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Simple Summary: The amino acid 5-aminolevulinic acid (5-ALA) is the benchmark regarding
intraoperative imaging tools for glioblastoma (GB) surgery, and is known to facilitate the extent of
resection, which results in an enhanced 6 month progression-free survival rate. Recent in vitro studies
suggest that antiepileptic drugs (AEDs) result in a reduction in the fluorescence quality in gliomas. To
date, there is no large clinical series investigating this issue in a homogeneous cohort. Approximately
25% of all GB patients have a symptomatic epilepsy as the initial symptom at presentation. Hence,
this potential dilemma is of paramount importance. We found that the preoperative intake of
levetiracetam is a significant risk factor for reduced intraoperative fluorescence in IDH1 wild-type
GBs. We believe that this issue must be considered in future external validations, and physicians must
carefully evaluate the indication of levetiracetam and avoid a prophylactic levetiracetam treatment in
terms of the suspected diagnosis of glioblastoma.

Abstract: The amino acid 5-aminolevulinic acid (5-ALA) is the most established neurosurgical fluo-
rescent dye and facilitates the achievement of gross total resection. In vitro studies raised concerns
that antiepileptic drugs (AED) reduce the quality of fluorescence. Between 2013 and 2018, 175 IDH1
wild-type glioblastoma (GB) patients underwent 5-ALA guided surgery. Patients’ data were ret-
rospectively reviewed regarding demographics, comorbidities, medications, tumor morphology,
neuropathological characteristics, and their association with intraoperative 5-ALA fluorescence. The
fluorescence of 5-ALA was graded in a three point scaling system (grade 0 = no; grade 1 = weak;
grade 2 = strong). Univariable analysis shows that the intake of dexamethasone or levetiracetam, and
larger preoperative tumor area significantly reduce the intraoperative fluorescence activity (fluores-
cence grade: 0 + 1). Multivariable binary logistic regression analysis demonstrates the preoperative
intake of levetiracetam (adjusted odds ratio: 12.05, 95% confidence interval: 3.91–37.16, p = 0.001) as
the only independent and significant risk factor for reduced fluorescence quality. Preoperative leve-
tiracetam intake significantly reduced intraoperative fluorescence. The indication for levetiracetam in
suspected GB should be carefully reviewed and prophylactic treatment avoided for this tumor entity.
Future comparative trials of neurosurgical fluorescent dyes need a special focus on the influence of
levetiracetam on fluorescence intensity. Further trials must validate our findings.

Keywords: glioblastoma; 5-ALA; antiepileptic drugs; levetiracetam

1. Introduction

Gliomas represent the most common intracranial neoplasms and account for 70% of
all primary brain tumors [1,2]. IDH1 wild-type glioblastoma (GB) is the most common
malignant brain tumor, and the fifth edition of the World Health Organization (WHO)
classification system classifies IDH1 wild-type gliomas as WHO grade 4 [3].
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Benchmark treatments include a maximum complete resection, with the preservation
of neurological functioning, and adjuvant radiochemotherapy [4]. Despite emerging data
demonstrating the prognostic benefits of evidence-based concomitant chemoradiotherapy
regimens, including lomustine-temozolomide (TMZ) and temozolomide, phase III trials
found that the median overall survival (OS) in GB patients with a hypermethylated O-6-
methylguaninen-DNA methyltransferase (MGMT) promotor, and treated with standard
TMZ-based radiochemotherapy, is 23.4–31.4 months [5–7]. Further established prognostic
factors for long-term overall survival in GB are age at diagnosis, baseline Karnofsky
Performance Status (KPS), and the extent of resection (EoR) [8–11].

For patients with newly diagnosed GB, maximum EoR equates to a significant en-
hancement in overall survival. Hence, extent of resection thresholds between 95% and 98%
are frequently recommended [11,12]. However, maximum cytoreductive surgery, while pre-
serving a good neurologic outcome, is a major task in neuro-oncological surgery. Intraoper-
ative imaging methods, such as intraoperative magnetic resonance imaging (iMRI) [13–15]
and 5-aminolevulinic acid (5-ALA), are powerful tools used to achieve high rates of gross
total resection (GTR) in glioblastoma surgery [16].

A 5-ALA-guided surgery induces protoporphyrin IX (PpIX) fluorescence, which re-
sults in a significantly higher extent of resection and prolonged progression-free survival
in GB [16–21]. The precise mechanism resulting in the accumulation of PpIX in GB cells,
so far, remain unclear. A multifactorial impact was suggested to influence the intraop-
erative fluorescence quality. For instance, increased metabolism, the up-regulation of
porphyrin-producing enzymes, reduced metabolism of iron within glioma cells, and a re-
duction in activity of the enzyme ferrochelatase, which converts the visible and fluorescing
PpIX into heme, are suggested as key mechanisms of 5-ALA application in glioblastoma
surgery [22–24]. The exogenously administered 5-ALA is absorbed into the cytoplasm of
the mitochondria and used as a substrate for PpIX [25,26]. PpIX acts as a protein-bound
prosthetic group in mitochondrial respiratory chain complexes. In vitro studies reveal
that antiepileptic drugs (AEDs), including levetiracetam, might injure the mitochondrial
membrane, which results in an inhibition of PpIX synthesis in glioblastoma cells [27,28].
Hence, there is potential conflict between AED treatment and 5-ALA application in the
surgical treatment of GB.

Seizures are frequently observed as the first symptom of GB, and the literature reports
that between 25% and 50% of the patients suffer from symptomatic epilepsy at presen-
tation [29]. For this type of seizure, the International League Against Epilepsy (ILAE)
recommends levetiracetam as a class A efficacy AED [30]. Hence, the potential interaction
between levetiracetam, as the most common prescribed AED in this condition, and the
application of 5-ALA, concerns a large group of GB patients and might leave physicians on
the horns of a dilemma.

The present investigation aimed to analyze the influence of AEDs, and in particular
levetiracetam, on the presence and quality of visible 5-ALA fluorescence in surgery for
IDH1 wild-type glioblastoma.

2. Materials and Methods
2.1. Study Design and Patient Characteristics

Between May 2013 and December 2018, 381 GB patients underwent surgical therapy
for high-grade gliomas, classed as WHO grade 4, in the institutional neurosurgical center.
A review of patient data was retrospectively performed, after institutional review board
approval was obtained. The criteria for inclusion in this study were histopathologically
confirmed IDH1 wild-type glioblastoma, primary diagnosis, an age greater than 18 years,
5-ALA application, description of fluorescence quality, and treatment via a neurosurgical
resection. The following patients (n = 206) were excluded: patients who underwent biopsy
without the application of 5-ALA; if an MRI showed multiple or bilateral disease; or if the
physical status was graded as KPS < 60% [31]. Recurrent malignant glioma patients were
excluded, due to potential false positive fluorescence after adjuvant therapies [32,33]. In
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40 cases, 5-ALA was not applied, due to initially suggested brain metastases (n = 33), no
visible Gd enhancement in preoperative MRI (n = 6), and pregnancy (n = 1). IDH1 mutated
GBs were also excluded, to be in line with the fifth edition of the WHO classification system,
and due to observed differences regarding fluorescence quality in IDH1 wild-type and
mutated GBs [34]. Figure 1 summarizes the selection process of the present study cohort.
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Figure 1. Flow chart illustrating the selection process of consecutive meningioma patients between
1 May 2013 and 1 December 2018.

2.2. Surgical Procedure

Routine navigation head Gadolinium (Gd)-enhanced MRIs were routinely performed
within 48 h before surgery. The 5-Aminolevulinic acid was administered orally as a single
dose (20 mg/kg body weight, Gliolan; Medac GmbH, Wedel, Hamburg, Germany), on
average 3 h preoperatively. Neurosurgical white-light resection was performed under
neuronavigation guidance (BrainLAB Curve, BrainLAB AG, Feldkirchen, Bavaria, Ger-
many). During surgery, the PENTERO 800 microscope (Zeiss, Oberkochen, Germany) was
routinely switched to violet–blue excitation light, to visualize 5-ALA fluorescence positive
areas in a dark operative room, which is necessary to reduce biases from external sources
of light. The neurosurgical microscope included a fluorescent 400 nm UV light module
and specified filters to enable 5-ALA visualization. When the neurosurgeon assumed that
gross total resection of the tumor was achieved, hemostasis was performed. Afterward,
the resection cavity was again examined using 5-ALA, and suspicious areas of residual
tumor tissue were resected. Every single procedure was recorded and reviewed by a senior
neurosurgeon. Fluorescence quality was visually evaluated by senior neurosurgeons, and
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classified according to the established 3-stage scale system of Stummer et al. [35]. The
following classification was used: grade 0 constituted no fluorescence; grade 1 constituted
weak fluorescence; and grade 2 constituted strong fluorescence. Figure 2 displays the
applied classification system of 5-ALA fluorescence quality measurement scale, according
to Stummer et al. [35]. Postoperative MRIs were performed within 72 h of resection, by
a senior neuroradiologist, to evaluate the extent of resection [31]. Gross total resection
was defined as a resection without residual Gd enhancement, whereas subtotal resection
was considered as any resection with residual Gd enhancement and an extent of resection
≥ 90% [36].
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Figure 2. Classification system of 5-ALA fluorescence quality grading.

2.3. Histopathology

Histopathological grading was performed based on the 2016 WHO criteria [37]. IDH1
mutated GBs were not included in this analysis. Immunohistochemical investigation for
mutant IDH1 (R132H) was performed. In patients < 55 years, and with negative immunohis-
tochemistry, further mutational testing was performed. Hence, all WHO grade 4 tumors are
in keeping with the requirements of the fifth edition of the WHO classification system [3].
Paraffin sections were stained with hematoxylin and eosin (H & E). Tumor specimens
were immunohistochemically examined using the molecular immunology borstel-1 (MIB-1)
antibody, glial fibrillary acidic protein (GFAP), and IDH1 [31]. MGMT promoter status
was investigated and reported according to Hegi et al. [38]. The O-6-methylguanine-DNA
promoter methylation was routinely investigated using pyrosequencing, as described
previously [39].

2.4. Clinical Data Recording and Analysis

The following preoperative patient characteristics were recorded: age, sex, Karnofsky
Performance Status, American Society of Anesthesiologists classification (ASA), body mass
index (BMI), medical comorbidities, and medication. Since the primary objective of the
present investigation was to analyze the impact of AEDs on 5-ALA fluorescence quality in
GB surgery, each type of AEDs administered in each patient was documented.

Tumor characteristics were investigated based on a measurement of the tumor area,
which was calculated in mm2, based on the two largest tumor diameters perpendicular to
each other on the axial Gd-enhanced, T1-weighted MR images in the preoperative imaging
examination [31,40]. Perilesional edema was measured as the maximum extent of the
hyperintense T2 signal intensity on the tumor margin in the preoperative MRI [31,41].

2.5. Statistical Analysis

Data were organized and analyzed using SPSS for Windows (version 27.0; IBM Corp,
Armonk, New York, NY, USA). Receiver operating characteristic (ROC) curves were con-
structed for tumor areas in the prediction of fluorescence quality. Cut-off values for the
variables age and MIB-1 labeling index were set at 65 years and 20%, based on previous
studies [42–44]. Normally distributed data were reported as mean with the standard
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deviation (SD). Preoperative demographic data, medications, tumor features, and neu-
ropathological data were compared between fluorescence quality grades using Fisher’s
exact test (two-sided) for categorical data, and analysis of variance (ANOVA) and indepen-
dent t-test for continuous data. For a poor fluorescence quality (grade 0 + 1), multivariable
binary logistic regression analysis of predictors was performed. A p-value < 0.05 was
defined as statistically significant. MGMT and MIB-1 index were included in the multivari-
able analysis, due to their described relationship with age and 5-ALA fluorescence [45,46].
Further subgroup analyses (using uni- and multivariable analyses) of fluorescence quality
in patients treated with either levetiracetam or no AEDs were performed.

3. Results
3.1. Patient Characteristics

A total of 175 patients underwent 5-ALA-guided surgery for IDH1 wild-type GB
at our department between May 2013 and December 2018. The median age is 66 years
(IQR 56–73), and the study includes 66 females (37.7%) and 109 males (62.3%; male/female
ratio 1.65:1). The median preoperative Karnofsky performance scale (KPS) at presentation
is 90 (IQR 80–90). A total of 52 patients (52/175; 29.7%) suffer from symptomatic epilepsy
at presentation. The most common seizure type is generalized epilepsy (24/175; 13.7%). In
49 out of 52 patients with a baseline epilepsy, AED treatment is already introduced prior
to surgery. Levetiracetam (43/175; 24.6%) is the most frequently prescribed AED. Strong
5-ALA fluorescence is observed in 142 (81.1%) patients, whereas in 33 (18.9%) patients either
no, or only weak, fluorescence quality is found. Further characteristics are summarized in
Table 1.

Table 1. Patient characteristics of IDH1 wild-type glioblastoma (n = 175).

Median age (IQR) (in years) 66 (56–73)

Sex
Female 66 (37.7%)
Male 109 (62.3%)

Median preoperative KPS (IQR) 90 (80–90)

Median body mass index (IQR) 25.7 (23.4–28.7)

Preoperative epilepsy 52 (29.7%)
Generalized 24 (13.7%)

Complex partial 9 (5.1%)
Simple partial 19 (10.9%)

Type of antiepileptic medication
Levetiracetam 43 (24.6%)
Lamotrigine 2 (1.1%)

Valproate 1 (0.6%)
Carbamazepine 1 (0.6%)

Phenytoin 1 (0.6%)
Benzodiazepines 1 (0.6%)

Dexamethasone intake
Yes 75 (42.9%)
No 100 (57.1%)

Median tumor area (IQR), mm2 1268 (724.8–2113)

Median peritumoral edema (IQR), mm 21.3 (15.3–29.7)

MGMT promoter hypermethylation 69 (39.4%)

Median MIB-1 labeling index (IQR) 15 (10–20)

5-ALA fluorescence grade
Grade 0—no fluorescence 16 (9.1%)

Grade 1—weak fluorescence 17 (9.7%)
Grade 2—strong fluorescence 142 (81.1%)
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3.2. Clinical, Imaging, and Neuropathological Characteristics among Fluorescence Grades

Fluorescence grades 0, 1, and 2 are observed in 16 (9.1%), 17 (9.7%), and 142 (81.1%) pa-
tients, respectively. Patients with a stronger fluorescence quality tend to be older, compared
to fluorescence grade 1 and 0 patients (p = 0.06). The intake of AED and dexamethasone
prior to surgery is significantly more often observed among the patients in whom either no,
or only weak, intraoperative fluorescence quality is observed. A total of 26 out of 33 patients
with either no, or only weak, fluorescence grades (grades 0 + 1) take antiepileptic drugs
prior to surgery, whereas only 7 patients with fluorescence grades 0 or 1 have no AEDs in
their preoperative medication (p = 0.001). Strong intraoperative fluorescence grade 2 is also
significantly more often observed in patients who take no dexamethasone preoperatively.
The intake of dexamethasone is not significantly associated with the intake of AEDs. A
total of 19 patients (19/52; 36.5%) in the AED group simultaneously take dexamethasone,
whereas 56 patients (56/123; 45.5%) without the intake of AEDs are also under prescription
of dexamethasone preoperatively (Fisher’s exact test (two-sided): p = 0.32). Furthermore,
the tumor area is significantly larger in patients with fluorescence grade 2, in response
to UV light excitation (mean ± SD in fluorescence grades 2, 1, and 0: 1553.7 ± 1047.8 vs.
1197.6 ± 921.4 vs. 834.1 ± 533.8; p = 0.03). MGMT promoter methylation status and prolif-
erative potential, according to the MIB-1 labeling index, are homogeneously distributed
among the fluorescence grades. Table 2 summarizes the characteristics and results among
the fluorescence quality grades.

Table 2. Comparison of patient characteristics among fluorescence quality grades (using Fisher’s
exact test (two-sided) and ANOVA).

Characteristics Fluorescence Grade
0 (n = 16)

Fluorescence Grade
1 (n = 17)

Fluorescence Grade
2 (n = 142) p-Value

Age (years), mean ± SD 56.3 ± 15.9 61.5 ± 11.0 64.1 ± 12.7 0.06

Sex
0.26Female 3 (18.8%) 6 (35.3%) 57 (40.1%)

Male 13 (81.2%) 11 (64.7%) 85 (59.9%)

Preoperative AED
0.001Yes 14 (87.5%) 12 (70.6%) 26 (18.3%)

No 2 (12.5%) 5 (29.4%) 116 (81.7%)

Dexamethasone intake
0.023Yes 11 (68.8%) 10 (58.8%) 54 (38.0%)

No 5 (32.2%) 7 (42.2%) 88 (62.0%)

Body mass index, mean ± SD 27.3 ± 6.7 26.1 ± 5.5 26.4 ± 3.9 0.72

Tumor area, mean ± SD, mm2 834.1 ± 533.8 1197.6 ± 921.4 1553.7 ± 1047.8 0.03

Peritumoral edema,
mean ± SD, mm 21.1 ± 9.7 21.7 ± 10.6 23.7 ± 11.7 0.64

MGMT promoter status
[available in 166 patients]

0.19Hypermethylated 3 (20.0%) 6 (37.5%) 60 (44.4%)
Non-hypermethylated 12 (80.0%) 10 (62.5%) 75 (55.6%)

MIB-1 index, mean ± SD 15.9 ± 6.5 19.7 ± 10.8 17.7 ± 8.2 0.48

AED = Antiepileptic drug; MIB-1 = Molecular immunology borstel-1; SD = Standard deviation. Significant test
results are italicized.

3.3. Association between Antiepileptic Drug Treatment and Intraoperative 5-ALA Fluorescence

Univariable analysis reveals that the intake of antiepileptic drugs, or dexamethasone,
and the preoperative tumor area is significantly associated with the intraoperative 5-ALA
fluorescence quality. The ROC curve (Supplementary Figure S1) is constructed and the
AUC of the tumor area in the prediction of a poor fluorescence grade (0 + 1) is determined.
The AUC for tumor area is 0.66 (95% CI: 0.55–0.76, p = 0.009) The sensitivity and specificity
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of a baseline tumor area, with an optimum cut-off set at ≤967.4 mm2, for predicting a poor
fluorescence quality is 61.0% and 66.2%, respectively (Youden’s index: 0.27). Multivariable
binary logistic regression analysis is conducted to determine independent risk factors
for poor intraoperative 5-ALA fluorescence (fluorescence grades 0 + 1). Multivariable
analysis is performed with consideration of the MIB-1 index (<20/≥20%), MGMT promoter
status (hypermethylated/non-hypermethylated), preoperative intake of dexamethasone
(yes/no), preoperative tumor area (≤967.4/>967.4), age (<65/≥65), and preoperative
intake of antiepileptic drugs (yes/no). The multivariable analysis reveals that the intake of
antiepileptic drugs (adjusted odds ratio: 14.7, 95% confidence interval: 4.65–46.58, p = 0.001)
is an independent predictor of a poor intraoperative 5-ALA fluorescence (fluorescence
grades: 0 + 1) in surgery for GB. Figure 3 displays the results of the multivariable analysis.
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3.4. Specific Impact of Levetiracetam on Intraoperative 5-ALA Fluorescence

A total of 43 (87.76%) patients of the 49 patients in the AED group take levetirac-
etam. Against this backdrop, the previous findings regarding the influence of AED on
fluorescence quality are predominantly based on the influence of levetiracetam. There-
fore, a specific subgroup analysis of patients who either take levetiracetam, or no AEDs,
is performed. A total of 169 patients are included in this analysis. Fluorescence grades
0, 1, and 2 are observed in 12 (7.1%), 16 (9.5%), and 141 (83.4%) patients, respectively.
Patients with stronger ALA fluorescence quality (grade 2) are significantly older compared
to fluorescence 0 patients (p = 0.002). The intake of levetiracetam and dexamethasone
prior to surgery is significantly more often observed among the patients in whom either
no, or only weak, intraoperative fluorescence quality is observed. A total of 22 (78.6%)
out of 28 patients with either no, or only weak, fluorescence grades (grades 0 + 1) take
levetiracetam prior to surgery, whereas only 6 patients (21.4%) with fluorescence grades 0
or 1 have no levetiracetam prescription in their preoperative medication (p = 0.001). Strong
intraoperative fluorescence grade 2 is also significantly more often observed in patients who
do not take dexamethasone preoperatively. Moreover, the tumor area is significantly larger
in patients with fluorescence grade 2 in response to UV light excitation (mean ± SD in
fluorescence grades 2 vs. 0: 1550.9 ± 1048.5 vs. 830.7 ± 531.8; independent t-test: p = 0.002).
The MGMT promoter methylation status and proliferative potential, according to the MIB-1
labeling index, are homogeneously distributed among the fluorescence grades. Table 3
summarizes the characteristics and results among the fluorescence quality grades.
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Table 3. Comparison of patient characteristics among fluorescence quality grades in patients treated
with levetiracetam or without AEDs (using Fisher’s exact test (two-sided) and independent t-test)
(n = 169).

Characteristics Fluorescence Grade 0
(n = 12)

Fluorescence Grade 1
(n = 16)

Fluorescence Grade 2
(n = 141) p-Value

Age (years),
mean ± SD

55.0 ± 16.0 61.5 ± 11.4 64.1 ± 12.7
0 vs. 1: 0.22
1 vs. 2: 0.44
0 vs. 2: 0.02

Sex
0.49Female 3 (25.0%) 5 (31.3%) 57 (40.4%)

Male 9 (75.0%) 11 (68.8%) 84 (59.6%)

Preoperative
Levetiracetam

0.001Yes 10 (83.3%) 12 (75.0%) 21 (14.9%)
No 2 (16.7%) 4 (25.0%) 120 (85.1%)

Dexamethasone intake
0.001Yes 11 (91.7%) 11 (68.8%) 54 (38.3%)

No 1 (8.3%) 5 (31.1%) 87 (61.7%)

Body mass index,
mean ± SD

27.0 ± 7.5 26.3 ± 5.6 26.4 ± 3.9

0 vs. 1:
0.80

1 vs. 2:
0.95

0 vs. 2:
0.81

Tumor area,
mean ± SD, mm2 830.7 ± 531.8 1274.0 ± 905.5 1550.9 ± 1048.5

0 vs. 1:
0.18

0 vs. 2:
0.002

1 vs. 2:
0.33

Peritumoral edema,
mean ± SD, mm 21.6 ± 11.1 21.3 ± 10.8 23.7 ± 11.7

0 vs. 1:
0.95

0 vs. 2:
0.57

1 vs. 2:
0.45

MGMT promoter status
[available in
160 patients] 0.18

Hypermethylated 2 (18.2%) 5 (33.3%) 60 (44.8%)
Non-hypermethylated 9 (81.8%) 10 (66.7%) 74 (55.2%)

MIB-1 index,
mean ± SD

16.6 ± 6.8 19.7 ± 10.8 17.7 ± 8.2

0 vs. 1:
0.42

0 vs. 2:
0.67

1 vs. 2:
0.40

AED = Antiepileptic drug; MIB-1 = Molecular immunology borstel-1; SD = Standard deviation. Significant test
results are italicized.

Univariable analysis reveals that the intake of levetiracetam, intake of dexamethasone,
age, and the preoperative tumor area are significantly associated with the intraoperative
5-ALA fluorescence quality. Hence, further multivariable analysis of intraoperative flu-
orescence quality is also performed for patients treated either with levetiracetam or no
AEDs. Multivariable analysis, with consideration of levetiracetam intake, age at diagnosis,
tumor area, intake of dexamethasone, MGMT promoter status, and MIB-1 labeling index,
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is performed. The MIB-1 labeling index and MGMT promoter status are included because
of their previously described association with intraoperative fluorescence quality. The
multivariable analysis shows that the intake of levetiracetam (adjusted odds ratio: 12.05,
95 % confidence interval: 3.91–37.16, p = 0.001) is an independent predictor of a poor
intraoperative 5-ALA fluorescence (fluorescence grades: 0 + 1) in surgery for GB. Figure 4
shows the results of the multivariable analysis.
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3.5. Impact of Intraoperative Fluorescence Quality on Extent of Resection and Influence of AEDs,
and Levetiracetam on Overall Survival

Patients with a poor fluorescence quality (grades 0 & 1) have a GTR in 19 cases (19/33;
57.8%), and patients with a strong intraoperative fluorescence signal (grade 2) have a GTR
in 95 cases (95/142; 66.9%) (Fisher’s exact test (two-sided): p = 0.32). The intake of AEDs
has no impact on the overall survival. Patients with a baseline intake of AEDs have a
median overall survival of 22.0 months (95% CI = 16.5–27.5), and those without baseline
intake of AEDs a median overall survival of 24.0 months (95% CI = 16.5–31.5) (log-rank
test: p = 0.79). Patients with the intake of levetiracetam have a median overall survival of
22.0 months (95% CI = 16.6–27.4), whereas those patients who take no AEDs have a median
overall survival of 19 months (95% CI = 12.6–25.4; log-rank test: p = 0.91)

4. Discussion

The use of 5-ALA induced PpIX fluorescence is established in surgery for GB, and
since FDA approval in 2017, fluorescence-guided surgery is becoming globally introduced
in neurosurgical centers. A 5-ALA-guided surgery was found to significantly enhance
the rate of gross total resection compared to conventional white-light microsurgery, and
results in a significant improvement in the 6 month progression-free survival rates [16].
Furthermore, there are also emerging data regarding the extension of indications for 5-ALA-
guided surgery, such as the application in metastatic tumors and meningiomas [47–49].
The objective of the present investigation was to evaluate whether different intraoperative
5-ALA fluorescence quality grades expressed by GB cells are influenced by the intake of
antiepileptic drugs. This issue is of paramount importance because the presentation of
symptomatic epilepsy as an initial symptom affects between 25% and 50% of all patients
with a glioblastoma [29].
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Our findings are summarized as follows: the intake of AEDs prior to 5-ALA-guided
surgery for IDH1 wild-type GB is a significant and independent risk factor for poor 5-ALA
fluorescence quality (fluorescence grade 0 + 1). Our results are predominantly based on
patients treated with levetiracetam. Hence, this observed impact of AED treatment on
the intraoperative fluorescence quality is reconfirmed in the subgroup of patients treated
with either levetiracetam, or no AED. In the present study, we also observe a higher rate of
GTR among those patients with a strong 5-ALA fluorescent quality. However, the results
do not achieve a statistical significance, and this issue concerning the impact of AEDs on
5-ALA-guided surgical extent of resection has to be investigated in a homogeneous cohort
regarding attainability of gross total resection and eloquent location, using an established
functional classification system (e.g., Sawaya grading) [50].

Due to the high incidence of symptomatic epilepsy as an initial symptom at presenta-
tion, AEDs as medical treatment of seizures are common practice in the healthcare of GB
patients [29]. To date, the potential clinical dilemma between the intake of AEDs and intra-
operative 5-ALA fluorescence is almost unexplained. The study group of Hefti et al. [27]
show in an in vitro investigation that the PpIX synthesis is significantly reduced in glioma
cells by the application of phenytoin. Moreover, there are also further data that analyze
the anticonvulsants desipramine, phenytoin, valproic acid, or levetiracetam, in combina-
tion with or without dexamethasone, and their influence on PpIX production after 5-ALA
application in U87MG cells [28]. They found that all those drugs, except levetiracetam,
reduce PpIX production in U87MG GB cells. Furthermore, they found that the cellular
retention of PpIX is significantly reduced in cells treated with both dexamethasone and
phenytoin. In the present study, we observe that dexamethasone is a significant risk factor
for poor fluorescence response in the univariable analysis. However, in the multivariable
analyses of the entire group, and the subgroup (levetiracetam intake vs. no AED), we
observe that only the preoperative intake of AEDs or levetiracetam significantly reduces the
intraoperative 5-ALA fluorescence quality. Levetiracetam is the most common prescribed
AED in our study cohort, and this finding is predominantly based on the impact of leve-
tiracetam. Hence, levetiracetam might also have a significant effect on the 5-ALA quality in
a clinical setting, as reported by the in vitro results for the other medications in the class
of anticonvulsants. A recent retrospective study enrolled 27 low-grade glioma patients,
and analyzes the effect of AEDs on the visible 5-ALA fluorescence. They also demon-
strate that AEDs, including levetiracetam, seem to reduce the presence of visible 5-ALA
fluorescence [51]. However, it must be remembered that the majority of pure low-grade
gliomas cannot be sufficiently visualized by 5-ALA, and it is predominantly a useful tool
to detect solitary areas of anaplastic foci within low-grade gliomas [52–54]. A further po-
tential mechanism of levetiracetam disturbing the fluorescence quality and 5-ALA-guided
surgery is the alteration of the mitochondrial membrane potential [55]. Therefore, there
is a potential disruption of the absorption of exogenously administered 5-ALA into the
cytoplasm of the mitochondria in patients who take levetiracetam. Nevertheless, the results
of the increase or decrease in the mitochondrial membrane potential by levetiracetam in
various cell lines are conflicting. A 5-ALA-guided surgery is a powerful tool, which is
known to enhance the extent of resection and improve progression-free survival. However,
the signal intensity is also significantly influenced by the IDH1 mutation, as IDH is a
known enzyme of the Krebs cycle and catalyzes the formation of α-ketoglutarate from the
decarboxylation of D-isocitrate [56]. Hence, our study was focused on IDH1 wild-type
GBs, in order to reduce this potential bias. Due to the paramount importance of 5-ALA
regarding intraoperative tumor visualization and long-term tumor control, there are also
studies which investigate preoperative screening methods to identify patients who will
intraoperatively respond to 5-ALA. Utsuki et al. [57] demonstrate urine analysis of PpIX
accumulation in GBM patients as a useful tool to determine those patients. However, this
model gives no explanation why a subgroup of patients does not accumulate a sufficient
amount of PpIX for intraoperative 5-ALA-guided surgery. Levetiracetam was suggested
as the first-line AED treatment in glioma patients, due to the low level of toxicity, wide
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therapeutic index, and lack of hepatic metabolism [58]. Due to the high incidence of
symptomatic epilepsy at presentation in glioma patients, further centers have to evaluate
our findings and provide an external validation. Moreover, there are several potential
intraoperative fluorescence imaging alternatives, such as sodium fluorescein, second win-
dow indocyanine green, and 5-aminofluorescein-labeled albumin, which were investigated
regarding glioma surgery [59–61]. Those fluorescent dyes were demonstrated to aid glioma
surgery and improve the extent of resection, compared to conventional white-light surgery.
However, there are no prospective high-class data regarding progression-free survival
for those dyes compared to the established fluorescent dye 5-ALA. Future comparative
trials with 5-ALA have to focus on the fluorescence visualization in patients who are under
levetiracetam treatment. Furthermore, the prophylactic use of AED in patients with brain
tumors is also highly debated [62]. The introduction of a prophylactic AED treatment is
still observed, although the results of meta-analyses and randomized controlled trials do
not reveal significantly lower epilepsy incidences than in the control groups [63]. Moreover,
the influence of AEDs on overall survival is also increasingly discussed, and the majority
of studies do not report a strong impact, despite individual studies showing a benefit of
levetiracetam use in GB patients treated with concurrent temozolomide chemoradiother-
apy [64–66]. Nevertheless, in the present series, we did not find a significant association
between intake of AEDs in general or levetiracetam and overall survival. Furthermore, it is
unclear whether AEDs potentially influence the overall survival by inhibiting the tumor
progression, or by influencing the EoR via the intraoperative fluorescence quality. Hence,
physicians have to carefully consider the indication of levetiracetam and the risk–benefit
ratio of prophylactic AEDs in patients with a suspected diagnosis of a GB, due to the
potential need for 5-ALA-guided surgery in order to perform a maximum cytoreductive
surgery, enhancing progression-free survival. Moreover, the use of alternative tools for
intraoperative imaging, such as intraoperative MRI or sodium fluorescein in those patients
who take levetiracetam, must be considered.

The present study has several limitations. The main limitation is its retrospective
design, and the difficulty to standardize and homogeneously measure fluorescence qual-
ity grades. However, we have a highly standardized surgical workflow, with the same
operative equipment, and all surgeries were performed in a dark room to reduce the het-
erogeneity. Furthermore, the present investigation exclusively focused on IDH1 wild-type
glioblastomas, due to potential molecular relationships between the IDH genotypes and
tumor fluorescence [34]. Future trials have to intraoperatively quantify the protoporphyrin
IX levels with an optic fiber spectrometer to validate our findings regarding the influence
of levetiracetam [64,67].

5. Conclusions

The present investigation analyzed the impact of antiepileptic drugs and levetiracetam
on intraoperative 5-ALA fluorescence. The observance of 5-ALA fluorescence is a powerful
tool in glioblastoma surgery. According to our series, we observed a significant influence
of the intake of levetiracetam in 5-ALA-guided GB surgery, which reduces the 5-ALA
fluorescence visualization. The demonstrated issue has to be considered in the clinical
setting of glioma patients who frequently have symptomatic epilepsy as initial symptom
at presentation. Future trials have to provide an external validation of our findings, and
prove this potential bias in alternative fluorescent dyes.
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