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Understanding the coupling specif icity between G protein-coupled receptors
(GPCRs) and specif ic classes of G proteins is important for further elucidation
of receptor functions within a cell. Increasing information on GPCR sequences
and the G protein family would facilitate prediction of the coupling properties of
GPCRs. In this study, we describe a novel approach for predicting the coupling
specif icity between GPCRs and G proteins. This method uses not only GPCR
sequences but also the functional knowledge generated by natural language pro-
cessing, and can achieve 92.2% prediction accuracy by using the C4.5 algorithm.
Furthermore, rules related to GPCR-G protein coupling are generated. The com-
bination of sequence analysis and text mining improves the prediction accuracy for
GPCR-G protein coupling specif icity, and also provides clues for understanding
GPCR signaling.
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Introduction

Cell activity is regulated by extracellular signals that
are transmitted into the cell interior through different
classes of plasma membrane receptors. The vast ma-
jority of these receptors belong to the superfamily of
G protein-coupled receptors (GPCRs), which is one of
the largest protein families. Through their extracel-
lular and transmembrane domains, GPCRs recognize
a variety of ligands, resulting in the transmission of
a range of signals across the cell membrane. G pro-
teins are composed of α, β, and γ subunits; the intra-
cellular signals relayed upon receptor activation are
determined by specific classes of G proteins.

Heterotrimeric (αβγ) G proteins are central com-
ponents of the primary mechanism used by virtually
all eukaryotic cells to receive, interpret, and respond
to a wide range of structurally and chemically diverse
extracellular stimuli (1 , 2 ). These G proteins assume
different conformations and engage in distinct molec-
ular interactions depending on the bound nucleotide.
The interaction of an activated GPCR with a G pro-
tein catalyzes the exchange of guanosine triphosphate
(GTP) with guanosine diphosphate (GDP) and re-
sults in the subsequent dissociation of the Gα-GTP
complex from the βγ complex; alternatively, it may
result in the molecular rearrangement of G protein
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subunits (3 ). This enables both the Gα-GTP com-
plex and the βγ dimers to interact with a variety of
downstream effectors.

Based on subunit sequence homology, the G
protein α-subunit family can be divided into four
subfamilies—Gs, Gi/o, Gq/11, and G12/13 (4 ). The
Gs subfamily, consisting of Gs and Golf subtypes, is
named for its stimulation of adenylyl cyclases (5 ).
The Gi/o subfamily is named for its inhibition of
adenylyl cyclases (although not all Gi/o isotypes share
this property) (6 ). Members of the Gq/11 subfamily
are involved in the stimulation of phospholipase Cβ

isoforms (7 ). The activation of G12 and/or G13 pro-
teins is associated with the stimulation of the low-
molecular-weight G protein Rho and its downstream
targets (8 ). The G protein α-subunit nomenclature
is commonly used to classify GPCRs. Hence, these
GPCRs are referred to as Gs-, Gi-, or Gq-coupled re-
ceptors that reflect their primary signal transduction
pathway.

Characteristically, each GPCR subtype appears to
only couple to a subset of G proteins that may be
found in a particular cell. Elucidation of the mecha-
nisms underlying this coupling specificity has been an
important problem in the GPCR research. Chimeric
receptors have been used to locate domains within
receptor sequences that may define their coupling
specificity (4 ). These studies reveal that the selec-
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tivity of G protein recognition is determined by mul-
tiple intracellular receptor regions. The most impor-
tant regions appear to be in the second intracellular
loop and in the start and end of the third intracellular
loop, which are close to the cytoplasmic surface of the
membrane (9 ).

It is important to determine GPCR-G protein cou-
pling specificity in order to understand cell signaling.
Firstly, this is essential for understanding the physio-
logical mechanisms underlying the response mediated
by the activation of a given GPCR. Secondly, from
the viewpoint of drug development, such predictions
would be very useful in devising experiments to screen
orphan receptors for ligands, since these experiments
monitor a specific intracellular response, which is de-
termined by a receptor’s coupling specificity (10 ).
Therefore, the use of bioinformatic techniques for de-
termining GPCR-G protein coupling specificity con-
tributes to the development of effective experimental
systems.

In recent years, several computational methods
have been developed to understand GPCR coupling
specificity, in which sequence features such as hidden
Markov models (HMMs) and sequence motifs are used
(9, 11–15 ). However, the accuracy of these methods
tends to be biased by the degree of sequence similarity.
For example, an orthologous relationship would lead
to overestimation of the correct prediction accuracy
of coupling specificity.

The natural language processing (NLP) technique,
on the other hand, is a useful method for extracting
biological knowledge from large text databases. To
date, various approaches have been developed to com-
prehensively extract information by using NLP. The
information is subsequently used to build up annota-
tions within biological databases that describe rele-
vant aspects of these proteins. Some approaches have
been directly applied to derive important information
on protein annotations (16–18 ).

In this study, we describe a novel method for pre-
dicting GPCR-G protein coupling specificity. This
method uses the features of sequences and biologi-
cal functions of GPCRs that are derived by sequence
analysis and NLP text mining, respectively. The pre-
diction accuracy is improved by adding the features of
biological functions that contain information on dis-
eases and molecular interactions as well as key words
related to GPCRs. In addition, a machine learning al-
gorithm, namely the C4.5 algorithm (19 ), is used to
extract information on the characteristics of GPCR-G
protein coupling.

Results

We evaluated our method for predicting coupling
specificity by applying it to a dataset of 153 human
GPCRs, including 84 Gi-, 33 Gq-, and 36 Gs-coupled
sequences. To avoid the prediction bias caused by
sequence similarity, that is, the orthologous relation-
ship, we eliminated non-human sequences. The clas-
sification of this dataset was performed by using the
C4.5 algorithm and then was evaluated by the leave-
one-out cross-validation (LOOCV) test. The result
of the classification sensitivity and specificity at the
subtype level of G proteins is shown in Table 1. For
the Gi- and Gq-coupled GPCRs, both sensitivity and
specificity were more than 90%. In the case of Gs-
coupled GPCRs, the specificity was more than 90%
but the sensitivity was lower than 90%. This result
indicates that Gs-coupling specificity should not be
predicted first because its specificity and sensitivity
are the lowest among the three coupling classes. We
therefore investigated which prediction order could
obtain the best result of the total predication accu-
racy (Table 2). As a result, the best accuracy of 92.2%
was obtained with the prediction order of Gq, Gi, and
Gs classes from first to last.

Next, we investigated the contribution of the fea-
tures of biological functions to the prediction accuracy
by predicting against three types of feature sets. The
first set only contained the features of sequences; the

Table 1 Prediction Accuracy of GPCR-G Protein

Coupling for Three G Protein Subfamilies

Subfamily No. of GPCR Sensitivity Specificity

sequences (%) (%)

Gi 84 96.4 96.4

Gq 33 90.9 98.3

Gs 36 83.3 93.2

Table 2 Total Prediction Accuracy for Different

Prediction Orders

Prediction order No. of correct Accuracy

1st 2nd 3rd predictions (%)

Gq Gi Gs 141 92.2

Gi Gq Gs 139 90.8

Gi Gs Gq 139 90.8

Gs Gq Gi 139 90.8

Gq Gs Gi 138 90.2

Gs Gi Gq 137 89.5
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second set only contained the features of biological
functions; and the last set contained both feature
types. The result of their prediction accuracy is shown
in Figure 1. The accuracy obtained by using only the
first or the second set was 88.9% and 81.6%, respec-
tively. However, the total accuracy of 92.2% was ob-
tained when both feature types were used. This result
suggests that the use of a combination of features de-
rived from both sequences and biological functions im-
proves the total prediction accuracy when compared
with that obtained by using only a single type.

The advantage of using the C4.5 algorithm is that
it builds decision trees and generates rules that can
be used as predictors. Furthermore, the rules gener-
ated by the C4.5 algorithm can provide insights into
the characteristics of GPCR-G protein coupling. To
generate the rules, we applied the C4.5 algorithm to

the dataset that included all the 153 GPCRs. Table
3 shows some examples of the generated rules. For
instance, Rule 1 in Table 3 means “if a gene is not
related to the calcium signaling pathway and has two
Gi-specific motifs, then it is coupled with the Gi pro-
tein”. The rules that contain the features of sequences
had a low error rate (there was no discriminating er-
ror for Rules 1 and 2 in Table 3, while a few rules
had minor errors), and their using frequencies were
high. The other rules were constructed by using only
the features of biological functions (such as Rules 3
and 4 in Table 3), and their using frequencies were
relatively low. In addition, their discrimination error
rates were higher than those of the rules using the fea-
tures of sequences. However, the coupling specificity,
which could not be predicted correctly with only the
features of sequences, was predicted correctly using

Fig. 1 The total prediction accuracy using different feature sets.

Table 3 Examples of the Rules Produced by the C4.5 Algorithm*

Rule Antecedent Consequence Frequency Error

Feature of biological function Feature of sequence Coupled Gα type of use rate

1 calcium signaling pathway=0 pHMM Gi 1 ≤ 0.0051; Gi 66 0

pHMM Gi 7 ≤ 8.4e-5

2 potassium ≤ 2.46 pHMM Gi 10 > 0.00086; Gq 17 0

pHMM Gq 5 ≤ 2.3e-5

3 cAMP ≤ 4.48; Gq 13 8%

inositol phosphate >11.17

4 5-hydroxytryptamine ≥ 8.19; Gs 14 7%

cAMP > 28.61

*The features of biological functions contain the information and key words extracted from the literature that are

related to the GPCR function. Their values are indicated by the scores according to our calculation (see Materials and

Methods). The features of sequences contain HMM profiles with the format “pHMM (Gα type) (number of pHMM)”.

These values are indicated as the E-values obtained from hmmpfam. Frequency of use: the number of uses required to

discriminate coupling specificity. Error rate: the error rate of discrimination.
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these rules. This result indicates that for some
GPCRs, the coupling specificity cannot be predicted
only by the sequence clues; however, the integration of
functional knowledge makes prediction feasible even
in this case. Moreover, these rules represent the func-
tional knowledge required for understanding GPCR-G
protein coupling.

Discussion

Our primary aim was to develop a method that
efficiently classifies GPCRs according to their cou-
pling specificity in the case of three subfamilies of
G proteins. The basis of our approach was as fol-
lows: (1) the use of features of sequences and biolog-
ical functions to predict the non-biased sequence set;
and (2) the generation of rules for understanding the
specificity of GPCR-G protein coupling.

Our dataset excluded the GPCRs coupled to the
G12/13 subfamily for the main reason that the litera-
ture data on the coupling properties of this subfam-
ily of G proteins were limited. Several similar meth-
ods that were reported previously also used restricted
datasets for predicting the coupling specificity due to
the same reason. The availability of a greater amount
of data in the future will allow the prediction of G12/13

coupling specificity.
The most important factor in our method is the in-

clusion of the features of biological functions derived
by the NLP technique. Figure 1 shows the contri-
bution of the features of biological functions to the
total accuracy. Although it is possible to achieve
high prediction accuracy by using only the features of
sequences, the accuracy can be improved by adding
the features of biological functions. Surprisingly, a
prediction accuracy of more than 80% was obtained
by using only the features of biological functions. It
was thought that functional information regarding to
GPCR signaling could be systematically accumulated
by active research. Our method could then satisfac-
torily predict the coupling specificity using only the
features of biological functions. These features are
useful for determining the coupling specificity when
the GPCR gene has no features of sequences similar
to those of other genes. Furthermore, the result also
suggests that our method is capable of handling prob-
lems such as sequence variances and sequence errors.

The importance of functional information is ap-
parent as shown in Rule 1 of Table 3. The rule an-
tecedents of Rule 1 consist of both features of se-

quences and biological functions. Using this rule,
66 GPCRs were predicted to be Gi-coupled receptors
with the prediction accuracy of 100%. However, if the
condition “calcium signaling pathway = 0” is removed
from the rule, which is mainly related to Gq-coupled
receptors (7 ), then three Gq-coupled GPCRs would
be inaccuratly predicted as Gi-coupled ones because
their sequences had a low E-value (high score) against
the Gi-specific pHMM. On the contrary, by adding
the condition “calcium signaling pathway = 0” per-
taining to functional information, which implies that
there is no relationship with the calcium signaling
pathway, the three Gq-coupled receptors were clas-
sified correctly into the Gq class because their “cal-
cium signaling pathway” scores were high.

In this study, the C4.5 alogrithm, which is a rule-
based algorithm, has been applied for predicting the
coupling specificity. The advantage of this algorithm
is that examination of the rules generated by C4.5
can provide insights into the characteristics of GPCR-
G protein coupling. An example is shown in Rule
3 in Table 3. This rule states that if the score of
the key word “cAMP” is less than 4.48 and the score
of the key word “inositol phosphate” is more than
11.17, then the receptor will couple with Gq pro-
teins. Actually, Gq-coupled GPCRs stimulate inositol
phosphate/Ca2+ intracellular signaling (20 ). There-
fore, the high score of the key word “inositol phos-
phate” reflects this phenomenon. On the contrary,
the low score of the key word “cAMP” suggests that
cAMP is not related to Gq coupling. It is known
that cAMP is related to the Gs- or Gi-class pro-
teins, which activate or inhibit adenylyl cyclase. This
rule is supported by obvious biological phenomena
and proves the validity of the rule generated by our
method. This result indicates that the advantage of
our method lies in its ability to determine not only
the coupling information but also the biological rela-
tionship. When more functional information is avail-
able, it would be possible to generate a rule that could
identify more distant relationships, such as the rela-
tionship among GPCR-G protein coupling, indirectly
interacting molecules, and certain diseases.

To our knowledge, the method reported here is
the first approach to use the NLP technique for cre-
ating the features of biological functions. Although
we only used simple NLP techniques in this study,
such as part-of-speech and word frequency, we could
obtain high prediction accuracy and related informa-
tion on GPCR-G protein coupling specificity as the
rules. With the progress in genome research and
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the development of high-throughput techniques, large
amounts of data have been generated on the mecha-
nisms of gene expression, protein structure and inter-
action, interaction with small molecules, and related
diseases. These ever increasing data are described
in relevant literature. Increasing the availability of
knowledge from biological literature and using more
effective NLP techniques will be useful for clarifying
the relationship between GPCR-G protein coupling
and biological phenomenon along with improving the
accuracy of GPCR-G protein coupling prediction.

Materials and Methods

Dataset

Our dataset contained 153 human GPCR se-
quences along with the information on their coupling
specificity collected from the gpDB database (21 ). In
this study, we excluded GPCRs of the G12/13 coupling
family because the number of their annotations was
not sufficient for prediction. In addition, we also ex-
cluded the olfactory receptors because this class has
high sequence homology that results in prediction bias
in the case of Golf proteins. As a result, the final
dataset contained 84 Gi-, 33 Gq-, and 36 Gs-coupled
sequences.

Construction of the features of GPCR

sequences

The profile HMMs (pHMMs) were constructed from
the motif models generated by the MEME (multi-
ple EM for motif elicitation) (22 ) and MAST (motif
alignment & search tool) programs. MEME uses the
expectation maximization algorithm (23 ) to discover
conserved regions or motifs in a dataset of protein
sequences. The algorithm uses a heuristic criterion
function based on a maximum likelihood ratio test to
compare candidate motifs. MEME outputs models of
conserved regions in a rank order; the strongest mo-
tif is represented by the first model. For the analysis
reported here, we used MEME version 2.0 with the
minimum width set at 12 amino acids and a Dirich-
let mixture prior. The sequence alignment blocks of
each type of coupled G proteins were constructed by
MEME.

Based on the alignment blocks, we then con-
structed a pHMM using the hmmbuild program of
the HMMER software package (24 ). The discrimina-
tive power of each pHMM was evaluated by a query

against all GPCRs measuring the coverage (that is,
the percentage of positives that scored an E-value
lower than the lowest E-value scored by a negative
example in the dataset). The result of this exhaustive
search formed a library of 60 refined pHMMs (20 Gi-
specific, 20 Gq-specific, and 20 Gs-specific pHMMs).
A query GPCR sequence was searched against the
pHMMs built for each G protein type, namely the
Gi, Gq, and Gs classes, using the hmmpfam program.
The E-values of each pHMM obtained from hmmpfam
were used as the features for the C4.5 algorithm.

Construction of the features of biologi-

cal functions

The features of biological functions consist of func-
tional key words (biologically important terms) and
information on diseases and molecular interactions.
These features were extracted from biological liter-
ature. The extraction of key words is one of the
main problems in text mining. However, since our
aim was not to precisely extract biologically impor-
tant terms from biological literature but to predict
GPCR-G protein coupling specificity, the complicated
NLP method was not used to extract the functional
key words. Our extraction method was based on the
frequency of biological terms because terms that are
frequently used in a document and in a set of doc-
uments are considered to be “important” terms in
this area (25 ). First, the abstracts from the liter-
ature on GPCRs were obtained from Entrez Gene
(26 ), which includes related links to PubMed. Next,
the text obtained from the abstracts was parsed with
simple part-of-speech rules to exclude the noise terms
by using the Brill POS tagger package (27 ). The ex-
cluded terms are as follows: slash, backslash, comma,
semicolon, to, coordinating conjunction, preposition,
subordinating conjunction, possessive ending, deter-
miner, symbol, wh-determiner, wh-pronoun, and wh-
adverb. The remaining words were defined as the
functional key words. The score for the functional key
words was calculated based on the frequency of their
occurrence with the formula: Score i,w = Fi,w/Li,
where Fi,w is the frequency of the term w in litera-
ture related to GPCR gene i, and Li is the number of
literature sources related to GPCR gene i. This score
was calculated for all of the functional key words and
each GPCR. The obtained values were used as the
features of biological functions for predicting the cou-
pling specificity.
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Decision tree algorithm and rule gener-

ator (C4.5)

The C4.5 algorithm was applied to predict GPCR-
G protein coupling specificity. It is a rule induction
approach derived from Quinlan’s C4.5 decision tree
(19 ). This decision tree was generated by an entropy-
based selection measure to determine the feature that
is most discriminatory. The rules generated by this
approach are in the conjunctive form such as “if A
and B, then C”, where both A and B are the rule
antecedents while C is the rule consequence.

Note that the comprehensibility of the rules gen-
erated by C4.5 is better than that of the decision tree.
This is because the number of rules is usually less than
the number of leaves in the tree, and the number of
antecedents of a rule is usually less than the number
of test conditions appearing in the corresponding path
in the tree. Moreover, in some cases, the generaliza-
tion ability of the rules may be even better than that
of the tree.

Implementation

Firstly, we constructed the feature sets of the se-
quences and biological functions. Next, we predicted
the coupling specificity by using C4.5. In order to
calculate the accuracy of discriminating each G pro-
tein type, a LOOCV test was performed. At the sub-
type level of G proteins, the evaluation was performed
based on sensitivity and specificity. Total accuracy
was calculated as the rate that the relevant GPCRs
were correctly predicted by applying our method.
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