(0) = I7.

(1)

where µ, β0, and σ are the emigration, initial transmission, and latent rates, whereas the
transmission rates at time y, public reaction, infected, and severe cases are β(y), λ, γ, and d.
The ICs are I1, I2, I3, I4, I5, I6, and I7.

In the first step, the necessary details of the numerical procedure of the Runge-Kutta
solver are provided which are used to create dataset for the system (1). In the second part,
designed ANNs-LMB computing platform in terms of networks modeling, layer structure,
and backpropagation algorithm are provided, while, in the third step, implementation
procedures of the proposed ANNs-LMB to solve the nonlinear coronavirus spreading
model is provided.

The reference datasets for different scenario of nonlinear coronavirus spreading model
represented with 7 class-based systems of ODEs as portrayed in the set of equations in
Equation (1) are calculated by exploiting the numerical strength of Adams solver using
‘NDSolve’ routine for solution of differential equations in Mathematica software package in
Microsoft Windows 10 environment. The default parameter settings of Adams procedure,
i.e., good accuracy, tolerances, stoppage criteria, etc., is used for execution. The dataset
generated is used for modeling the networks with different distributions of data in training,
testing, and validation samples for each case of the nonlinear corona virus spreading
system (1).

The appropriate work flow structure of proposed methodology ANNs-LMB in terms
of problem, layer structure, and results description with performance analysis, and opti-
mization procedures are illustrated in Figure 1.
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Figure 1. Workflow diagram using the ANNs-LMB to solve the nonlinear COVID-19 spreading model.

The proposed model for a single neuron representation is shown in Figure 2. The build-
in ‘nftool’ command available in the neural network toolbox in MATLAB software package
in Microsoft Windows 10 environment is used for the training, testing, and validation
with 80%, 10%, and 10% samples, respectively, for formulation of networks to find the
approximate solutions for nonlinear coronavirus spreading model represented for the 7
class-based systems of ordinary differential equations as given in set (1). Moreover, the
number of epochs executed for each problem is set after detailed simulations, as per the
procedure provided in references [35,36].
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3. Numerical Experimentation with Interpretation of Results

This section presents the numerical performances of three cases based on the nonlinear
coronavirus spreading model using the proposed ANNs-LMB. The mathematical form of
each case is given as:

Case 1. Considering the nonlinear coronavirus spreading model with the appropriate
values is shown as:

S′(y) = − 0.5E(y)S(y)
N(y) − 0.6I(y)S(y)

N(y) − 0.0205S(y), S(0) = 0.9,

E′(y) = 0.5E(y)S(y)
N(y) + 0.6(y)I(y)S(y)

N(y) − (0.0205 + 1
3 )E(y), E(0) = 0.1,

I′(y) = 1
3 E(y)− (0.0205 + 1

5 )I(y), I(0) = 0,
R′(y) = −0.0205R(y) + 1

5 I(y), R(0) = 0,
N′(y) = −0.0205N(y), N(0) = 14,
D′(y) = − 1

11.2 D(y) + 0.04γI(y), D(0) = 0,
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3 E(y), C(0) = 0.

(2)

Case 2. Considering the nonlinear coronavirus spreading model with the appropriate
values is shown as:

S′(y) = − 0.5E(y)S(y)
N(y) − 0.6I(y)S(y)

N(y) − 0.1205S(y), S(0) = 0.9,

E′(y) = 0.5E(y)S(y)
N(y) + 0.6(y)I(y)S(y)

N(y) − (0.1205 + 1
3 )E(y), E(0) = 0.1,

I′(y) = 1
3 E(y)− (0.1205 + 1

5 )I(y), I(0) = 0,
R′(y) = −0.1205R(y) + 1

5 I(y), R(0) = 0,
N′(y) = −0.1205N(y), N(0) = 14,
D′(y) = − 1

11.2 D(y) + 0.04γI(y), D(0) = 0,
C′(y) = 1

3 E(y), C(0) = 0.

(3)

Case 3. Considering the nonlinear coronavirus spreading model with the appropriate
values is shown as:

S′(y) = − 0.5E(y)S(y)
N(y) − 0.6I(y)S(y)

N(y) − 0.2205S(y), S(0) = 0.9,

E′(y) = 0.5E(y)S(y)
N(y) + 0.6(y)I(y)S(y)

N(y) − (0.2205 + 1
3 )E(y), E(0) = 0.1,

I′(y) = 1
3 E(y)− (0.2205 + 1

5 )I(y), I(0) = 0,
R′(y) = −0.2205R(y) + 1

5 I(y), R(0) = 0,
N′(y) = −0.2205N(y), N(0) = 14,
D′(y) = − 1

11.2 D(y) + 0.04γI(y), D(0) = 0,
C′(y) = 1

3 E(y), C(0) = 0.

(4)
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The numerical values to solve each class of the nonlinear coronavirus spreading model
are provided through the procedures of ANNs-LMB with input interval [0,1] and 0.01 step
size. The designed ANNs-LMB procedures is selected as a larger part, i.e., for (training
—80%), (validation—10%), and (testing—10%), respectively. The hidden neurons have been
selected as 10 for each case of the nonlinear coronavirus spreading model [37], and the
obtained numerical performances through the ANNs-LMB to solve each case of the model
are presented in Figure 3 based on the single layer structure [38].
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Figure 3. Proposed ANNs-LMB to solve the nonlinear COVID-19 spreading model with a single input
layer, a single hidden layer with 10 number of neurons, and a single output layer with 7 outputs.

The plots of the ANNs-LMB to solve the nonlinear coronavirus spreading model
are drawn in Figures 4–7. The proficient performances, as well as states of transition, to
solve each class of the nonlinear coronavirus spreading model is drawn in Figure 4. The
obtained numerical performances are plotted based on the M.S.E for testing, best curves,
validation, and training in Figure 4a–c to solve the nonlinear coronavirus spreading model.
These illustrations show that ANNs-LMB to solve each nonlinear coronavirus spreading
model at epochs numbers 67, 195, and 217 with MSE almost 1.37 × 10−9, 9.62 × 10−11

and 9.93 × 10−11, respectively. Figure 4d–f indicates the gradient performances using
the ANNs-LMB to solve the nonlinear coronavirus spreading model which found around
9.98 × 10−8, 9.99 × 10−8, and 9.92 × 10−8 for the respective three cases. These graphs
show the precision, convergence, and accuracy of the ANNs-LMB to solve each variant
of the nonlinear coronavirus spreading model. The plots based on the fitting curves to
solve each variant of the nonlinear coronavirus spreading model are drawn in Figure 5a–c,
which show the accuracy through the comparative ANNs-LMB results with the reference
data. The error plots are demonstrated through the measures of training, testing, and
verification and using the ANNs-LMB to solve each variant of the nonlinear coronavirus
spreading model. The EHs plots are provided in Figure 5d–f, which show that the errors
lie around −2.2 × 10−6, 1.0 × 10−7, and 1.01 × 10−7 for the three respective cases of
coronavirus spread model. The regression illustrations are provided in Figures 6–8 based
on each variant of the nonlinear coronavirus spreading model. These correlation plots
are presented with the regression index value close to unity in each case. The correlation
values are observed nearly equal to 1 for each case of the nonlinear coronavirus spreading
model which demonstrate near to perfect modeling of the solution dynamics of the system.
The testing, training, and authentication plots indicate the accuracy and precision of the
ANNs-LMB to solve each class of the nonlinear coronavirus spreading model. Furthermore,
the convergence through the MSE procedures is sanctioned through the epochs, training,
verification, backpropagation presentations, complexity, and testing measures are drawn
in Table 1 to solve the nonlinear coronavirus spreading model.
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The comparative soundings are demonstrated in Figures 9 and 10 to solve each
variant of the nonlinear coronavirus spreading model. The outcomes of the “S”, “E”, “I”,
“R”, “N”, “D”, and “C” based on the nonlinear coronavirus spreading model using the
ANNs-LMB are drawn in Figure 9a–g. The exact (reference and obtained) matching of the
results indicates the precision and exactness of the ANNs-LMB to solve each variant of
the nonlinear coronavirus spreading model. The AE performances are drawn in Figure 10
to solve each variant of the nonlinear coronavirus spreading model. The AE of “S”, “E”,
“I”, “R”, “N”, “D”, and “C” based on the based on the nonlinear coronavirus spreading
model using the ANNs-LMB are drawn in Figure 10a–g. Figure 10a shows the AE for
class “S” lie around 10−5 to 10−6, 10−5 to 10−7, and 10−6 to 10−7 for Cases 1–3. Figure 10b
indicates the AE for the category “E” lies around 10−5 to 10−7, 10−6 to 10−7, and 10−6 to
10−8 for the categories 1–3. It is observed in Figure 10c that the AE for the category “I” lie
around 10−5 to 10−6, 10−6 to 10−7, and 10−6 to 10−8 for Cases 1–3. Figure 10d provides
the results of the AE for the category “R” found around 10−6 to 10−8, 10−5 to 10−7, and
10−6 to 10−8 for Cases 1–3. Figure 10e shows the AE values of the dynamics of N(y) found
around 10−4 to 10−6 for each case of the nonlinear model. In Figure 10f, it is observed the
AE for class “D” lie around 10−5 to 10−7 for Case 1, whiles for Cases 2 and 3, these values
found around 10−5 to 10−6. In Figure 10g, it is observed the AE for class “C” lie around
10−4 to 10−6, 10−6 to 10−10, and 10−6 to 10−8 for Cases 1–3. These exactly match the results
to perform the exactness and perfection of the ANNs-LMB to solve each variant of the
nonlinear coronavirus spreading model.



Int. J. Environ. Res. Public Health 2021, 18, 12192 10 of 15

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 6. Case 1 Regression plots based on the nonlinear COVID-19 spreading model. 

 
Figure 7. Case 2 Regression plots based on the nonlinear COVID-19 spreading model. Figure 7. Case 2 Regression plots based on the nonlinear COVID-19 spreading model.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 8. Case 3 Regression plots based on the nonlinear COVID-19 spreading model. 

The comparative soundings are demonstrated in Figures 9 and 10 to solve each vari-
ant of the nonlinear coronavirus spreading model. The outcomes of the “S”, “E”, “I”, “R”, 
“N”, “D”, and “C” based on the nonlinear coronavirus spreading model using the ANNs-
LMB are drawn in Figure 9a–g. The exact (reference and obtained) matching of the results 
indicates the precision and exactness of the ANNs-LMB to solve each variant of the non-
linear coronavirus spreading model. The AE performances are drawn in Figure 10 to solve 
each variant of the nonlinear coronavirus spreading model. The AE of “S”, “E”, “I”, “R”, 
“N”, “D”, and “C” based on the based on the nonlinear coronavirus spreading model 
using the ANNs-LMB are drawn in Figure 10a–g. Figure 10a shows the AE for class “S” lie 
around 10−5 to 10−6, 10−5 to 10−7, and 10−6 to 10−7 for Cases 1–3. Figure 10b indicates the AE 
for the category “E” lies around 10−5 to 10−7, 10−6 to 10−7, and 10−6 to 10−8 for the categories 1–
3. It is observed in Figure 10c that the AE for the category “I” lie around 10−5 to 10−6, 10−6 to 
10−7, and 10−6 to 10−8 for Cases 1–3. Figure 10d provides the results of the AE for the category 
“R” found around 10−6 to 10−8, 10−5 to 10−7, and 10−6 to 10−8 for Cases 1–3. Figure 10e shows 
the AE values of the dynamics of N(y) found around 10−4 to 10−6 for each case of the nonlin-
ear model. In Figure 10f, it is observed the AE for class “D” lie around 10−5 to 10−7 for Case 
1, whiles for Cases 2 and 3, these values found around 10−5 to 10−6. In Figure 10g, it is ob-
served the AE for class “C” lie around 10−4 to 10−6, 10−6 to 10−10, and 10−6 to 10−8 for Cases 1–
3. These exactly match the results to perform the exactness and perfection of the ANNs-
LMB to solve each variant of the nonlinear coronavirus spreading model. 

  

Figure 8. Case 3 Regression plots based on the nonlinear COVID-19 spreading model.



Int. J. Environ. Res. Public Health 2021, 18, 12192 11 of 15

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 12 of 16 
 

 

V
al

ue
s 

 

V
al

ue
s 

 
(a) Results of the S(y) (b) Results of the E(y) 

V
al

ue
s 

 

V
al

ue
s 

 
 Inputs  Inputs 

(c) Results of the I(y) (d) Results of the R(y) 

V
al

ue
s 

 

V
al

ue
s 

 
 Inputs  Inputs 

(e) Results of the N(y) (f) Results of the D(y) 

 

 
 (g) Results of the C(y) 

Figure 9. Result comparisons using the ANNs-LMB to solve the nonlinear COVID-19 spreading 
model. 
Figure 9. Result comparisons using the ANNs-LMB to solve the nonlinear COVID-19 spreading model.



Int. J. Environ. Res. Public Health 2021, 18, 12192 12 of 15
Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 13 of 16 
 

 

  
(a) AE the S(y) (b) AE for the E(y) 

  
(c) AE for the I(y) (d) AE for the R(y) 

  
(e) AE for the N(y) (f) AE for the D(y) 

 
(g) 

Figure 10. AE using the ANNs-LMB to solve the nonlinear COVID-19 spreading model. 

  

Figure 10. AE using the ANNs-LMB to solve the nonlinear COVID-19 spreading model.

4. Conclusions

The models based on the artificial neural networks are presented, together with the
training of Levenberg-Marquardt backpropagation, to solve the nonlinear coronavirus
spreading model. The numerical scheme based on the ANNs-LMB is implemented for
three different procedures of training, authentication, testing, and sample data. These data
proportions are provided to solve three variants of the nonlinear coronavirus spreading
model, selected as 80%, 10%, and 10% for training, validation, and testing, respectively. The
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numerical measures have been achieved using the ANNs-LMB, along with the comparative
investigations through the reference dataset. The numerical accomplished results from
the ANNs-LMB are implemented to reduce the M.S.E. In order to find the exactness,
effectiveness, reliability, and capability of the ANNs-LMB scheme, the numerical bases are
capable using the proportional actions via M.S.E, correlation, EHs, and regression. The
gradient performances using the step size are attained for each variant of the nonlinear
coronavirus spreading model. Additionally, the precision and reliability of ANNs-LMB is
observed using sufficient large illustrations for numerical and graphical forms through the
convergence plots, M.S.E collections, regression dynamics, and EHs.

The designed neuro-evolution based computing strategy is a good alternative to
exploit the state of the art on studies related to COVID-19 and dengue modeling and
control [39–43].
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