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Impaired prosaposin lysosomal trafficking in
frontotemporal lobar degeneration due to
progranulin mutations
Xiaolai Zhou1, Lirong Sun1,2, Oliver Bracko3, Ji Whae Choi1, Yan Jia1, Alissa L. Nana4, Owen Adam Brady1,

Jean C. Cruz Hernandez3, Nozomi Nishimura3, William W. Seeley4,5 & Fenghua Hu1

Haploinsufficiency of progranulin (PGRN) due to mutations in the granulin (GRN) gene

causes frontotemporal lobar degeneration (FTLD), and complete loss of PGRN leads to a

lysosomal storage disorder, neuronal ceroid lipofuscinosis (NCL). Accumulating evidence

suggests that PGRN is essential for proper lysosomal function, but the precise mechanisms

involved are not known. Here, we show that PGRN facilitates neuronal uptake and lysosomal

delivery of prosaposin (PSAP), the precursor of saposin peptides that are essential for

lysosomal glycosphingolipid degradation. We found reduced levels of PSAP in neurons both in

mice deficient in PGRN and in human samples from FTLD patients due to GRN mutations.

Furthermore, mice with reduced PSAP expression demonstrated FTLD-like pathology and

behavioural changes. Thus, our data demonstrate a role of PGRN in PSAP lysosomal

trafficking and suggest that impaired lysosomal trafficking of PSAP is an underlying disease

mechanism for NCL and FTLD due to GRN mutations.
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F
rontotemporal lobar degeneration (FTLD) is the most
prevalent form of early-onset dementia after Alzheimer’s
disease (AD), and accounts for 20–25% of presenile

dementias1. A large subset of individuals with FTLD have
evidence of ubiquitin-positive inclusions comprised of the protein
TDP-43 (referred to as FTLD-TDP)2,3. Haploinsufficiency of the
granulin (GRN) gene is one of the major causes of FTLD-TDP4–6.
GRN encodes an evolutionarily conserved, secreted glycoprotein
of 7.5 granulin repeats (progranulin, PGRN), and its function in
the nervous system is still not well understood7–10. Emerging
evidence suggests a role for PGRN in regulating lysosomal
function. First, individuals who are homozygous for mutant
GRN exhibit neuronal ceroid lipofuscinosis (NCL)11,12, which
is a group of lysosomal storage diseases characterized by the
accumulation of autofluorescent storage material (lipofuscin) in
neurons and other cell types13,14. Mice lacking PGRN also
accumulate lipofuscin15 and share several common pathologies
with animal models of other NCL disease16. Second, GRN is
transcriptionally coregulated with a number of essential
lysosomal genes by the transcriptional factor TFEB17. Third,
within cells, PGRN is localized to lysosomes and two independent
PGRN lysosomal trafficking pathways have been identified18,19.
However, the precise lysosomal function of PGRN remains
unclear.

Accumulating evidence also suggests that lysosomal dysfunc-
tion might serve as a common mechanism in NCL and
FTLD-TDP associated with GRN mutations. A recent study has
shown that FTLD patients with GRN mutations also exhibit
typical pathological features of individuals with NCL, including
accumulations of saposin D and subunit c of mitochondrial ATP
synthase (SCMAS)20. Additionally, mice deficient in Ctsd, one of
the NCL genes, develop TDP-43 aggregates20, a hallmark of
FTLD-TDP, supporting the idea that FTLD and NCL are
pathologically linked. Therefore, understanding how PGRN
regulates lysosomal functions may be helpful in understanding
the shared molecular mechanisms underlying FTLD and NCL
with GRN mutations.

Here, we report that PGRN facilitates lysosomal trafficking of
prosaposin (PSAP), the precursor of lysosomal saposin activators
essential for glycosphingolipid degradation in the lysosome21–23,
and determines the levels of saposins in neurons. Reduced PSAP
and saposin levels are observed in neurons, both in mice lacking
PGRN and in samples from humans haploinsufficient for
PGRN. Furthermore, reduction in PSAP levels leads to
FTLD-like phenotypes in mice, supporting the idea that
impaired lysosomal trafficking of PSAP might be a shared
disease mechanism in FTLD and NCL caused by GRN mutations.

Results
PGRN bridges the interaction between PSAP and sortilin. In
a proteomic screen searching for PGRN-binding partners19, we
uncovered a novel interaction between PGRN and PSAP, the
precursor of saposin peptides (A, B, C and D) that are essential
for glycosphingolipid metabolism in the lysosome21–23. PSAP
or saposin deficiency is known to cause several distinct lysosomal
storage disorders, including Gaucher disease, Krabbe disease
and metachromatic leukodystrophy21–23. Lysosomal PSAP
and saposins can be derived from the biosynthetic pathway
(sorting at trans-Golgi network) or from the extracellular space
via the endocytic pathway since PSAP is a secreted glycoprotein.
Several receptors have been shown to mediate PSAP lysosomal
trafficking, including the cation-independent mannose 6-phos-
phate receptor (M6PR)24,25, sortilin26 and LRP127. Since both
PGRN and PSAP have been reported to bind to sortilin18,26, we
investigated whether PSAP and PGRN compete with each other

for sortilin binding. However, in contrast to published data26, we
failed to detect an interaction between PSAP and sortilin by co-
immunoprecipitation (IP) even when both proteins are
overexpressed in HEK293T cells (Fig. 1a,b) or in the COS-7 cell
surface-binding assay with alkaline phosphatase (AP)-tagged
PSAP (Fig. 1c). Interestingly, PSAP and sortilin strongly associate
with each other in the presence of PGRN in the co-IP assay
(Fig. 1a,b) and in the COS-7 cell surface-binding assay (Fig. 1c),
suggesting that PGRN bridges the interaction between PSAP
and sortilin.

PGRN facilitates PSAP lysosomal delivery via sortilin. Sortilin
has been shown to mediate lysosomal delivery of PGRN18. Since
PGRN mediates the interaction between PSAP and sortilin, we
tested whether PGRN facilitates lysosomal trafficking of PSAP
through sortilin. Previously, we showed that uptake of PGRN
does not occur in COS-7 cells unless sortilin is exogenously
expressed18. Here we found that in COS-7 cells transfected with
sortilin, exogenously added FLAG-tagged PSAP shows no
detectable uptake and trafficking to lysosomes (Fig. 1d).
However, the presence of recombinant PGRN greatly facilitates
PSAP binding to sortilin-expressing COS-7 cells and subsequent
lysosomal targeting as shown by colocalization with the lysosomal
protease cathepsin D (Fig. 1d). Furthermore, endocytosed PSAP
is processed into intermediates and saposin peptides, confirming
successful lysosomal delivery (Fig. 1e).

To confirm that PGRN facilitates PSAP lysosomal trafficking
with endogenous levels of sortilin expression, we first examined
the binding of exogenous PSAP to cultured cortical neurons
at DIV12, which are known to express high levels of sortilin18.
AP-tagged PSAP demonstrated specific binding to both neuronal
cell bodies and processes that can be displaced by untagged
PSAP (Fig. 2a,b). Binding of PSAP to the neuronal cell surface is
greatly enhanced in the presence of recombinant PGRN
(Fig. 2a,b), which results in much more PSAP uptake (Fig. 2c–
e). To determine whether sortilin is the receptor for PGRN uptake
in cortical neurons, we compared the uptake of full-length PGRN
compared with PGRND3aa, which has the sortilin-binding site in
PGRN deleted28. PGRND3aa recombinant protein cannot be
taken up by neurons and fails to enhance neuronal PSAP uptake,
confirming that sortilin is the primary receptor for PGRN on the
neuronal cell surface (Fig. 3a–c). The presence of GST-RAP
(glutathione S-transferase-tagged receptor-associated protein),
which blocks LRP1 ligand interactions27, reduces PSAP uptake
by B75% (Fig. 3a, 3c), suggesting that LRP1 is the main receptor
for PSAP uptake in cortical neurons. GST-RAP also partially
blocks PGRN uptake, in line with previous report that RAP
blocks the interaction between sortilin and its ligands29. In
addition, PSAP enhances PGRN uptake (Fig. 2c–e, Fig. 3a, 3b)
and facilitates the uptake of PGRND3aa protein, which is not
taken up by neurons on its own (Fig. 3a,b). These data, together
with our previous findings19, strongly support that PGRN and
PSAP facilitate each other’s uptake and lysosomal trafficking via
their respective receptors, sortilin and LRP1.

PGRN facilitates neuronal uptake of glial-derived PSAP. To
understand the physiological interactions of PGRN and
PSAP in vivo, we examined PGRN and PSAP expression patterns
in the mouse brain under normal conditions and in disease-like
states. In the normal brain, PGRN is expressed in both
neurons and microglia (Supplementary Fig. 1), consistent with
a previous study18. PSAP and the PGRN receptor, sortilin, exhibit
a punctate localization in neurons with minimal expression in
microglia (Supplementary Fig. 1). Since the levels of PGRN
are known to be upregulated in microglia under inflammatory
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conditions18, we also determined the expression of PSAP in
response to injury. In response to an acute cortical stab injury,
the protein levels of PGRN and, to a lesser extent, PSAP

are upregulated (Fig. 4a–c). Costaining with Iba1 showed that
PGRN and PSAP are highly expressed in activated microglia
in response to injury (Fig. 4d, 4e). Additionally, increased PSAP
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Figure 1 | PGRN bridges the interaction between PSAP and sortilin and facilitates lysosomal targeting of PSAP via sortilin. (a) Myc-tagged PSAP-,

PGRN- and sortilin (Sort)-expressing constructs were transfected into HEK293T cells as indicated. Cell lysates were subject to anti-myc immuno-

precipitation and blotted with anti-sortilin, myc and PGRN antibodies. (b) PSAP, PGRN and myc-tagged sortilin (Sort)-expressing constructs were

transfected into HEK293T cells as indicated. Cell lysates were subject to anti-myc immunoprecipitation and blotted with anti-sortilin, myc and PGRN

antibodies. (c) COS-7 cells transfected with an empty vector (Vect) or sortilin (Sort)-expressing construct were incubated with AP-tagged PSAP alone

or AP-PSAP with PGRN. Scale bar, 100 mm. (d) Sortilin-expressing COS-7 cells were treated with recombinant FLAG-PSAP (1 mg ml� 1) and/or his-PGRN

(1mg ml� 1) as indicated at 37 �C for 5 h. Cells were costained with anti-FLAG, anti-PGRN and anti-cathepsin D antibodies. Scale bar, 20mm.

(e) Sortilin-expressing COS-7 cells were incubated with radiolabelled CM containing PSAP with or without recombinant his-PGRN (1mg ml� 1) for 24 h

before lysis and immunoprecipitation with anti-PSAP antibodies. The immunoprecipitation products were separated on tricine gels and visualized by

radiography. (a–e) The representative images from three independent experiments.
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levels are also detected in activated astrocytes (Fig. 4e).
Furthermore, the expression of PGRN and PSAP is increased in
activated glia during normal ageing (Supplementary Fig. 2).
Consistent with these in vivo data, western blot analysis
with cultured cortical neurons and microglia showed high levels

of PGRN and PSAP proteins expressed and secreted from
primary microglia and high levels of sortilin in neuronal cell
lysate (Fig. 5a–c).

The expression pattern of PGRN, PSAP and sortilin suggests
that neuronal sortilin mediates endocytosis of the glia-derived
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(b) Quantification of bound AP intensity of (a); n¼ 3, ***Po0.001, **Po0.01, one-way analysis of variance (ANOVA). Data are presented as mean ±SEM.

(c) Primary cortical neurons (DIV12) were treated with recombinant hPSAP (1mg ml� 1) and/or hPGRN (1 mg ml� 1) for 16 h as indicated. Cells were stained

with anti-mouse LAMP1, anti-human saposin B and anti-human PGRN antibodies. Scale bar, 20mm. Representative images from three independent

experiments were shown. (d) Primary cortical neurons (DIV12) were treated as in c. The cells were collected and subjected to immunoblotting with

anti-human saposin B, anti-human PGRN and anti-b III tubulin antibodies. (e) Quantification of endocytosed neuronal PSAP and PGRN in (d), normalized to

PSAP or PGRN alone. n¼ 3, **, po0.001, *, po0.05, paired t-test. Data presented as mean±SEM. ***Po0.001, Student’s t-test.
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PGRN–PSAP complex. To determine the role of microglial
PGRN in delivering PSAP to neurons, we collected conditioned
medium (CM) from radiolabelled microglia from wild-type (WT)
mice and mice lacking PGRN and applied it to DIV12 primary

cortical neurons (Fig. 5d). Application of conditioned media from
WT microglia to neurons leads to much more efficient PSAP
uptake and processing than conditioned media derived from
Grn� /� microglia 67.7% ±6.0 SEM relative to WT control,
although PSAP levels are comparable in the CM of WT versus
Grn� /� microglia (Fig. 5e), suggesting that microglia-derived
PGRN facilitates neuronal uptake of PSAP. Thus, despite the
presence of PSAP receptors M6PR and LRP1 in neurons (Fig. 5c),
PGRN enhances PSAP neuronal uptake via sortilin-mediated
endocytosis, possibly due to higher levels of sortilin on the
neuronal cell surface compared with M6PR and LRP1.

To investigate the role of PGRN in regulating PSAP trafficking
in vivo, we measured neuronal PSAP levels in adult neurons of
WT and Grn� /� mice. Neuronal PSAP signal in neurons is
significantly reduced in Grn� /� mice (Fig. 6a,b), despite an
increase of PSAP levels in glial cells in Grn� /� mice
(Supplementary Fig. 3). Similar results were seen when lysosomal
PSAP signals were quantified in WT and Grn� /� neurons
(Supplementary Fig. 4). However, PGRN does not appear to have
a significant role in PSAP lysosomal trafficking in the biosynthetic
pathway as neuroblastoma cells N2a lacking PGRN expression
still traffic PSAP to lysosomes (Supplementary Fig. 5). These data
together support a role of PGRN in facilitating PSAP lysosomal
trafficking from the extracellular space in vivo. Consistent with
this notion, PGRN deficiency leads to significant increases in
serum levels of PSAP protein without changes in PSAP mRNA
levels (Fig. 6c,d). Similar results were obtained in sortilin-deficient
mice (Fig. 6c,d), supporting an in vivo role of PGRN-sortilin in
PSAP uptake and lysosomal delivery.

Neuronal saposin levels are decreased in FTLD-GRN. PGRN
haploinsufficiency is a leading cause of FTLD-TDP. To assess
whether PSAP trafficking is affected by GRN mutations in
patients with FTLD-TDP, we stained PSAP and saposins in
the orbitofrontal cortex of controls, and in patients with FTLD
due to GRN mutations (FTLD-GRN), or AD. Increased levels of
PSAP are detected in the microglia (Fig. 7a,d) and astrocytes
(Fig. 7b,e) in tissue from patients with FTLD-GRN and
AD patients. Despite this increase, a marked reduction of
neuronal PSAP (Fig. 7a–c), saposin A (Supplementary Fig. 6a),
saposin B (Fig. 8) and saposin C (Supplementary Fig. 6b) signals
is observed in FTLD-GRN compared with controls or AD,
supporting our hypothesis that PGRN mutations lead to reduced
neuronal saposin levels in FTLD. To determine whether
decreased neuronal saposin levels are specific to FTLD-GRN,
we also examined the levels of saposin B in more detail in
controls, and individuals with AD, FTLD-GRN or corticobasal
degeneration, a subtype of FTLD with tau inclusions (FTLD-tau).
Normal levels of neuronal saposin B were detected in samples
from individuals with FTLD-tau (Fig. 8a,c), supporting the idea
that decreased neuronal saposin levels in FTLD-GRN is not
a general feature of all FTLD subtypes. Furthermore, neuronal
PGRN levels are directly correlated with neuronal saposin B levels
(Fig. 8d), further supporting a critical role of PGRN in
determining saposin levels in neurons. Consistent with a previous
report20 and the fact that saposin D is one of the main
components of lipofuscin in a vast majority of NCL cases13, we
observed accumulation of neuronal saposin D in FTLD-GRN
(Supplementary Fig. 7). Careful examination revealed that
relatively healthy neurons have lower levels of saposin D (Supple-
mentary Fig. 7a), similar to other saposins but neurons with
elevated LAMP1 levels and enlarged lysosomes show increased
saposin D intensity (Supplementary Fig. 7b), suggesting that
lysosomal dysfunction leads to the accumulation of saposin D.
The specific accumulation of saposin D but not other saposins in
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FTLD-GRN might reflect their different stability and aggregation
properties in the lysosome.

Reduced PSAP function in mice leads to FTLD-like phenotypes.
Since saposin levels are markedly decreased in FTLD-GRN
patients, we asked whether loss of PSAP function could lead
to FTLD-related phenotypes in mice. Because total loss of
PSAP leads to death around weaning age in mice, we took
advantage of another mouse line (Psap� /�NA) that expresses low
levels of PSAP (B5–40% of WT), which can live up to 7
months30. Accumulation of p62 and ubiquitin-positive aggregates
is evident in these mice compared with age-matched WT controls
(Fig. 9a,b). Glial activation is also observed (Fig. 9b). Although
we failed to detect TDP-43 aggregation in the Psap� /�NA

mice, hyperphosphorylated TDP-43 accumulates in the

insoluble fraction of brain lysates of Psap� /�NA mice (Fig. 9a).
The lipophilic SCMAS is another main component of lipofuscin
detected in many NCL patients13, and was found to
aggregate in patients with FTLD due to GRN mutations20. We
found that SCMAS accumulates in aged PGRN-deficient
mice (Supplementary Fig. 8) and also in the 6-month-old
Psap� /�NA mice (Fig. 9b), but not in the age-matched
controls. Taken together, these results indicate that partial loss
of PSAP could lead to pathological changes in mice similar to
those seen in patients with FTLD-GRN.

PGRN deficiency in mice leads to FTLD-related behavioural
deficits10,31. To determine whether loss of PSAP function could
lead to FTLD-related phenotypes, we assessed the behaviour
of aged Psapþ /� mice. In the open-field test, 12-month-old
Psapþ /� mice show reduced distance travelled (Fig. 9c) and
increased latency in the centre compared with littermate controls
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(Fig. 9d), indicating disinhibition-like behaviour. Similar to
Pgrn heterozygous knockout mice32, sociability is affected in
Psapþ /� mice as they spent significantly less time with a
stranger than control mice in the social interaction test (Fig. 9e).
In addition, the number of direct interactions with the stranger
mouse is also reduced in Psapþ /� mice compared with controls,
without any significant changes in olfactory sensitivity (Fig. 9f
and data not shown). Next, we tested for short-term memory
using the novel object recognition test. Psapþ /� mice have
a reduced preference score for a novel object compared with
controls, showing that short-term memory is impaired (Fig. 9g).
Interestingly, Psapþ /� has no obvious effect on motor function
in the rotarod test, similar to what is seen in Pgrn-deficient
mice (Fig. 9h). Thus, PSAP haploinsufficiency in mice also leads
to FTLD-related behavioural changes.

Discussion
Despite accumulating evidence supporting a crucial role of PGRN
in maintaining proper lysosomal function, how PGRN does so
remains unclear. In this study, we demonstrate that PGRN
determines the levels of neuronal saposins by facilitating neuronal
uptake and lysosomal trafficking of PSAP through sortilin and
that loss of saposin function contributes to FTLD-like phenotypes
in mice (Fig. 10). Our data provide insight into how PGRN
regulates lysosomal function and suggest a novel disease
mechanism for subsets of FTLD and NCL due to GRN mutations.

Saposins are essential for proper glycosphingolipid degradation
in the lysosome21–23. The saposin precursor PSAP can be
delivered to lysosomes from the biosynthetic pathway or from
the extracellular space. Since a large portion of PSAP is secreted,
lysosomal delivery of PSAP from the extracellular space may be a
significant source of lysosomal saposins in neurons, especially
under glia activation, when the levels of PSAP are upregulated
in glial cells (microglia and astrocytes) and most PSAP are
secreted from glial cells (Figs 4,5a,b and Supplementary Fig. 2).
PSAP strongly interacts with PGRN both within the cell and in
the extracellular space19. Our studies with primary
cortical neurons reveal two pathways for neuronal PSAP
uptake, through LRP1 or through piggyback ride from PGRN
and the PGRN receptor sortilin (Fig. 3). Given the strong
dependence of neuronal PSAP levels on PGRN in the aged
human brain, we speculate that the PGRN receptor, sortilin,
might have a critical role in lysosomal delivery of PGRN-PSAP in
such conditions. Unfortunately, the cell surface levels of
trafficking receptors, which determine the endocytic trafficking
routes for the PGRN–PSAP complex, are difficult to measure
in vivo. Another possibility is that as PGRN levels increase in
microglia during ageing, PGRN has a more critical role in
neuronal uptake of PSAP via sortilin-mediated endocytosis.

In our previous work, we have demonstrated that
PSAP facilitates lysosomal trafficking of PGRN via M6PR and
LRP119. Consistent with our study, PSAP was shown to regulate
plasma PGRN levels in humans33. Thus, by forming a complex,
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PSAP and PGRN facilitate each other’s lysosomal trafficking.
Distinct trafficking mechanisms might be used by different cell
types under certain conditions, depending on the availabilities of
the three trafficking receptors involved.

Although this study focuses on the regulation of PSAP by
PGRN in neurons, another interesting observation in the current
study is that glial cells, including microglia and astrocytes,
upregulates PGRN and PSAP levels on injury and inflammatory
conditions, such as traumatic brain injury and during FTLD and
AD disease progression, and during normal ageing (Figs 4,7
and Supplementary Fig. 2). Whether PSAP–PGRN interaction
regulates glial activation and whether that is related to the
lysosomal functions of PSAP and PGRN remain to be explored.
A role of PGRN in regulating lysosomal activity and complement
activation in microglia has been demonstrated recently34. It
will be interesting to test whether the PSAP–PGRN interaction
has a role in this.

In addition to facilitating PSAP lysosomal trafficking, PGRN
may regulate other aspects of PSAP biology, such as PSAP
processing, and PGRN may have other functions in lysosomes in
addition to regulating PSAP. Proper lysosomal function is
essential for long-term neuronal survival35,36. Emerging studies
suggest an interesting link between early-onset lysosomal storage
diseases37 and late-onset neurodegenerative diseases. The GRN
gene is one example in which complete loss of PGRN causes NCL
and haploinsufficiency of PGRN leads to FTLD. Another example
is the glucocerebrosidase (GBA) gene. While loss-of-function
mutations in GBA cause Gaucher disease, a lysosomal
storage disorder, heterozygous mutation of GBA is associated
with Parkinson’s disease38,39. These observations suggest that
a generalized impairment of lysosomal function may be a key
driver of pathogenesis in late-onset neurodegenerative diseases,
including FTLD. Besides GRN, other FTLD-associated genes,

VCP/p97, CHMP2B, SQSTM1, TBK1 and OPTN, are involved in
membrane trafficking and the autophagy–lysosome pathway40.

In summary, our study demonstrates a role of the FTLD protein,
PGRN, in determining neuronal saposin levels by facilitating
lysosomal trafficking of PSAP and argues that impaired saposin
function might be one of the disease mechanisms of FTLD-TDP
with GRN mutations (Fig. 10). Our results underscore the
importance of maintaining lysosomal saposin levels in preventing
neurodegeneration in FTLD-TDP and give novel insights into the
therapeutic development of FTLD-GRN.

Methods
Antibodies. The following antibodies were used in this study: mouse anti-FLAG
(M2) (1:2,000 for western blot), mouse anti-myc (9E10) (1:1,000 for western blot),
rabbit anti-LRP1 (1:1,000 for western blot) from Sigma, mouse anti-GAPDH
(1:5,000 for western blot) and rabbit anti-human PSAP (1:1,000 for western blot)
antibodies from Proteintech Group, mouse anti-v5 (1:5,000 for western blot)
from Invitrogen, sheep anti-mouse PGRN (1:1,000 for western blot, 1:100 for
immunostaining), goat anti-human PGRN (1:1,000 for western blot, 1:100 for
immunostaining) and goat anti-mouse sortilin (1:1,000 for western blot,
1:100 for immunostaining) from R&D systems, mouse anti-human LAMP1
(1:100 for immunostaining) and rat anti-mouse LAMP1 (1D4B) (1:100 for
immunostaining) from BD Biosciences, mouse anti-GFAP (GA5)
(1:100 for immunostaining) from Cell signaling, goat anti-cathepsin D (C20)
(1:100 for immunostaining) from Santa Cruz, rabbit anti IBA-1 (1:250 for
immunostaining) from Wako, mouse anti-mouse b-III tubulin (1:5,000 for western
blot) from Promega, chicken anti-human transferrin (1:2,000 for western blot)
from Immunology Consultants Laboratory, rabbit anti-p62/SQSTM1 (1:1,000 for
western blot) from Novus, mouse anti-ubiquitin (1B3) (1:1,000 for western blot)
from MBL, mouse anti-pTDP43 (S109/410) (1:1,000 for western blot) from
COSMO Bio and mouse anti-NeuN (1:100 for immunostaining) from Millipore.
Rabbit anti-mouse PSAP (1:100 for immunostaining) antibodies were characterized
previously19. Rabbit anti-human PSAP (1:1,000 for western blot, 1:100 for
immunostaining) and rat anti-human PSAP (1:1,000 for western blot, 1:100 for
immunostaining) antibodies were generated by Pocono Rabbit Farm and
Laboratory using the recombinant GST-PSAP proteins purified from bacteria.
Validation of both antibodies is shown in Supplementary Fig. 9. Goat anti-mouse
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PSAP (1:100 for immunostaining) antibodies41 were a gift from Dr Ying Sun
(Cincinnati Children’s hospital, Cincinnati, OH). Rabbit anti-human saposin
A, B, C and D (1:100 for immunostaining) antibodies42 were a gift from
Dr Xiaoyang Qi (University of Cincinnati School of Medicine, Cincinnati, OH).
Rabbit anti-M6PR (1:1,000 for western blot) antibodies43 were a gift from
Dr William Brown (Cornell University, Ithaca, NY). Rabbit anti-SCMAS
(1:100 for immunostaining) antibodies44 were a gift from Dr Elizabeth F. Neufeld
(David Geffen School of Medicine, University of California, Los Angeles, CA).

Mouse strains. C57/BL6 and Grn� /� 45 mice were obtained from the Jackson
Laboratory. Sortilin-knockout (Sort� /� ) mice46 were a gift from Dr S. Strittmatter
(Yale University, New Haven, CT) and Dr A. Nykjaer (Aarhus University, Aarhus,
Denmark). Psap� /� NA mice30 and Psapþ /�mice47 were provided by Dr Ying Sun
(University of Cincinnati). The age of the mice was described in each specific
experiment. Both male and female mice were used and the gender of the mice in each
experiment was matched in the same experiment. All the mice were housed in the

Weill Hall animal facility at Cornell. All animal procedures have been approved by
the Institutional Animal Care and Use Committee (IACUC) at Cornell.

DNA and plasmids. His-tagged PSAP constructs were generated by cloning
PSAP into pSetage2B vector (Invitrogen) using HindIII and NotI sites as
described previously19. FLAG-tagged PSAP constructs were generated by
inserting 3� FLAG into His-PSAP using Sfil and HindIII sites. AP-human
PSAP construct was generated by cloning PSAP into pAP5 vector (Genhunter).
Mouse PSAP-myc-his and human sortilin-myc-his constructs were generous gifts
from Dr Carole Morales (McGill University). Human sortilin in a mammalian
expression vector was obtained from Origene. Human PGRN in pCMV-Sport6
vector was obtained from Open Biosystems. GST-RAP construct is kindly provided
by Dr Alban Gaultier from the University of Virginia.

Cell culture. HEK293T, Neuro2a (N2a) and COS-7 cells (ATCC) were maintained
in Dulbecco’s modified Eagle’s medium (CellGro) supplemented with 10% fetal
bovine serum (Gibco) and 1% penicillin–streptomycin (Invitrogen) in a humidified
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incubator at 37 �C and 5% CO2. Cells were transiently transfected with
polyethyleneamine as described48. N2a cells with PGRN deletion were generated by
infecting N2a cells with lentivirus expressing Cas9 only or Cas9 and guide
RNA targeted to mouse Grn (oligos with 50-CACCGCGGACCCCGACGCAGGT
AGG-30 and 50-AAACCCTACCTGCGTCGGGGTCCGC-30 were ligated to
pLenti-CRISPR (Addgene)). Cells were selected with puromycin 2 days after
infection and the knockout is confirmed by western blot and immunostaining.

Primary cortical neurons were isolated from P0 to P1 pups using a modified
protocol49. Briefly, cortices were rapidly dissected in 2 ml Hanks’ balanced salt
solution supplemented with B27 (Invitrogen) and 0.5 mM L-glutamine (Invitrogen) at
4 �C. After removing meninges, the cortices were digested with papain (Worthington
LS003119, 2 mg ml� 1 in Hanks’ balanced salt solution) and DNaseI (1 mg ml� 1 in
Hanks’ balanced salt solution; Sigma) for 12 min at 37 �C. Fire-polished glass pipettes
were then used to dissociate the tissues. Cells were spun down and resuspended in
Neuroplex medium (Gemini) plus B27 and plated onto poly-lysine-coated dishes
(Sigma). Mitotic inhibitors cytarabine (AraC; Sigma) were added at DIV3.

Microglia were isolated from P0 to P2 pups and grown on astrocytes for 2 weeks
before being shaken off according to a published protocol50.

Cell surface-binding assay. AP-PSAP-binding assays as described previously18.
Briefly, conditioned media (CM) with AP or AP-PSAP generated from HEK293T
cells were incubated with sortilin-transfected COS-7 cells or for 2 h at room
temperature or primary cultured cortical neurons 1 h at 4 �C before fixation and
heat inactivation of endogenous AP at 65 �C overnight. Bound AP to the primary
cortical neurons was measured using the NIH image software.

Protein preparation and western blot analysis. Purification of recombinant his-
human PSAP and his-human PGRN proteins, co-IP assays and western blots were
performed as described previously19. GST-RAP is purified from BL21 cells using
GST beads. To analyse p62, pTDP43 and ubiquitin in mouse brain, the frozen
brain tissue were homogenized and lysed in ice-cold RIPA buffer (50 mM Tris, pH
7.3, 150 mM NaCl, 1% Triton, 0.1% SDS, 0.5% deoxycholic acid, 1 mM EDTA)
with protease and phosphatase inhibitors (Roche Complete Mini, EDTA-free
protease inhibitor, 10mM MG-132, 5 mM NaF and 10 mM b-glycerol-phosphate).
RIPA-soluble fraction was collected from the supernatant of cell lysis after a
centrifugation at 18,000 g for 20 min at 4 �C. The RIPA-insoluble pellets were
extracted with urea buffer (7 M urea, 4% CHAPS, 30 mM Tris, pH 8.5) and
centrifuged at 18,000 g for 20 min at 4 �C and the supernatant was saved as the
RIPA-insoluble, urea-soluble fraction. Full size western blots are shown in
Supplementary Fig. 10.

Metabolic labelling and PSAP processing assay. To obtain the 35S-labelled
mouse PSAP, the HEK293T cells were transfected with mouse PSAP-myc-his
overnight. The medium was replaced with methionine- and cysteine-free DMEM
with 10% dialysed FBS for 2 h before the addition of 35S-labelled methionine and
cysteine. After 12 h incubation, the [35S] isotope containing medium was replaced
with serum-free medium for another 12 h, and then conditional media were
collected. Sortilin-overexpressed COS-7 cells were then treated with 35S-labelled
PSAP containing medium in the presence or absence of PGRN for 12 h.
COS-7 cells were lysed with lysis buffer (50 mM Tris, pH 7.3, 150 mM NaCl,
1% Triton X-100 and 0.1% DOC with protease inhibitors). After
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immunoprecipitation with rabbit anti-mouse PSAP antibody, the IP products were
separated with 18% tricine gels. Followed by fixation solution (10% methanol and
10% acetic acid), the gels were subsequently impregnated with amplify solution
(1 M sodium salicylate, 10% glycerol) and the autoradiographs of dried gels
were obtained on an X-ray film at –80 �C. To assess the neuronal uptake
and processing of microglial PSAP, 35S-labelled mouse PSAP containing medium

were generated from primary cultured microglia, and then applied to primary
cultured cortical neurons.

PCR with reverse transcription. Mouse cortical tissue was dissected and frozen
in liquid nitrogen. Total RNAs were extracted using TRIzol (Invitrogen) and
purified with Quick RNA MiniPrep Kit (Zymo Research). One microgram of total
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RNA was reverse transcribed to cDNA using poly (T) primer and SuperScript III
Reverse Transcriptase (Invitrogen). Quantitative PCR was performed on a Light-
Cyler 480 (Roch Applied Science), and the transcripts levels were measured using
efficiency-adjusted DD�CT. PSAP transcript was normalized to b-actin. The
mouse PSAP primer pair sequences were 50-CCTGTCCAAGACCCGAAGAC-30

and 50-CAAGGAAGGGATTTCGCTGTG-30. Mouse b-actin primers were 50-
ACGAGGCCCAGAGCAAGAG-30 and 50-TCTCCAAGTCGTCCCAGTTG-30 .

Enzyme-linked immunosorbent assay. To measure PSAP levels, serum samples
were collected from WT, Pgrn� /� , Sort� /� and Psap� /� mice. Diluted mouse
serum (1:10) and purified mouse PSAP (100, 50, 25, 12.5, 6.25, 3.1, 1.5 and
0 ng ml� 1) were coated onto 96-well ELISA plates (NUNC; Thermo Scientific) at
4 �C overnight. The plates were then blocked with 1% bovine serum albumin in
PBS at room temperature for 1 h after extensive washes. Plates were then washed
and incubated with home-made rabbit anti-mouse PSAP antibodies19 (1:4,000)
4 �C overnight. After several washes, plates were then incubated with horseradish
peroxidase-conjugated goat anti-rabbit antibodies (Vector Laboratories) at room
temperature for 30 min. The plates were washed four times and incubated with
solution C mixed from solution A and B (ABC Kit, Vector Laboratories) at room
temperature for 30 min in the dark. After washing, the plates were incubated with
chromogenic substrate, 3,30 ,5,50-tetramethylbenzidine (TMB), for 15 min. The
reaction was stopped by adding 2 M H2SO4. The plates were read at 450 nm
(real signal) and 540 nm (background). Three repeats were tested for each sample.
The specificity of the antibody was confirmed using serum from PSAP� /� mice as
controls (Supplementary Fig. 9).

Brain tissue. Human brain tissues were obtained from the Neurodegenerative
Disease Brain Bank at the University of California, San Francisco. Authorization

for autopsy was provided by patients’ next-of-kin, and procedures were approved
by the UCSF Committee on Human Research. Neuropathological diagnoses were
made in accordance with consensus diagnostic criteria51,52. Cases were selected
based on neuropathological diagnosis and genetic analysis. Freshly frozen blocks
and formalin-fixed, paraffin-embedded tissue sections of the anterior orbital gyrus
were used from subjects with FTLD-TDP, Type A, due to GRN mutations,
corticobasal degeneration (a subtype of FTLD-tau), AD and healthy controls.
Healthy control tissue was obtained from individuals without dementia who
had minimal age-related neurodegenerative changes. Detailed information is
provided in Supplementary Table 1.

Cortical stab wound injury. Adult C57/B6 mice were anesthetized with isoflurane
and placed in a stereotaxic apparatus. A 27 1/2-gauge needle was inserted 2.0 mm
in depth and left in place for 1 min. The skin was then sutured, and the mice were
allowed to recover for 4 days before killing.

Immunofluorescence staining and quantitative analysis. Immunofluorescence
staining was performed as described previously19. For paraffin-embedded human
brain samples, 8 mm sections were deparaffinized with xylene and ethanol. Antigen
retrieval was performed by microwaving in citrate buffer (pH 6.0) for 18 min. To
block the lipofuscin autofluorescence, brain sections were incubated with
0.1% Sudan Black B (Spectrum Chemical) in 70% ethanol for 20 min at room
temperature before the staining process. Images were acquired on a CSU-X
spinning disc confocal microscope (Intelligent Imaging Innovations) with an HQ2
CCD camera (Photometrics) using a � 40 and � 100 objective.

The quantitative analysis of the images was performed in ImageJ program. For
the quantitative analysis of intracellular levels of PSAP, PGRN and SapB, the entire
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PGRN level

Sortilin
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SAPs Lysosomal
dysfunction
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Lysosome

Neuronal survival Neuronal cell death
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Figure 10 | A schematic drawing illustrating the proposed disease mechanism of FTLD with GRN mutations. PGRN and PSAP are highly secreted by

microglia and astrocytes. Through binding to sortilin on neuronal cell surface, PGRN facilitates neuronal uptake of extracellular PSAP. Lysosomal delivery of

PSAP results in PSAP processing into individual saposins (SAPs), which helps maintain normal lysosomal function in neurons. PGRN mutations in FTLD

results in reduced PGRN levels and thus less neuronal uptake of PSAP and reduced saposin levels in neuronal lysosomes, which leads to lysosomal

dysfunction and eventually neuronal cell death and FTLD. PSAP receptors, LRP1 and M6PR, which mediates alternate pathways for PSAP lysosomal

delivery, are not shown in the drawing.
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cell body was selected and the fluorescence intensity was measured directly with
ImageJ after a threshold application. For the quantitative analysis of lysosomal
PSAP levels, the regions of interest for lysosomal areas were selected based on
LAMP1 signals, the regions of interest were then applied to PSAP channel and
the fluorescence intensity was measured. For each sample, —four to seven
different random images, acquired using a � 40 objective, were captured, and data
from Z3 brains were used for statistical analysis.

Behavioural test. Twelve-month-old female Psapþ /� mice and WT littermate
controls in the C57/BL6 background are subject to the following behavioural tests:
(1) open-field test was conducted in an arena of 30 cm� 30 cm� 30 cm. The total
track distance, centre track distance, centre time and centre entries were tracked by
the Viewer III software (Biobserve, Bonn, Germany). (2) For the novel object
recognition test, mice were first exposed to two identical objects for 10 min,
followed by a 2 h retention interval, and then put back to the same chamber where
a novel object is introduced and monitored for 3 min. Exploration, defined as any
type of physical contact with an object (whisking, sniffing, rearing on or touching
the object), was recorded and analysed using the tracing software Viewer III and
corrected manually. The preference score (%) for novel object was calculated as
(exploration time of the novel object/exploration time of both objects)� 100%.
(3) Social interaction test was performed in a three-chambered apparatus as
described previously53. A test mouse was first placed in the middle chamber and
allowed to explore the arena for 5 min. An unfamiliar mouse (stranger mouse) was
then introduced into one of the empty wire cages. Then, door was reopened and
the test mouse was allowed to freely explore both the empty chamber and the
chamber containing the stranger mouse for 10 min. The time of the test mouse
spent sniffing each wire cage was measured. The stranger mice used in this
experiment were age-matched C57/BL6 female mice, not littermates. (4) Rotarod
test: The rotarod apparatus (Biological Research Apparatus, Varese, Italy) was used
to measure motor coordination and balance. During the training period, each
mouse was placed on the rotarod at a constant speed (16 r.p.m.) for a maximum of
180 s. Mice received three trials per day for 4 consecutive days after a steady
baseline was attained. Mice were then subject to three trials at 4 to 40 r.p.m.
accelerating speed levels. The latency to fall off the rotarod was recorded and
analysed. All behaviour tests were performed by experienced experimenter, who
was blinded regarding mouse genotypes.

Statistical analysis. The data were expressed as means±s.e.m. One-way analysis
of variance (ANOVA) followed by Bonferroni’s multiple comparison test was used
to compare statistical significance between multiple groups. The Student’s t-test
was used to compare two groups. All statistical analyses were performed using the
GraphPad Prism5 software (GraphPad Software). P-values o0.05 were considered
statistically significant.

Data availability. All data generated or analysed during this study are included in
this published article (and its Supplementary Information files) or available from
the authors on request.
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