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Background. Prostate cancer (PC) is one of the most critical cancers affecting men’s health worldwide. )e development of many
cancers involves dysregulation or mutations in key transcription factors. )is study established a transcription factor-based risk
model to predict the prognosis of PC and potential therapeutic drugs. Materials and Methods. In this study, RNA-sequencing data
were downloaded and analyzed using)e Cancer Genome Atlas dataset. A total of 145 genes related to the overall survival rate of PC
patients were screened using the univariate Cox analysis.)eKdmist clusteringmethodwas used to classify prostate adenocarcinoma
(PRAD), thereby determining the cluster related to the transcription factors. )e support vector machine-recursive feature
elimination method was used to identify genes related to the types of transcription factors and the key genes specifically upregulated
or downregulatedwere screened.)ese genes were further analyzed using Lasso to establish amodel. GeneOntology (GO) andKyoto
Encyclopedia of Genes and Genomes (KEGG) were used for the functional analysis. )e TIMER algorithm was used to quantify the
abundance of immune cells in PRAD samples. )e chemotherapy response of each GBM patient was predicted based on the public
pharmacogenomic database, Genomics of Drug Sensitivity in Cancer (GDSC, http://www.cancerrxgene.org). )e R package
“pRRophetic” was applied to drug sensitivity (IC50) value prediction. Results. We screened 10 genes related to prognosis, including
eight low-risk genes and two high-risk genes. )e receiver operating characteristic (ROC) curve was 0.946. Patients in the high-risk
score group had a poorer prognosis than those in the low-risk score group. )e average area under the curve value of the model at
different times was higher than 0.8. )e risk score was an independent prognostic factor. Compared with the low-risk score group,
early growth response-1 (EGR1),CACNA2D1,AC005831.1, SLC52A3, TMEM79, IL20RA,CRACR2A, and FAM189A2 expressions in
the high-risk score group were decreased, while AC012181.1 and TRAPPC8 expressions were increased. GO and KEGG analyses
showed that prognosis was related to various cancer signaling pathways. )e proportion of B_cell, T_cell_CD4, and macrophages in
the high-risk score groupwas significantly higher than that in the low-risk score group. A total of 25 classic immune checkpoint genes
were screened out to express abnormally high-risk scores, and there were significant differences.)irty mutant genes were identified;
in the high- and low-risk score groups, SPOP, TP53, and TTN had the highest mutation frequency, and their mutations were mainly
missense mutations. A total of 36 potential drug candidates for the treatment of PC were screened and identified. Conclusions. Ten
genes of both high-and low-risk scores were associated with the prognosis of PC. PC prognosis may be related to immune disorders.
SPOP, TP53, and TTN may be potential targets for the prognosis of PC.

1. Introduction

Prostate cancer (PC) is the second most common cause of
cancer-related mortality in men in developed countries
[1]. In the past decades, PC treatments have mainly in-
cluded surgery, androgen deprivation therapy (ADT),
radiotherapy (RT), ablation therapy, chemotherapy, and
emerging immunotherapy [2]. Although the latest

advances in PC therapy have significantly improved pa-
tient prognosis, advanced PC is still associated with higher
morbidity and mortality [3]. )erefore, there is an urgent
need to explore novel and accurate biomarkers to assess
the diagnosis and prognosis of patients with PC. )is
study aimed to predict the prognosis of PC and potential
therapeutic drugs based on a risk model of transcription
factors.
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In recent years, people have become increasingly in-
terested in incorporating genomic information into risk
models, which aggregates the effects of many genetic vari-
ations in the entire human genome into a score, and these
models have been proved to have prognostic value in a
variety of diseases, including PC [4]. Multivariate risk as-
sessment has been used as a powerful tool for PC diagnosis
[5].

Transcription factors play a vital role in regulating
metabolism, immunity, and tumorigenesis [6]. Cancer
progression is closely related to transcription factors that
regulate cell proliferation, differentiation, apoptosis, an-
giogenesis, inflammation, and the immune response [7].
)ese factors may affect cancer progression through protein-
protein interactions and the transcriptional regulation of
signaling pathways [8]. Previous studies have shown that
mutated or dysregulated transcription factors affect cancer
development, and targeted transcription factor activity may
affect cancer treatment [9, 10].

)e expression imbalance or mutation of key tran-
scription factors also has an impact on the development,
treatment, and prognosis of PC [11]. Pan et al. have shown
that c-Myc can regulate the expression of FoxM1 by directly
binding to its promoter, thereby regulating the proliferation
and invasion of PC cells [12]. Transcription factors affect
drug resistance, metastasis, and immunosuppression of
cancer drugs and are expected to become new targets for
anti-PC drug therapy [13]. )e androgen receptor (AR) is a
type I nuclear hormone receptor and the main drug target
for PC [14]. Previous studies have shown that multiple
transcription factors are closely related to AR in PC [15].

Studies have shown that immune cell infiltration is re-
lated to the prognosis of patients with PC [16]. Various
immune cells, including tumor-associated neutrophils, tu-
mor-infiltrating macrophages, suppressor cells, and mast
cells of myeloid origin, promote PC through various in-
tercellular signaling pathways [17]. For example, M2 mac-
rophages and regulatory T cells (Tregs) can promote cancer
progression by suppressing antitumor immune responses
[18]. Transcription factors induce the conversion of mac-
rophages from M1 to M2 type in the microenvironment of
PC and promote the progression of PC [19].

In this study, we established a risk score model through a
Lasso analysis.)e correlation between the risk score and PC
prognosis-related gene expression was further explored.
Gene ontology (GO) and Kyoto encyclopedia of genes and
genomes (KEGG) predicted the main signaling pathways
involved in the risk score model and prognosis-related
genes. )e correlation between the risk score model, im-
mune cells, and gene mutations was discussed. Furthermore,
potential drugs for PC treatment were predicted. )ese
results may provide a theoretical basis for exploring the
molecular mechanisms and prognostic markers of PC.

2. Materials and Methods

2.1. Data Set and Preprocessing. )e Cancer Genome Atlas
(TCGA) prostate adenocarcinoma (PRAD) dataset was
downloaded from UCSC Xena [20]. RNA-sequencing

(RNA-seq) data were downloaded from the TCGA data
portal. Fragments Per Kilobase of exon model per Million
mapped fragments (FPKM) was then converted to Tran-
scripts Per Kilobase of exonmodel perMillionmapped reads
(TPM). TPM standardizes expression levels between tran-
scriptome samples and is a common data format.

2.2. PRADClustering Based on Transcription Factors. A total
of 1665 transcription factors were obtained from the Animal
TFDB database [21]. )e intersection of genes with TCGA
yielded 1649 genes. )en, 145 genes were screened using the
univariate Cox analysis. )e Kdmist clustering method was
used to classify PRAD, thereby determining the cluster
related to the transcription factors.

2.3. Establishment of Risk Score Based on Transcription
Factors. To further establish a prognostic score based on the
transcription factor cluster, we performed a differential
analysis of the two transcription factor clusters and obtained
1944 genes. Fifty-four genes were screened by univariate
analysis. )e support vector machine (SVM)-recursive
feature elimination method was used to identify thirty-four
genes related to the types of transcription factors. )e se-
lection operator (Lasso) Cox model was further screened
using the R package glmnet, with p< 0.05 transcription
factor types associated with genes [22]. )e risk score was
defined as the sum of the gene expression value× Lasso
coefficient. )e risk scoring formula was as follows: risk
score� −0.2435×Early growth response-1 (EGR1)+−0.226
×CACNA2D1+ 0.9155×AC012181.1+−0.5831× .1
+ 1.5148×TRAPPC8+−0.4412× SLC52A3+−0.5652×

TMEM79+−0.151× IL20RA+−0.0269×CRACR2A+−0.23
43× FAM189A2. )e median of the transcriptional factor
risk score was used to divide the patients into high-and low-
risk score groups.

2.4. Pathway and Immune Infiltration Analysis. )e differ-
ences between the two groups of expression matrices, the
high- and low-risk score groups, were analyzed. )e stan-
dard of differential gene expression was |log2 fold change
(FC)|> 1.5 and p< 0.05. GO annotation and KEGG pathway
enrichment analysis were performed using the Database for
Annotation, Visualization, and Integrated Discovery (DA-
VID, https://david.ncifcrf.gov/) online tool. GO included
cellular component (GO CC), molecular function (GOMF),
and biological process (GO BP) analysis. )e TIMER al-
gorithmwas used to quantify the abundance of immune cells
in the PRAD samples (29092952). TIMER was used to
reanalyze gene expression data from TCGA, which included
10,897 samples from 32 cancer types, to estimate the
abundance of six subtypes of tumor-infiltrating immune
cells, including T_ cell CD4+, T_ cell CD8+, B_ cell,
macrophages, dendritic cells, and neutrophils. We down-
loaded the immune invasion levels of the patients with PC.
)e differences in immune infiltration between the high-and
low-risk score groups were compared.

2 Evidence-Based Complementary and Alternative Medicine

https://david.ncifcrf.gov/


2.5. Mutation Analysis. )e gene mutations of the two
groups of transcription factor risk scores were compared.
)e Maftools package [23] helped visualize the TCGA-AML
mutation data, and the genetic mutation patterns were
examined in both groups.

2.6. Statistical Analysis. )e Shapiro-Wilk normality test
was used to test the normality of the variables. For normally
distributed variables, the unpaired Student’s t-test was used
to compare the differences between the two groups. )e
Wilcoxon test was used to compare the nonnormally dis-
tributed variables. )e data were mainly visualized using the
R package ggplot2. In the analysis of differentially expressed
genes, we used the Benjamini-Hochberg method. |log2 FC|
>1 and false discovery rate (FDR)< 0.05 was set as the
threshold [24]. )is method converted the p value to FDR to
identify the important genes. )e Kaplan-Meier method was
used to generate and visualize the survival curves of the
subgroups. )e log-rank test was used to determine the
statistical significance of the differences in each dataset. All
survival curves were generated using the R package surv-
miner. Receiver operating characteristic (ROC) curve
analysis and area under the curve (AUC) were used to assess
the predictive performance of the risk models and their
differential transcription factors using the R package pROC.
Volcanomaps and heat maps were generated from the gplots
and heatmap packages in the edgeR package. All statistical
analyses were performed using R 3.5.1. All the tests were
two-sided, and statistical significance was set at p< 0.05.

3. Results

3.1. TranscriptionFactor Clustering. Studies have shown that
an imbalance in transcription factors can damage the normal
prostate transcription network and lead to the progression of
malignant diseases [25]. To explore the relationship between
transcription factors and PC, we clustered PRAD into two
categories based on the transcription factors (Figures 1(a)
and 1(b)). )ere was a significant difference in the survival
analysis of the two categories (p � 0.03) (Figure 1(b)). )e
volcano map showed the distribution of the two types of
differential genes (Figure 1(c)). Functional analysis was
performed for the two types of differential genes, including
GO BP, GO CC, GO MF, and KEGG (Figure 1(d)). GO BP
showed that the two types of differential genes were mainly
involved in regulating focal adhesion, proteoglycans in
cancer, dilated cardiomyopathy (DCM), arrhythmogenic
right ventricular cardiomyopathy (ARVC), hypertrophic
cardiomyopathy (HCM), regulating actin cytoskeleton,)17
cell differentiation, inflammatory bowel disease (IBD), hu-
man T-cell leukemia virus 1 infection, and the TGF-beta
signaling pathway. GO CC showed that the two types of
differential genes were mainly involved in regulating sulfur
compound binding, glycosaminoglycan binding, heparin
binding, DNA-binding transcription activator activity, RNA
polymerase II-specific, actin binding, cell adhesion molecule
binding, extracellular matrix structural constituent, collagen
binding, integrin binding, and growth factor binding. GO

MF showed that the two types of differential genes are
mainly involved in regulating adherens junctions, cell-
substrate junctions, cell-substrate adherens junctions, focal
adhesion, extracellular matrix, collagen-containing extra-
cellular matrix, cell-cell junction, membrane raft, sarco-
lemma, and membrane microdomain. KEGG analysis
showed that the two types of differential genes were mainly
involved in regulating extracellular matrix organization,
extracellular structure organization, cell-substrate adhesion,
muscle tissue development, morphogenesis of a branching
epithelium, urogenital system development, response to
steroid hormones, cell junction organization, striatedmuscle
tissue development, and morphogenesis of a branching
structure. In addition, we also performed gene sets enriched
in immune and functional analyses on transcription factor-
based clustering (GSEA). As shown in Table 1 and Figure S3,
the top six low p value data sets include apoptosis, T-cell
receptor signaling pathway, natural killer cell-mediated
cytotoxicity, meiosis chromosome separation, regulation of
autophagy, and regulation of chromosome separation. Hi-
erarchical clustering analysis showed that the two types of
differential genes may be closely related to the occurrence
and development of PC through these pathways.

3.2. Establishment of Prognostic Scores Based on Transcription
Factors. We established a prognostic score based on the
transcription factors to identify the genes related to the
prognosis of PC. First, the two types of transcription factor
clusters were analyzed for differences, and 1,944 genes were
obtained. Fifty-four genes were screened using univariate
analysis, and 34 genes were obtained using the SVMmethod
(Figure 2(a)). )e model established by the SVM method
reversely inferred the cluster type of transcription factors;
the ROC was 0.946 (Figure 2(b)). )ese selected genes were
analyzed by Lasso, and a risk score model containing 10
genes was obtained; they were EGR1, CACNA2D1,
AC012181.1, AC005831.1, TRAPPC8, SLC52A3, TMEM79,
IL20RA, CRACR2A, and FAM189A2. )ere were eight low-
risk genes and two high-risk genes (Figures 2(c) and 2(d)).
)e risk score model in the TCGA survival analysis showed
that patients with high-risk scores had a poor prognosis
(p � 0.0054) (Figure 2(e)). )e time-dependent ROC chart
showed that the AUC value of the model at different times
was relatively high, indicating that the model was relatively
more accurate and had relatively stronger applicability
(Figure 2(f)). To improve the credibility of the risk score
model, we have verified the model with the GSE16560 data
set. Similarly, the risk score model in the GSE16560 survival
analysis showed that patients with high-risk scores had a
poor prognosis, p � 0.028 (Figure S2). We identified 10
genes that were closely related to the prognosis of PC.

3.3. Functional Analysis of Risk Scoring. Next, we explored
the correlation between the risk score and gene expression.
)e heat map showed that the expressions of EGR1,
CACNA2D1, AC005831.1, SLC52A3, TMEM79, IL20RA,
CRACR2A, and FAM189A2 in the high-risk score group
were reduced, while AC012181.1 and TRAPPC8 expressions
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Figure 1: Continued.
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were increased (Figure 3(a)). )e univariate factor results of
10 genes in the risk score model showed p< 0.05. )e results
showed that 10 genes were significantly associated with PC
prognosis (Figure 3(b)). )e risk score and all genes un-
derwent correlated analysis, correlation coefficient|>0.3-,
and p< 0.05-related gene enrichment functions were ana-
lyzed, including GO BP (Figure 3(c)), GO MF (Figure 3(d)),
GO CC (Figure 3(e)), and KEGG (Figure 3(f)). )e top 10
GO terms and KEGG pathways were identified. From the
biological process, it has been observed that genes related to
the prognosis of PC were significantly enriched in organelle
fission, microtubule cytoskeleton organization, nuclear di-
vision, regulation of cell cycle phase transition, and chro-
mosome segregation. Chromatin binding, ATPase activity,
catalytic activity acting on DNA, helicase activity, and
single-stranded DNA binding were the five most important

categories of molecular functions of genes related to the
prognosis of PC. In terms of cell composition, genes related
to the prognosis of PC were most abundant in chromosomal
regions, centrosomes, nuclear chromosomes, spindles, and
condensed chromosomes. KEGG analysis showed that the
prognosis-related genes of PC were associated with herpes
simplex virus 1 infection, cell cycle, cellular senescence, RNA
transport, and oocyte meiosis. In summary, PC prognosis
was significantly correlated with 10 genes and was associated
with various cancer signals.

3.4. Immune Infiltration and Immune Checkpoint Analysis of
Risk Score Model. )e above results showed that 10 genes
had significant differences in the risk score. Next, we ana-
lyzed the immune infiltration and immune checkpoints of
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Figure 1: PRAD clustering and analysis. (a) Kdmist clustering. (b) Survival analysis. p< 0.05 indicated that there was a significant difference
in the survival rate between the two groups. (c) Volcano map. (d) Functional analysis. PRAD, prostate adenocarcinoma.

Table 1: Gene sets enriched in immune and functional analysis on transcription factor-based clustering (GSEA).

Description NES p value
KEGG_APOPTOSIS −1.3510 0.0002
KEGG_T_CELL_RECEPTOR_SIGNALLING_PATHWAY −1.2701 0.0011
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY −1.2192 0.0063
GO_MEIOTIC_CHROMOSOME_SEGREGATION 1.4768 0.028
KEGG_REGULATION_OF_AUTOPHAGY −1.2672 0.029
GO_REGULATION_OF_CHROMOSOME_SEGREGATION 1.3010 0.037
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Figure 2: Screening of genes closely related to the prognosis of PC. (a) A different analysis of the two types of transcription factors. (b) ROC
curve. (c) and (d) Lasso analysis. (e) Kaplan-Meier analysis. p< 0.05 indicated that there was a significant difference in survival rate between
the two groups. (f ) AUC value. PC, prostate cancer; ROC, receiver operating characteristic; AUC, area under the curve.
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Figure 3: Correlation analysis of genes closely related to the prognosis of PC with risk score model. (a) Heat map. (b) Univariate factor
analysis. (c) Analysis of related gene enrichment function.
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the risk score model. )e heat map showed that the per-
centages of B_cell, T_cell_CD4, and macrophages increased
significantly in the high-risk score group (Figure 4(a)).
Figure 4(b) shows that, in each sample, the proportion of
dendritic cells, T_cell_CD8, and neutrophil cells ranked
among the top three. In the immunotherapy data set
(IMvirgor210), it was verified that high scores had a good
prognosis, and low scores had a poor prognosis (p< 0.001;
Figure 4(c)). )e complete response/partial response
(CR/PR) ratio of the high-risk score group was higher than
that of the low-risk score group (Figure 4(d)). )e above
results indicated that the higher the risk score, the better the
prognosis of PC, which was mainly manifested by a sig-
nificant increase in the proportion of B_cell, T_cell_CD4,
and macrophage cells. TCGA PRAD data showed the ex-
pression of high-and low-risk immune checkpoints
(Figure 4(e), Figure S1). At the costimulator level, the ex-
pression of CD28 and CD80 was decreased in the high-risk
score group. At the antigen level, the expression of HLA-A
andHLA-Cwas increased in the high-risk score group, while
the expression of HLA-DQA2, HLA-DRA, and MICB was
decreased. At the receptor level, the expression of BTLA,
CTLA4, HAVCR2, ICOS, IL2RA, and TNFRSF9 was de-
creased in the high-risk score group, while the expression of
TNFRSF14 was increased. At the ligand level, the expression
of CD40LG, CXCL9, CXCL10, IFNG, IL10, and TNFSF9 was
reduced in the high-risk score group. At the cell adhesion
level, there was no statistically significant difference between
the high- and low-risk scores. On the other hand, the ex-
pression of ARG1, ENTPD1, GZMA, HMGB1, and IDO1
was decreased in the high-risk score group. )e abnormal
expression of the above classic immune checkpoint genes
showed significant differences in the risk score. In summary,
immune infiltration and immune checkpoints were signif-
icantly correlated with high-and low-risk scores.

3.5. Gene Mutation Analysis Based on Risk Score. Next, we
visualized the TCGA-AML mutation data. )e waterfall
chart shows the mutation of genes in the low-risk score
group (Figure 5(a)). In Figure 5(b), the waterfall chart
showed mutations in the high-risk score group. )e results
showed that SPOP, TP53, and TTN had the highest mutation
frequency in the high- and low-risk score groups, and the
mutations were mainly missense mutations.

3.6. Drug Analysis. Potential therapeutic agents in the
TCGA subgroup were predicted based on the drug sensi-
tivity AUC values of CTRP2.0 (Figure 6(a)) and PRISM
(Figure 6(b)), as well as CCLE expression profile data [26].
)e first 18 important drugs in CTRP2.0 were PRL-3 in-
hibitor 1, CD-1530, BRD-K41597374, NPC-26, BRD 1835,
BRD-K26531177, C6-ceramide, 16-beta-bromoandroster-
one, VU0155056, KU- 60019, PRIMA-1, triazolothiadiazine,
BRD-K14844214, sirolimus, necrostatin-1, itraconazole,
importazole, and BIRB-796. )ere were significant differ-
ences between the above drugs in the high- and low-risk
score groups. )e top 18 most important drugs in PRISM
were AMG-208, PRT062607, teriflunomide, LY2183240,

colfosceril-palmitate, oridomin, KI-16425, lanatoside-c,
GGTI-298, temoporfin, imiquimod, rentizole, and tacroli-
mus.)e above drugs in the high- and low-risk score groups
were significantly different. )ese drugs may be effective
anti-PC drugs in the future.

4. Discussion

PC is one of the most common cancers in men worldwide
[27]. Its prognostic variables are beneficial for clinical trial
design and treatment strategies [28]. In this study, a risk
model based on transcription factors predicted the prog-
nostic biomarkers of PC and potential therapeutic drugs.

)e dysregulation of transcription factors is an impor-
tant driving force in tumorigenesis [29]. EGR1 is a tran-
scription factor associated with PC [23]. Bioinformatics
analysis indicated that EGR1 may play an important role in
the pathogenesis and progression of PC [30]. )e tran-
scriptomic analysis confirmed that TMEM79 is a diagnostic
marker of PC [31]. TMEM79 has been identified as a po-
tential biomarker for PC by deep sequencing [32]. A recent
study showed that epigenetic changes in CRACR2A are
related to the lethal progression of PCmetastasis [33]. In this
study, we first grouped PRAD into two categories based on
transcription factors. )ere was a statistical difference in the
survival analysis of the two categories, p � 0.03. )e volcano
map showed the distribution of two types of differential
genes. Next, we established a prognostic score based on
transcription factors to obtain a risk score model containing
ten genes. Compared with the low-risk score group, EGR1,
CACNA2D1, AC005831.1, SLC52A3, TMEM79, IL20RA,
CRACR2A, and FAM189A2 expressions in the high-risk
score group were decreased, while AC012181.1 and
TRAPPC8 expressions were increased. Our results were
consistent with previous studies. At present, most of the
research on the role of CACNA2D1, SLC52A3, IL20RA,
FAM189A2, and TRAPPC8 in PC is lacking. However, they
have important prognostic significance for other cancers
[34–38]. )erefore, further single-gene bioinformatics an-
alyses are required. However, the two genes AC005831.1 and
AC012181.1 have not yet been referenced, and there is still
great research significance. Among the 10 screened genes,
there were eight low-risk genes and two high-risk genes. Ten
genes had statistical differences in the risk score. Patients
with a high-risk score had worse overall survival. Previous
studies have shown that EGR1, TMEM79, and CRACR2A are
closely related to the progression of a variety of cancers, and
it is worthwhile to further explore their molecular
mechanisms.

It has been reported that transcription factors activate
the NOTCH pathway to promote the growth and invasion of
prostate cancer cells [39]. )e transcription factor Sp3
regulates BNIP3 to inhibit the proliferation of prostate
cancer cells and cause apoptosis [40]. In this study, we
further performed two types of differential gene function
analysis. )e results showed that transcription factors were
involved in PC prognosis by regulating cancer signal
pathways, mainly involving extracellular matrix organiza-
tion, extracellular structure organization, cell-substrate
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Figure 4: )e correlation between risk score model and immune cells. (a) Heat map. (b))e proportion of cells in each sample. (c) Survival
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adhesion, muscle tissue development, and morphogenesis of
a branching epithelium. Based on GSEA, transcription
factors were mainly involved in apoptosis, T-cell receptor
signaling pathway, natural killer cell-mediated cytotoxicity,
meiosis chromosome separation, regulation of autophagy,
and regulation of chromosome separation. Our results

indicated that transcription factors might affect PC prog-
nosis through immunity and cancer signaling pathways.

)e activation and recruitment of immune cells during
inflammation lead to a cellular environment rich in cyto-
kines and chemokines, thereby affecting the development of
PC [41]. Previous studies have shown that M0 macrophages
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are associated with the prognosis of PC [42]. It was reported
that reduced infiltration of CD8+T cells and monocytes, as
well as the increased activation of natural killer cells and
naive B cells, may also be associated with the prognosis of PC
[43]. Similarly, our data showed that PC prognosis was
related to B_cell, T_cell_CD4, and macrophages. In the
immune-associated risk model, the prognosis of osteosar-
coma patients with a high score was significantly improved,

whereas, in the immune-associated gene risk model, the
prognosis of patients with a high score was poor [44]. In this
study, PC patients with high risk had a poorer prognosis in a
risk score model based on transcription factors. Interest-
ingly, the risk score in the immunotherapy dataset showed
that patients with low-risk scores had poor overall survival.
Wemainly expounded from two aspects. On the one hand, it
could be caused by different tumors. On the other hand, the
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Figure 6: Drug candidates for the treatment of PC. (a) CTRP. (b) PRISM. ∗p< 0.05. ∗∗p< 0.01. ∗∗∗p< 0.001. ∗∗∗∗p< 0.0001. PC, prostate
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number of samples in the TCGA queue was relatively small,
which may lead to some bias. )is is a limitation of our
study.)e results showed that increased B_cell, T_cell_CD4,
and macrophages were associated with an improvement in
the prognosis of PC patients. It has been reported that a
human monoclonal antibody to human α] integrins (inte-
tumumab) evaluates PC progression through CR/PR [45]. In
this study, the data showed that the CR/PR ratio of the high-
risk score group was higher than that of the low-risk score
group. Our results were consistent with previous results. A
cohort study showed that immune checkpoint-related
proteins, including BTLA, CD28, and CD80, can predict the
prognosis of PC [46]. Our data showed that the expression of
CD28 and CD80 was decreased in the high-risk score group,
which indicated that reduced CD28 and CD80 predicted a
better prognosis for PC. )e enrichment of IDO-1 immune
checkpoints has been identified in nondegeneration PCs,
providing a new therapeutic target for patients with bone
metastases [47]. In this study, the data showed that IDO1
expression was decreased in the high-risk score group. Our
results also indicated that IDO1 enrichment predicted a
poorer PC prognosis. Besides, we also found that the ex-
pression of HLA-A, HLA-C, and TNFRSF14 was increased
in the high-risk score group, while HLA-DQA2, HLA-DRA,
MICB, BTLA, CTLA4, HAVCR2, ICOS, IL2RA, TNFRSF9,
CD40LG, CXCL9, CXCL10, IFNG, IL10, TNFSF9, ARG1,
ENTPD1, GZMA, and HMGB1 expression was decreased.
We clarified for the first time that the PC prognosis might be
related to the above-mentioned immune checkpoints, which
may provide a new direction for PC treatment. Our results
indicated that there were significant differences between
immune infiltration and immune checkpoints in the risk
score model.

Bioinformatics analysis identified an increased risk of
recurrence in patients with PC with TP53 mutations [48].
Previous studies have shown that SPOP is the most com-
monly mutated gene in PC [49]. Our data showed that SPOP
and TP53 had the highest mutation frequency in the high-
and low-risk score groups. SPTA1, ATM, FOXA1, CSMD3,
and LRP1B are commonly mutated genes in PC [50]. Our
results are consistent with those of previous studies. In
addition, we found that TTN had a high mutation frequency
in the high- and low-risk groups, and it had a high mutation
frequency in bladder cancer [51]. TTN may be a new target
that affects the prognosis of PC. At present, research on the
four drug candidates, PRL-3 inhibitor 1, NPC-26, AMG-208,
and PRT062607, for PC treatment is a novel topic; never-
theless, studies have shown that these candidates are targets
of anticancer drugs [52–55]. )erefore, the roles of PRL-3,
NPC-26, AMG-208, and PRT062607 in PC are worth further
investigation. In addition, we also found 32 potential drugs
that have not been studied so far, which are CD-1530,
BRD-K41597374, BRD 1835, BRD-K26531177, C6-ceram-
ide, 16-beta-bromoandrosterone, VU0155056, KU-60019,
PRIMA -1, triazolothiadiazine, BRD-K14844214, sirolimus,
necrostatin-1, itraconazole, importazole, BIRB-796, teri-
flunomide, LY2183240, colfosceril-palmitate, oridomin,
KI-16425, lanatoside-c, GGTI-298, temo, rentizolefin, imi-
quimod, tacrolimussirolimus, necrostatin-1, itraconazole,

importazole, and BIRB-796. )e above drugs were signifi-
cantly increased in the high-risk score group, indicating a
better prognosis for PC. )e therapeutic effects of 36 po-
tential drugs in PC need to be further explored.

5. Conclusion

)e prognosis of PC patients was likely to be related to
abnormal expression of EGR1, CACNA2D1, AC005831.1,
SLC52A3, TMEM79, IL20RA, CRACR2A, FAM189A2,
AC012181.1, and TRAPPC8. )e worsening condition of PC
patients may cause immune dysregulation. SPCP, TP53, and
TTN may be potential targets for the prognosis of PC. We
screened 36 candidate drugs for PC treatment. Our findings
may provide theoretical support for the molecular mecha-
nism and prognostic biomarkers of PC.
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