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ABSTRACT
Motivation: Processing and presentation of major histocom-
patibility complex class I antigens to cytotoxic T-lymphocytes
is crucial for immune surveillance against intracellular bac-
teria, parasites, viruses and tumors. Identification of antigenic
regions on pathogen proteins will play a pivotal role in designer
vaccine immunotherapy. We have developed a system that
not only identifies high binding T-cell antigenic epitopes, but
also class I T-cell antigenic clusters termed immunological
hot spots.
Methods: MULTIPRED, a computational system for promis-
cuous prediction of HLA class I binders, uses artificial neural
networks (ANN) and hidden Markov models (HMM) as pre-
dictive engines. The models were rigorously trained, tested
and validated using experimentally identified HLA class I T-cell
epitopes from human melanoma related proteins and human
papillomavirus proteins E6 and E7.We have developed a scor-
ing scheme for identification of immunological hot spots for
HLA class I molecules, which is the sum of the highest four
predictions within a window of 30 amino acids.
Results: Our predictions against experimental data from four
melanoma-related proteins showed that MULTIPRED ANN
and HMM models could predict T-cell epitopes with high accur-
acy. The analysis of proteins E6 and E7 showed that ANN
models appear to be more accurate for prediction of HLA-A3
hot spots and HMM models for HLA-A2 predictions. For illus-
tration of its utility we applied MULTIPRED for prediction of
promiscuousT-cell epitopes in all four SARS coronavirus struc-
tural proteins. MULTIPRED predicted HLA-A2 and HLA-A3 hot
spots in each of these proteins.
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1 INTRODUCTION
Molecules of adaptive immune responses diversified very
rapidly in early vertebrates. Major histocompatibility com-
plex (MHC) molecules play a vital role in the regulation
of immune responses (Hudson and Ploegh, 2002; Watts and
Amigorena, 2001). Foreign and host proteins are degraded by
specialized intracellular mechanisms to short antigenic pep-
tides. The primary function of MHC molecules is to bind and
present antigenic peptides on the cell surface for recognition
by antigen-specific T-cell receptors (TCRs) of lymphocytes.
These processing and presentation mechanisms are essential
processes for cellular immune recognition of antigens. MHC
class I peptides are primarily generated by the proteasome
complex, and are translocated from the cytosol into the lumen
of the endoplasmic reticulum (ER) by a transporter associ-
ated with antigen processing. In the ER, peptides are loaded
onto the MHC class I molecules and are exported to the cell
surface for presentation to TCRs. Short peptides presented to
TCRs, termed T-cell epitopes, are critical elements for under-
standing the basis of immunity (Parker et al., 1994; Van Kaer,
2002; Britschgi et al., 2003). Precise identification of T-cell
epitopes is a prerequisite for accurate epitope mapping and for
design of vaccines and immunotherapies. Peptides that bind to
more than one MHC allelic variant (‘promiscuous peptides’)
are important because they are relevant to higher proportions
of the human populations and are targets for vaccine and
immunotherapy development.

Computational methods have been used for the predic-
tion of T-cell epitopes and are now a standard methodology
(Schirle et al., 2001; Yu et al., 2002). In silico, T-cell epi-
tope mapping using computational models is emerging as a
new approach for the study of peptide vaccines (De Groot
et al., 2001). A number of predictive methods for MHC
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classes I and II binding peptides are available, including
those based on binding motifs (Rammensee et al., 1995),
quantitative matrices (Parker et al., 1994), artificial neural
networks (ANNs) (Honeyman et al., 1998), hidden Markov
models (HMMs) (Mamitsuka, 1998), multivariate statistical
approaches (Guan et al., 2003), support vector machines
(Zhao et al., 2003) and decision trees (Savoie et al., 1999).
Computational strategies for promiscuous class II binding
peptides using multiple quantitative matrices (Sturniolo et al.,
1999) have been used for vaccine development in cancer
(Kobayashi et al., 2001) and infectious disease (Panigada
et al., 2002).

In our prediction of promiscuous class I T-cell epi-
topes, we made predictions of T-cell epitope hot spots in
nucleocapsid protein of the severe acute respiratory syn-
drome coronavirus (SARS-CoV). MULTIPRED, a computa-
tional system developed for human leukocyte antigen (HLA)
classes I-A2 and I-A3 binding, predicts individual 9-mer
T-cell epitopes and also promiscuous class I regions as
immunological hot spots, based on HMM (Brusic et al., 2002)
and ANN models (Zhang et al., 2003).

Severe acute respiratory syndrome, an outbreak of atypical
pneumonia was first reported in Guangdong Province, China
in November 2002 and spread to other parts of the world (Rota
et al., 2003; Booth et al., 2003). Genome analysis of SARS-
CoV revealed the virus to be of completely new pathogenic
strain and distantly related to other CoV members (Ruan et al.,
2003; Holmes and Enjuanes, 2003; Holmes, 2003). The four
major structural proteins of SARS-CoV are: surface spike (S),
nucleocapsid (N), envelope (E) and membrane (M) (Marra,
2003; Holmes, 2003). The packaging of the genome to form
the viral nucleocapsid is by the N protein, which is incorpor-
ated into virions by intracellular budding through a membrane
containing three proteins: the S glycoprotein, the M glycopro-
tein and the small E protein (Kuo and Masters, 2002). It has
been demonstrated that antibodies to SARS N proteins are pre-
dominant among the early responses to infection (Shi et al.,
2003; Liu et al., 2004).

2 METHODS
2.1 Algorithm
We used ANN and HMM as the prediction engines. The
ANN learning algorithm in MULTIPRED is the error back-
propagation with sigmoid activation function. The ANN is
a three-layer network with structure 267-4-1. The inputs to
the ANN are binary strings representing the virtual peptides;
the outputs are the binding scores ranged from 1 to 9. In the
training dataset, scores 8 and 9 denote high binding affinity; 6
and 7 moderate binding affinity; 4 and 5 low binding affinity.
Scores less than 4 denote non-binding. The maximum num-
ber of the ANN training cycles is set to 300. The training was
repeated four times, and four sets of weights were obtained.
The value of learning momentum was 0.5 and of learning rate

was 0.001. Algorithm details of neural network can be found
in Brusic et al. (1998). The HMM algorithm, training and
testing were described earlier (Brusic et al., 2002).

2.2 Training and testing of MULTIPRED models
Peptide data containing both binding and non-binding 9-mer
peptides were extracted from literature sources, MHCPEP
(Brusic et al., 1994), and a set of HLA non-binding peptides
(Brusic, unpublished data) for HLA-A2 and HLA-A3 alleles.
The dataset had a total of 2962 (604 binders and 2358 non-
binders) 9-mer peptides representing 15 different HLA-A2
alleles and 2216 (680 binders and 1536 non-binders) 9-mer
peptides for eight different HLA-A3 alleles. The available
dataset was divided into training and testing datasets. The
training set for a given allele contained virtual peptides that
are known to bind other alleles and the test set included all
peptides with known binding affinity for the allele to be tested,
as described earlier (Brusic et al., 2002). The performances
of MULTIPRED ANN and HMM in predicting promiscuous
binders to different HLA alleles were tested by a number of
trained ANN and HMM models, one model for the prediction
of peptide binding to each selected HLA allele. Models for
the prediction of alleles with small number of peptides in the
dataset could not be tested reliably and were excluded.

The percentage of binders represents ∼25% of the training
dataset, while non-binders represent the remaining 75%. To
optimize the disproportionate numbers of binders and non-
binders in the training dataset, new training datasets were
constructed using a novel approach in which one or more
copies of binders (up to 10 copies) were used in the train-
ing datasets (Zhang et al., manuscript in preparation). We
trained ANN models to each of the HLA-A2 and HLA-A3
alleles using 10 sets of data to find the composition of train-
ing data that result in best predictive performance of the
training system. The predictive performance was assessed by
the sensitivity (SE), specificity (SP) and receiver operating
characteristic (ROC) analysis as described previously (Brusic
et al. 2002). MULTIPRED can perform a 10-fold internal
crossvalidation and calculate Aroc values (measure of over-
all prediction accuracy) of high, moderate and low binders.
The accuracy of prediction is poor for values of Aroc < 70%,
good for values of Aroc > 80%, and excellent for values of
Aroc > 90% (described in Brusic et al., 2002). Peptides that
are predicted to bind to multiple HLA alleles are considered
promiscuous T-cell epitope candidates.

3 RESULTS
The performances of the different MULTIPRED ANN models
containing 1–10 copies of binders (HLA-A2 and HLA-A3)
were compared. The results showed that the binder/non-binder
composition of a dataset influences predictive performance of
the model. ANN models trained on the raw dataset contain-
ing a single copy of both binders and non-binders produced
inferior prediction results. ANN models trained using datasets
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Table 1. Experimental HLA-A3 restricted peptides and their respective
IC50 values of human melanoma related proteins (gp100, and tyrosinase-
Tyr, Reynolds et al. (1998)) were compared with MULTIPRED ANN and
HMM models for A3 predictions

HLA-A3 restricted IC50 ANN HMM
peptides (nM) Score Rank* Score Rank*

(Predicted) (Predicted)

Gp100460 GTATLRLVK 3.1 44.08 6 (653) 48.54 15 (653)
Gp100609 VVLASLIYR 17.9 44.47 4 (653) 48.62 14 (653)
Tyr395 SIFEQWLQR 45.5 54.00 1 (521) 53.61 2 (521)
Tyr14 QTSAGHFPR 16.1 38.37 8 (521) 49.62 4 (521)

When top 10% of the predicted peptides were considered as potential T-cell epi-
topes, MULTIPRED could predict all the experimental HLA-A3 restricted peptides.
*Numbers in the parentheses indicate the total number of 9mer peptides predicted
for that protein.

containing four and six copies of binders provided higher
Aroc values. Because the performance of ANN models with
four and six copies of binders were comparable, the simpler
ANN model with four copies was chosen for the predic-
tion of HLA-A2 promiscuous peptides. For HLA-A3, the
ANN model with six copies was found to be more accur-
ate in predicting low (L), moderate (M) and high (H) binding
peptides.

3.1 Validation of MULTIPRED prediction using
experimental binders

The prediction performance of MULTIPRED for HLA-A2
and HLA-A3 binding was assessed using experimentally
known binders. HLA-A2 and HLA-A3 restricted pep-
tides from four melanoma associated proteins, gp100, tyr-
osinase, tyrosinase-related protein 2 and melanocortin-1
receptor, (Reynolds et al., 1998) were used for validation of
MULTIPRED. All duplicate 9-mer peptides in the training
dataset were removed and the models were re-trained for pre-
diction of promiscuous peptides to HLA-A2 and HLA-A3.
When top 10% of the predicted peptides were considered as
potential T-cell epitopes, MULTIPRED could predict most
of the HLA-A2 and all the HLA-A3 restricted peptides of
the four proteins tested, suggesting that the performance and
accuracy of MULTIPRED is reliable. Of 28 known binders
tested for HLA-A2, both MULTIPRED ANN and HMM pre-
dicted 27 peptides within top 10% of the scores. Within top
5%, ANN predicted 22 peptides and HMM 24 peptides. Hence
the prediction accuracy was 96% for top 10% prediction (both
methods) and 78.5% and 85.7% for ANN and HMM top 5%
prediction, respectively. The prediction accuracy of HLA-A3
peptides tested was 100% for both top 10% and 5% of the
predicted peptides (Table 1). To assess the accuracy of indi-
vidual 9-mer predictions, we compared predictions of HPV E7
HLA-A2 binding peptides with experimental binding meas-
ured by Kast et al. (1994). HPV E7 is 98 amino acids long

and contains six 9-mer HLA-A2 binders (7–15, 11–19, 12–
20, 82–90, 84–92 and 85–93). Of these, four peptides were
within top 5% and five were within top 10% of predictions.
Top 5% predictions contained one false positive and top 10%
predictions contained five false positives.

We have developed a scoring scheme to identify class I
regions termed ‘immunological hot spots’ within antigens that
are based on high scoring individual 9-mers within a win-
dow of 30 amino acids. Immunological hot spots are thus
defined as antigenic regions of up to 30 amino acids that
are predicted to bind multiple HLA alleles. For validation
of hot spot predictions, a test dataset for peptides to HLA-
class I alleles were taken from a set of 240 9-mer peptides of
human papillomavirus type 16 E6 and E7 proteins reported by
Kast et al. (1994). All duplicate 9-mers peptides pertaining to
E6 and E7 proteins were removed from the training dataset.
The class I epitopes were predicted by the use of both
MULTIPRED models. The results were sorted to the average
score of top four 9-mers within the region (across all the alleles
studied for promiscuous prediction) and regions of immuno-
logical hot spots were identified. By use of this strategy, our
models were successful in identifying class I hot spots for
E6 and E7 proteins. MULTIPRED ANN and HMM HLA-A3
output against experimental data from human papillomavirus
protein E6 (Kast et al., 1994) is shown in Figure 1.

HPV protein E7 and E6 HLA-A2 hot spots were predicted
for validation of MULTIPRED ANN and HMM models. The
known HLA-A2 hot spots for protein E7 (E7:7–20 and E7:82–
94) that were previously demonstrated (Kast et al., 1994),
were predicted by MULTIPRED ANN and HMM models,
with a false negative prediction for E7:7–20 by HLA-A2 ANN
prediction at threshold >60. Similarly, the known HLA-A2
hot spot for protein E6 (E6 7–34) was predicted with MULTI-
PRED HMM and ANN models. ANN and HMM predictions
produced similar results, with a false positive at position
85–105. The results of validation of hot spot predictions by
MULTIPRED models suggests that the overall performances
of were reliable and a single MULTIPRED model could make
reasonably accurate predictions of peptides binding to mul-
tiple alleles of HLA molecules, and also for variants of HLA
supertypes that lack experimental binding data. These predic-
tions will be further improved by increased number of training
datasets and additional rigorous testing strategies.

The testing results on E6 and E7 proteins indicate that with
available datasets ANN models appear more accurate for pre-
diction of HLA-A3 hot spots, while HMM models appear
more accurate for HLA-A2 predictions. Therefore we selected
HMM as a method of choice for prediction of HLA-A2 T-cell
hot spots and ANN for prediction of HLA-A3 hot spots. Test-
ing results provided a basis for determination of prediction
thresholds: A2 scores were calculated as sum of individual
predictions for eight HLA-A2 variants and A3 scores as sum
of individual predictions for six HLA-A3 variants. The suit-
able thresholds for both ANN A2 and HMM A2 hot spot
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Fig. 1. Predictions of the start positions (horizontal arrows) of HLA-A3 hot spots from human papillomavirus Type 16 protein E6: 33–67,
75–101 and 125–151 (Kast et al., 1994). ANN prediction is shown at the top and HMM at the bottom. All three hot spots have been captured
with ANN A3 predictions with the threshold >35 with a false positive shown inside the square. ANN predictions appear to be more accurate
than HMM predictions for HLA-A3 hot-spots.

prediction thresholds were set to >60, while ANN A3 and
HMM A3 thresholds were set to >35.

3.2 Prediction of SARS-CoV proteins
immunological hot spots

To illustrate the utility of MULTIPRED for prediction of
immunological hot spots, we analyzed four structural proteins
from the SARS-CoV. The SARS-CoV protein sequences were
retrieved from NCBI GenBank database (AY283798). The
four proteins were submitted to MULTIPRED for prediction

of class I (HLA-A2, A3) T-cell epitope hot spots. The hot spots
were derived from consensus predictions of both (ANN and
HMM) models in MULTIPRED. The results of the analysis
showed that SARS-CoV E and M proteins were predicted to
possess one hot spot each to HLA-A2 (E 1–52 and M 4–83)
and HLA-A3 (E 1–76 and M 74–220) supertypes. Further,
we have identified two HLA-A2 (N 202–253 and N 296–347)
and four HLA-A3 (N 79–115, N 229–280, N 291–326 and
N 341–392) immunological hot spots in SARS N protein. As
for SARS S protein, the system predicted three hot spots to
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HLA-A2 (S 848–880, S 937–994 and S 1181–1231) and eight
hot spots to HLA-A3 (S 270–411, S 1026–1147, S 743–828,
S 134–163, S 76–115, S 9–53, S 418–465 and S 886–950).
These results indicate the presence of immunological hot spots
of both HLA-A2 and HLA-A3 molecules in all SARS-CoV
structural proteins. Similar patterns have been observed in 10
dengue virus proteins (data not shown). We propose that T-cell
epitopes tend to cluster in certain regions of protein antigens
in a HLA supertype-dependent manner. These regions there-
fore represent immunological hot spots containing multiple
T-cell epitopes.

4 DISCUSSION AND CONCLUSION
Our strategy of peptide-based vaccines is to identify promis-
cuous T-cell epitopes that are representative of large pro-
portion of the human population. The majority of publicly
available methods has not been properly assessed for pre-
dictive accuracy and do not predict promiscuous peptides
for a broad range of HLA alleles. In this context, we have
developed a computational system MULTIPRED that iden-
tifies promiscuous peptides across HLA-A2 and HLA-A3
alleles, and also a scoring scheme for prediction of immun-
ological hot spots of class I molecules, using MULTIPRED
ANN and HMM models. The system was trained and rig-
orously tested using experimentally known peptides, human
melanoma-related proteins and human papillomavirus type 16
proteins E6 and E7. It was found that ANN model could pre-
dict HLA-A3 with more accuracy than the HMM model, while
HMM appeared to be more accurate for HLA-A2 predictions.

Severe acute respiratory syndrome was a great threat both
to public health and economy affecting more than 30 coun-
tries around the globe and was of great concern due to
formidable morbidity and mortality. Although SARS looked
a devastating pandemic and the outbreak was deemed to be
under control, the World Health Organization (2003, http://
www.who.int/csr/sars/country/table2003_09_23/en/) has
urged health authorities not to be contented. Hence there
is a need to design a more efficient vaccine to combat the
deadly SARS. Current therapeutic strategies to SARS involve
the use of convalescent plasma (Burnouf and Radosevich,
2003), glucocorticoids (Li et al., 2003), interferons (Cinatl
et al., 2003), but still remains empirical. Peptide-based vac-
cines offer several potential advantages over the conventional
whole proteins in terms of high specificity in eliciting immune
responses, ease of manufacturing and quality control and
proven successful against specific allergy (Alexander et al.,
2002), malaria (Lopez et al., 2001) and certain types of tumors
(Tanaka et al., 2003). In this study, MULTIPRED ANN and
HMM models identified immunological hot spots in four
structural proteins of SARS-CoV. The results show that there
are several overlapping hot spots of multiple 30 amino acid
regions. Our system could thus predict not only high binding
individual 9-mer peptides but also regions of immunological

hot spots in an antigen, which could have potential thera-
peutic significance as peptide vaccines. This bioinformatics
approach to vaccine design increases the efficiency of T-cell
epitope screening and will be further enhanced by additional
experimental data and enrichment of training datasets.
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