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Simple Summary: Thyroid cancer is the most common solid tumor of the endocrine glands. The
cancer cell contribution to thyroid cancer development and progression has been studied extensively,
whereas the involvement of the tumor microenvironment, particularly of cancer-associated fibroblasts
(CAFs), in thyroid cancer growth still must be largely analyzed. The tumor microenvironment,
comprising molecules, blood and lymphatic tumor vessels and several non cancer stromal cells,
such as CAFs, dramatically influences solid tumor growth and therapy resistance. In particular,
investigations on CAF contribution to solid tumor growth and therapeutic resistance represent an
important area of oncological research. Moreover, studies focused on the role of CAFs in thyroid
cancer could lead to a better comprehension of mechanisms regulating cancer growth and to the
development of new therapeutic strategies. Therefore, in this paper, we review the hallmarks of CAFs
and their role on thyroid cancer.

Abstract: Thyroid cancer is the most common type of endocrine cancer, and its prevalence continue
to rise. Non-metastatic thyroid cancer patients are successfully treated. However, looking for
new therapeutic strategies is of great importance for metastatic thyroid cancers that still lead to
death. With respect to this, the tumor microenvironment (TME), which plays a key role in tumor
progression, should be considered as a new promising therapeutic target to hamper thyroid cancer
progression. Indeed, thyroid tumors consist of cancer cells and a heterogeneous and ever-changing
niche, represented by the TME, which contributes to establishing most of the features of cancer
cells. The TME consists of extracellular matrix (ECM) molecules, soluble factors, metabolites, blood
and lymphatic tumor vessels and several stromal cell types that, by interacting with each other
and with tumor cells, affect TME remodeling, cancer growth and progression. Among the thyroid
TME components, cancer-associated fibroblasts (CAFs) have gained more attention in the last years.
Indeed, recent important evidence showed that thyroid CAFs strongly sustain thyroid cancer growth
and progression by producing soluble factors and ECM proteins, which, in turn, deeply affect thyroid
cancer cell behavior and aggressiveness. Hence, in this article, we describe the thyroid TME, focusing
on the desmoplastic stromal reaction, which is a powerful indicator of thyroid cancer progression
and an invasive growth pattern. In addition, we discuss the origins and features of the thyroid CAFs,
their influence on thyroid cancer growth and progression, their role in remodeling the ECM and their
immune-modulating functions. We finally debate therapeutic perspectives targeting CAFs.
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1. Introduction

The thyroid gland is formed by two lobes connected by the isthmus crossing the
midline of the upper trachea at the second and third tracheal rings [1]. The thyroid gland
is localized posterior to the sternothyroid and sternohyoid muscles and envelops the
cricoid cartilage and tracheal rings. This gland is situated inferior to the laryngeal thyroid
cartilage, commonly corresponding to C5-T1 vertebral levels [1]. The functional units
of the thyroid gland are represented by the follicles, which differ in size and shape [2].
The major cell type of the follicles is represented by thyrocytes, which form a monolayer
epithelium enclosing a central cavity filled with colloid, which is a thyroid hormone store.
Each follicle is surrounded by a network of capillaries. Furthermore, neuroendocrine
cells, fibroblasts and other stromal cells, such as macrophages, lie close to the follicles or
interstitially [2]. The thyroid gland presents the most common lesions associated with
surgical pathology practice. In particular, the thyroid lesions include both non-neoplastic
and neoplastic pathology [3]. Regarding the neoplastic pathology, it is important to note
that thyroid cancer is one of the most common endocrine malignancies, whose incidence
has constantly increased worldwide over the past decades [4]. The death rate caused by
thyroid cancer is relatively low. However, the rates of disease persistence and recurrence
are high and linked to an enhanced incurability, morbidity and mortality of thyroid cancer
patients [5]. Thyroid cancer comprises distinct histological types, characterized by different
clinical behaviors and aggressiveness [5,6]. In particular, different thyroid cancer types can
comprise either indolent tumors with good prognosis and long-term survival, represented
by differentiated thyroid cancer (DTC), or more aggressive tumor types, including poorly
differentiated thyroid carcinoma (PDTC), anaplastic thyroid cancer (ATC) and medullary
thyroid cancer (MTC) [5–8]. DTC accounts for more than 90% of thyroid tumors and
includes papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC) [5,7]. PTC and
FTC are typically slowly progressive tumors, displaying a 10-year survival rate of 80–95%.
They generally remain localized to the thyroid gland. Distant metastases, ranging from 4%
to 15%, predict poor survival, and only 50% of patients with metastatic DTC survive after
10 years [8]. PDTC and ATC are rare cancers and represent 5% and 1% of all thyroid tumors,
respectively [5,7]. ATC is a rare thyroid cancer, but it is also the most aggressive tumor
type, characterized by pleomorphic histopathological features and rapid progression. For
all of these reasons, ATC represents a clinical challenge [6]. DTC, PDTC and ATC arise
from the neoplastic transformation of thyroid follicular cells. Differently, MTC, accounting
for 5% of thyroid cancer, is derived from the transformation of parafollicular C cells [5,7].
It is noteworthy that the dysregulation of the mitogen-activated protein kinase (MAPK)
and phosphatidylinositol-3 kinase (PI3K)/AKT signaling pathways represents the most
common driver of thyroid cancer development and progression. In particular, the most
common activating mutations in the MAPK pathway are represented by point mutations
of BRAF and RAS genes or gene fusions of RET/PTC and TRK. These mutations are
fundamental for PTC development. On the other hand, common genetic alterations in the
PI3K pathway are considered to be crucial for FTC development, and include mutations in
RAS, PIK3CA and AKT1. Thyroid cancer progression and dedifferentiation to PDTC and
ATC require a number of additional mutations, such as inactivating mutations in TP53,
the activation of the Wnt/β-catenin pathway and activating mutations in the promoter.
Mutations in the RET proto-oncogene are the primary molecular mechanisms underlying
MTC tumorigenesis [7]. However, it has been widely demonstrated that the development
and progression of tumors depend not only on genetic alterations occurring in cancer cells
but also on the bidirectional interactions between tumor cells and their surrounding tumor
microenvironment (TME) [9–12]. In this review, we discuss the recent remarkable progress
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in understanding the influence of the TME on thyroid cancer growth and progression. In
particular, non-cancerous stromal cells of the thyroid TME, mainly represented by cancer-
associated fibroblasts (CAFs), are the focus of this review article. Therefore, we describe
the origins and features of the thyroid CAFs, their influence on thyroid cancer growth
and progression, extracellular matrix (ECM) remodeling and their immune modulating
functions. A deep understanding of thyroid-cancer-cell-derived factors and signaling
pathways driving thyroid CAF activation and differentiation and CAF-derived soluble and
non-soluble factors promoting thyroid cancer growth and progression could be useful to
identify new therapeutic strategies targeting the TME and its pro-tumor characteristics.

2. Cancer Associated Fibroblasts of Thyroid Desmoplastic Tumor Microenvironment

The TME of solid tumors, such as thyroid cancer, is characterized by an abnormal and
ever-changing solid mass, consisting of blood and lymphatic tumor vessels and a dense
ECM that contains and stores soluble and insoluble mediators, such as cytokines, growth
factors, nutrients, oxygen, adhesion molecules and signaling factors that drive molecu-
lar and cellular events affecting tumor development, progression and dissemination [13].
The thyroid TME also consists of a heterogeneous cellular compartment, represented by
non-cancerous stromal cell types, such as CAFs, pericytes, immune cells and endothelial
cells, that coexist and continuously interact with and support thyroid cancer cells [13–15].
The activation of the stromal compartment, also referred to as desmoplastic stroma re-
action or desmoplasia, has been widely recognized as an important indicator of cancer
progression in many solid tumors [16–18]. Regarding thyroid cancers, activated desmo-
plastic stroma is used as a clinical intraoperative diagnostic marker to characterize thyroid
tumor progression and to predict lymph node metastasis [19–22]. However, despite the
recognition of its importance, the desmoplastic stroma reaction is still poorly understood
in thyroid cancers and is only gaining more attention and interest in the last few years.
Desmoplasia in tumors is characterized by an abundant fibrotic stroma constituted mainly
by activated fibroblasts, also called CAFs. CAFs express α-smooth muscle actin (α-SMA),
fibroblast activation protein (FAP) and ECM proteins, e.g., tenascin C (Tn-C) [13,17,20].
Several studies demonstrated that the desmoplastic stroma reaction is strongly correlated
with an invasive behavior in thyroid tumors. This was confirmed by the study of Harach
et al., which identified significant fibrosis in 79% of occult PTCs with an invasive growth
pattern. Conversely, slight fibrosis was identified in circumscribed tumors [23]. Koperek
et al. demonstrated that the three fibroblast activation markers α-SMA, FAP-α and Tn-C
are highly expressed in the peritumoral and intratumoral stromal compartment of MTCs
and that the expression of FAP-α and Tn-C correlates with the level of desmoplasia de-
termined by histological analysis [21]. They further demonstrated that the presence of
desmoplasia is significantly associated with morphological parameters of invasion and a
higher incidence of lymph node metastasis in both PTCs and MTCs [20,21]. On the other
hand, the absence of a desmoplastic stroma was shown to be indicative of non-invasive and
non-metastasizing thyroid cancers [20]. Cho et al. showed that, among 78 patients with
PTC, 65 patients displayed desmoplasia around the tumor mass. CAFs were identified in
42 cases with a desmoplastic stromal reaction. A univariate analysis indicated that both the
tumor size and CAFs can represent risk factors for lymph node metastasis. Conversely, a
multivariate analysis demonstrated that CAFs were the only independent risk factor for
lymph node metastases for PTC patients [24]. Furthermore, Koo’s group demonstrated
that the expression of CAF-related proteins in stromal cells and cancer cells of PTC varies
according to the histologic subtype and BRAFV600E mutation status and correlates with
shorter overall survival [25]. Tarabichi et al. demonstrated that the mutational status of
PTCs is associated with the degree of tumor fibrosis, CAF density and CAF activation
state [26]. In particular, they focused on the analysis of the desmoplastic stroma reaction
in PTCs harboring BRAFV600E mutation (PTCsBRAFV600E) [26], which is the most common
genetic alteration and an emerging marker of aggressive behavior in PTCs [27,28]. They
showed that PTCsBRAFV600E display a higher fibrotic content, increased number of CAFs
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and enhanced CAF proliferation rate than other PTCs [26]. Finkelstein et al. also con-
firmed the presence of a higher fibrotic content associated with an increased infiltrative
growth in PTCsBRAFV600E than in BRAFV600E-negative PTCs [29]. The association between
BRAFV600E mutation and an increased CAF number was also reported by the study of
Yang et al. [30]. Furthermore, in a mouse model of thyroid cancer, Jolly et al. showed
that the activation of BRAF, but not H-RAS, results in a fibrotic response that induces
cancer progression and potentially invasion. They also reported that the activation of BRAF,
but not H-RAS, increases fibroblast migration and proliferation in vitro, and fibroblast
recruitment in vivo [31]. Minna et al. demonstrated that the CAF number is increased
at the invasive front of human thyroid cancers, particularly in thyroid cancers harboring
BRAFV600E mutation or BRAF-like signaling [32]. Hence, the frequency of desmoplastic-
type stroma, the CAF extensive number and more active and proliferative CAFs observed
in PTCsBRAFV600E could probably underlie the more aggressive phenotype of this thyroid
cancer type [26]. This hypothesis was also supported by the study of Koo‘s group, who
reported that PTCsBRAFV600E are associated with a high CAF-related protein expression,
which is an established indicator of cancer progression and poor prognosis [25]. The in-
volvement and the critical role of CAFs in contributing to thyroid cancer progression was
also validated by other studies, showing that CAFs correlate with the advancement of the
pathological N stage of PTC [30]. Considering the presence of distinct CAF subpopulations
in the tumor stroma, Weng et al. used three different mRNA-based CAF gene signatures
to quantify CAFs in thyroid tumors and to evaluate the correlations of CAFs with the
differentiation status and clinicopathological outcomes in patients with thyroid cancers.
This study demonstrated that a consistent increase in the three CAF signature scores is
correlated with the anaplastic phenotype in dedifferentiation thyroid cancers (DDTCs) and
a low thyroid differentiation score in PTCs. Furthermore, it was found that the high CAF
scores are positively correlated with invasiveness, increased lymph node metastasis and
extrathyroidal extension, a decreased overall survival and, thus, poor clinical outcomes in
thyroid cancers. A positive correlation was also found in the high-CAF-score patient group
and an increased number of oncogenic signaling pathways, including pathways driving
the EMT, apoptosis, TP53, TNF-α/NF-κB, IL2/STAT5 and IL6/JAK/STAT3 signaling path-
ways [33]. Therefore, an increased desmoplasia and CAF score in thyroid cancers can be
useful for clinical practice in predicting cancer aggressiveness and progression and poor
clinical outcomes.

Taken together, all of this evidence suggests that the study of the CAF role in thyroid
cancer is imperative and fundamental to gaining a better understanding of the molecular
and cellular events underlying thyroid cancer development and progression.

3. Fibroblasts in Thyroid Cancers: Origin and Features

Human fibroblasts represent a heterogeneous population of differentiated mesenchy-
mal cells of the connective tissue, involved in several physiological and pathological
processes, such as tissue homeostasis, ECM turnover, wound healing, fibrosis and can-
cer [34]. In the human thyroid gland, they are located in the interfollicular connective
tissue and represent one of the main constituents of the thyroid stromal tissue [35]. In
healthy tissues, as well as in the normal thyroid gland, fibroblasts commonly display a
quiescent, non-activated phenotype [31,32,36]. In fact, no α-SMA+ fibroblasts are detected
in the normal thyroid gland, confirming that activated fibroblasts are commonly absent in
physiological conditions of the gland [31,32].

However, during oncogenic insults, fibroblasts are recruited by thyroid cancer cells
within the tumor mass [31] and acquire a constitutively activated phenotype [34,37]. Sev-
eral studies performed on human and murine thyroid tumors demonstrated that the
recruitment and infiltration of CAFs into the thyroid TME is pivotal for thyroid cancer
progression. By using a PTC murine model of oncogenic BRAFV600E activation, Ryder
et al. demonstrated a significant increased infiltration of fibroblasts in thyroid tumors
compared with the normal thyroid gland [38]. In the BRAF/PTEN model described by
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Jolly et al., an increased infiltration of fibroblasts was further observed throughout the
tumor mass and along the periphery. Areas enriched with fibroblasts colocalized with
areas of increased collagen density. According to this thyroid cancer model, CAFs are
recruited at the tumor invasive front, where they modify the surrounding thyroid TME to
augment cancer cell migration [31]. According to observations in the BRAF/PTEN murine
tumors, Minna et al. demonstrated that α-SMA, collagen and lysyl oxidase colocalize in
patient thyroid tumors [32]. In particular, their study revealed the presence of activated
fibroblasts localized preferentially along the tumor invasive front, organized in peripheral
structures, such as a fibrotic capsule or septa, that are not observed in a non-neoplastic
thyroid gland [32].

During thyroid cancer development and progression, the bidirectional and continuous
interplay between tumor cells and fibroblasts establishes many molecular and functional
changes, not only in the tumor compartment but also in the stromal compartment [15].
Indeed, once fibroblasts are accumulated in the thyroid TME, they continue to modify
their phenotypic, metabolic and secretory profiles in response to paracrine tumor-derived
factors. They gradually lose the molecular and functional characteristics of normal thy-
roid fibroblasts and acquire a pro-tumorigenic phenotype by differentiating into CAFs
(Figure 1) [39,40].

Cancers 2022, 14, x FOR PEER REVIEW 5 of 15 
 

eral studies performed on human and murine thyroid tumors demonstrated that the re-

cruitment and infiltration of CAFs into the thyroid TME is pivotal for thyroid cancer pro-

gression. By using a PTC murine model of oncogenic BRAFV600E activation, Ryder et al. 

demonstrated a significant increased infiltration of fibroblasts in thyroid tumors com-

pared with the normal thyroid gland [38]. In the BRAF/PTEN model described by Jolly et 

al., an increased infiltration of fibroblasts was further observed throughout the tumor 

mass and along the periphery. Areas enriched with fibroblasts colocalized with areas of 

increased collagen density. According to this thyroid cancer model, CAFs are recruited at 

the tumor invasive front, where they modify the surrounding thyroid TME to augment 

cancer cell migration [31]. According to observations in the BRAF/PTEN murine tumors, 

Minna et al. demonstrated that α-SMA, collagen and lysyl oxidase colocalize in patient 

thyroid tumors [32]. In particular, their study revealed the presence of activated fibro-

blasts localized preferentially along the tumor invasive front, organized in peripheral 

structures, such as a fibrotic capsule or septa, that are not observed in a non-neoplastic 

thyroid gland [32]. 

During thyroid cancer development and progression, the bidirectional and continu-

ous interplay between tumor cells and fibroblasts establishes many molecular and func-

tional changes, not only in the tumor compartment but also in the stromal compartment 

[15]. Indeed, once fibroblasts are accumulated in the thyroid TME, they continue to mod-

ify their phenotypic, metabolic and secretory profiles in response to paracrine tumor-de-

rived factors. They gradually lose the molecular and functional characteristics of normal 

thyroid fibroblasts and acquire a pro-tumorigenic phenotype by differentiating into CAFs 

(Figure 1) [39,40]. 

 

Figure 1. Comparison between normal thyroid fibroblasts and thyroid CAFs. Normal thyroid fibro-

blasts and thyroid CAFs display molecular and functional differences. Normal thyroid fibroblasts 

are quiescent cells, characterized by no expression of FAPα, Tn-C and α-SMA markers, which are 

instead highly expressed by thyroid CAFs. Fibroblast activation and CAF differentiation are associ-

ated with CAF metabolic reprogramming towards a more glycolytic phenotype, as demonstrated 

by the increased expression of GLUT1 and LDH-A. Conversely, normal thyroid fibroblasts prefer 

oxidative phosphorylation (OXPHOS) for energy supply. Furthermore, thyroid CAFs and their nor-

mal counterpart exhibit differences in their migratory capability, proliferation rate and synthetic 

and secretory profiles. In particular, thyroid CAFs proliferate and migrate faster than normal thy-

roid fibroblasts and further increase their capability to produce and remodel the ECM, produce in-

flammatory proteins and modulate immune cells. All of these changes lead thyroid CAFs to acquire 

a pro-tumorigenic phenotype. 

Hence, resident thyroid fibroblasts, which most probably represent the main source 

of origin of CAFs in the thyroid TME (Figure 2), differ from thyroid CAFs molecularly 

and functionally (Figure 1). 

Figure 1. Comparison between normal thyroid fibroblasts and thyroid CAFs. Normal thyroid fibrob-
lasts and thyroid CAFs display molecular and functional differences. Normal thyroid fibroblasts are
quiescent cells, characterized by no expression of FAPα, Tn-C and α-SMA markers, which are instead
highly expressed by thyroid CAFs. Fibroblast activation and CAF differentiation are associated
with CAF metabolic reprogramming towards a more glycolytic phenotype, as demonstrated by the
increased expression of GLUT1 and LDH-A. Conversely, normal thyroid fibroblasts prefer oxidative
phosphorylation (OXPHOS) for energy supply. Furthermore, thyroid CAFs and their normal counter-
part exhibit differences in their migratory capability, proliferation rate and synthetic and secretory
profiles. In particular, thyroid CAFs proliferate and migrate faster than normal thyroid fibroblasts and
further increase their capability to produce and remodel the ECM, produce inflammatory proteins
and modulate immune cells. All of these changes lead thyroid CAFs to acquire a pro-tumorigenic
phenotype.

Hence, resident thyroid fibroblasts, which most probably represent the main source of
origin of CAFs in the thyroid TME (Figure 2), differ from thyroid CAFs molecularly and
functionally (Figure 1).
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Figure 2. Schematic representation of thyroid cancer cells interacting with CAF precursors. Thyroid
cancer cells release many factors in the TME that modify the molecular and functional profile of
cells having the potential to differentiate into CAFs. Resident normal thyroid fibroblasts represent
the principal source of origin of thyroid CAFs. Thyroid CAFs can also arise from resident MSCs.
However, further studies are required to identify other cells of origin of thyroid CAFs. ROS, IL-6,
PDGF and TGF-β1 are currently known to be thyroid-cancer-cell-derived factors inducing thyroid
CAF activation and differentiation. Further studies are required to identify other factors released by
thyroid cancer cells and involved in CAF differentiation. Although CAF-derived factors inducing
thyroid cancer progression remain unclarified, it has been demonstrated that thyroid CAFs increase
cancer cell proliferation and promote cancer cell migration by driving EMT and enhancing the
formation of filopedia and lamellipodia in thyroid cancer cells. Thyroid CAFs further generate
a tumor-supportive environment by remodeling the ECM through the expression of proteolytic
enzymes, such as MMPs, increasing Col-1 deposition and ECM stiffness. Furthermore, thyroid CAFs
promote thyroid growth and progression by modulating the immune cell system and increasing the
expression of immune checkpoints, e.g., CTLA4, PDL1/2 and IDO 1.

It has largely been demonstrated that CAFs from solid tumors, such as breast cancer
and melanoma, can originate from distinct cell populations. CAFs can originate from epithe-
lial cells via epithelial-to-mesenchymal transition (EMT), endothelial cells via endothelial-to-
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mesenchymal transition (EndMT), adipocytes via trans-differentiation and other precursors,
such as pericytes, fibrocytes and smooth muscle cells [9,41,42]. An interesting study of
Laukkanen’s group showed that thyroid CAFs may develop from resident thyroid mes-
enchymal stem cells (MSCs) upon paracrine interactions with cancer cells (Figure 2). They
demonstrated that MSCs from PTCs are characterized by a higher expression of fibrotic
markers, such as FAP, Col-1 and Tn-C, compared with MSCs from a normal thyroid gland.
Consequently, the authors hypothesized that MSCs exposed to thyroid-cancer-cell-secreted
factors acquire similar phenotypic features of CAFs and thus serve as an origin of cells for
activated fibroblasts in the thyroid gland (Figure 2) [43].

In addition to FAPα, Tn-C and α-SMA proteins, other thyroid CAF markers can
include vimentin, fibroblast specific protein (FSP), osteonectin and desmin, which are often
used to identify CAFs from other solid tumors [9,21,44–46].

Reprogramming fibroblasts into CAFs also involves changes in their proliferative and
migratory capabilities and in their synthetic and secretory functions (Figure 1). In vitro
results demonstrated that fibroblasts treated with thyroid-tumor-cell-derived conditioned
media differentiate into CAFs and increase their proliferation rate and migratory capa-
bility compared with non-treated normal fibroblasts [26,31]. Furthermore, CAFs differ
from normal fibroblasts in their capability to synthesize and secrete ECM proteins and
inflammatory proteins (Figure 1). It has been demonstrated that thyroid CAFs are the
main source of type I collagen (Col-1), which is highly abundant in thyroid tumors but
not in the normal thyroid gland. This evidence suggests a reduced capability of normal
thyroid fibroblasts to produce Col-1 compared with thyroid CAFs [31]. Furthermore, it
has been reported that human fibroblasts activated by thyroid-cancer-cell-secreted factors
significantly enhance the expression and secretion of interleukin 6 (IL-6), which is an
inflammatory cytokine involved in the progression of several types of cancer, including
thyroid tumors [39,47,48]. This is consistent with other studies showing that CAFs, from
several solid tumors, secrete higher levels of IL-6 than normal fibroblasts [49,50]. Another
classic way to distinguish CAFs from normal fibroblasts involves analyzing their metabolic
profiles. It is noteworthy that, during CAF differentiation, fibroblasts reprogram their
metabolism and acquire a catabolic phenotype characterized by the inhibition of oxida-
tive phosphorylation (OXPHOS) and activation of glycolytic pathways [34]. Fozzatti et al.
demonstrated that soluble factors secreted by thyroid cancer cells not only enhance the state
of activation of human fibroblasts but also trigger their metabolic switch toward a more
glycolytic phenotype (Figure 1). In fact, after either co-culture with anaplastic cancer cells
or treatment with tumor cell-derived conditioned medium, human fibroblasts significantly
enhance the expression of both the glucose transporter GLUT-1 and the glycolytic enzyme
lactate dehydrogenase A (LDH-A) [39].

Fibroblast growth factor (FGF) 21 is a hormone-like FGFs belonging to the FGF ligand
family. The expression of FGF21 is significantly increased in response to various nutritional
and metabolic alterations, such as mitochondrial dysfunction and endoplasmic reticulum
stress [51]. FGF21 regulates glucose, lipid and energy metabolism. It has been demon-
strated that high serum levels of FGF21 in PTC patients were significantly related to an
aggressive tumor phenotype and poor prognosis. FGF21 increases the migratory and
invasive capabilities of thyroid cancer cells via the induction of EMT. Furthermore, FGF21
promotes cancer progression via the upregulation and induction of the FGFR signaling axis,
including AKT and ERK phosphorylation. It is noteworthy that targeting FGFR signaling
reduced the pro-tumor effects of FGF21 on PTC cells. Therefore, FGF21 may be considered
as a promising biomarker to predict cancer progression, and targeting FGFR may represent
a new therapeutic approach for PTC patients with high FGF21 serum levels [51].

The study of pathways and molecules regulating CAF activation and differentiation
in thyroid cancers is an emerging field in cancer research. However, little is currently
known about these molecular mechanisms and further studies are needed. Fozzatti et al.
identified the reactive species of oxygen (ROS), highly produced by ATC cells, as key
molecules supporting CAF differentiation and CAF metabolic reprogramming in thyroid
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cancers (Figure 2) [39], as well as in other solid tumors [34]. They further speculated
that fibroblast activation and differentiation into CAFs may be in part mediated by IL-
6, which is an inflammatory cytokine highly secreted by ATC cells (Figure 2) [39]. In
addition to ROS and IL-6, thyroid cancer cells secrete great amounts of platelet-derived
growth factor (PDGF), which could serve as a causative molecule promoting fibroblast
activation and CAF formation (Figure 2) [39]. Another signaling pathway promoting
CAF differentiation involves the activation of the Src pathway and its downstream target
Akt in fibroblasts [39]. It is well known that TGF-β sustains fibroblast activation and has
pro-mitogenic and chemotactic effects on fibroblasts [52]. Accordingly, in human PTCs, a
significant correlation was identified between a higher TGF-β1 expression in thyroid tumor
cells and a higher α-SMA expression in fibroblasts (Figure 2) [53]. Therefore, TGF-β may be
a potential regulator of CAF differentiation during thyroid cancer evolution, even if further
investigations are required to verify its role.

4. Exploring the Role of Fibroblasts in Thyroid Cancers

Thyroid cancer is the most common endocrine malignancy and the contribution of
thyroid cancer cells to cancer evolution has been widely investigated and analyzed. On
the other hand, the contribution of the thyroid TME, especially of CAFs, to thyroid can-
cer development and progression remains largely underexplored. Fortunately, in the
last years, several studies are slowly elucidating the specific role of thyroid CAF during
stromal–cancer cell interaction and during thyroid cancer progression. Using an in vivo
subcutaneous tumor model, Saitoh et al. [54] demonstrated that intrathyroidal stromal
TME, particularly fibroblasts, can increase thyroid tumor cell growth. In particular, they
demonstrated that tumorigenic Fisher rat thyroid follicular cells (FRTL-Tc) injected in-
trathyroidally grow faster than those injected subcutaneously, and that the co-injection of
fibroblasts mixed with FRTL-Tc cells generates subcutaneous tumors larger than tumors
derived from the injection of FRTL-Tc cells alone. This in vivo growth-promoting function
of fibroblasts on FRTL-Tc cells was also confirmed by in vitro experiments demonstrat-
ing that soluble factors, present in a fibroblast-derived conditioned medium, promote the
growth of FRTL-Tc cells [54]. Consistent with these results, Fozzatti et al. also demonstrated
that soluble factors secreted in the conditioned medium of activated fibroblasts increase
the in vitro proliferation and migration of FTC-133 cells (Figure 2). Furthermore, it has
been reported that fibroblast-derived soluble factors increase the expression of vimentin, a
marker of EMT, drive cytoskeletal re-organization and polarization and increase cancer cell
protrusions, such as filopodia and lamellipodia (Figure 2) [39,55]. Although CAF-derived
pro-tumorigenic factors remain underexplored in the thyroid tumor milieu, Fozzatti et al.
speculated that IL-6 and ROS, highly produced by pro-tumorigenic CAFs, could represent
key factors involved in thyroid cancer progression [39]. Furthermore, Parascandalo et al.
demonstrated that the stromal superoxide dismutase 3 (SOD3), one of the main H2O2-
producing enzymes [43,56], is highly produced by PTC MSCs, which might function as a
source of myofibroblasts in thyroid cancers as previously mentioned. SOD3-derived PTC
MSCs have been shown to support thyroid cancer cell proliferation and inhibit cancer cell
migration [43]. This controversial role of SOD3 is in line with other studies showing the
dual function of SOD3 in regulating cancer progression [56–61]. However, the authors
speculated that an autocrine–paracrine conversion of SOD3 expression from cancer cells to
the stromal compartment may justify the controversial role of SOD3 in cancer [43]. Specifi-
cally, they speculated that SOD3 bolsters the starting stage of tumorigenesis. Once SOD3
expression levels reach non-physiological toxic levels, cancer cells decrease the autocrine
SOD3 generation. On the other hand, stromal cells increase SOD3 secretion. The stromal
paracrine secretion of SOD3 then continues to support the proliferation of tumor cells, and,
correspondingly, reduces the affinity of tumor cells to tumor stroma by decreasing the
expression of chemotactic cytokines, such as IL1α and MCP-1, in the stromal compartment.
For the authors, these mechanisms allow local intratumoral cancer cell migration and
thus contribute to cancer progression [43]. Therefore, a better understanding of SOD3-
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coordinated signal transduction in tumor stroma and epithelial cancer cells should allow
for the identification of new molecular targets and therapeutic strategies able to inhibit the
tumor-supportive function of the stroma and thus hinder thyroid cancer progression. In
addition, CAFs can synthesize and secrete CXCL12, which is a strong inflammatory factor,
improving thyroid cancer cell proliferation, migration and invasion [62]. In particular,
CXCL12 (also known as SDF-1) binds to CXCR4 and CXCR7 proteins on thyroid cancer
cells and consequently activates multiple signaling pathways, including mTOR, ERK1/2,
SAPK/JNK, Akt, p38 and BTK. It is known that ursolic acid (UA), an anti-inflammatory
natural triterpenoid, decreases the secretion of CXCL12 by CAFs, thus exerting a strong
anti-tumor activity in vitro. Interestingly, in addition to the indirect mechanisms through
CAFs, UA was shown to inhibit thyroid cancer progression by reducing the expression
levels of both CXCR4 and CXCR7 mRNA and protein [62]. This study, together with other
preclinical and clinical evidence, demonstrated that targeting the CXCL12/CXCR4/CXCR7
axis could be a promising and powerful therapeutic strategy in thyroid cancers [62–64]

The pro-tumorigenic function of thyroid CAFs also reflects their ability to produce
and remodel the thyroid ECM (Figure 2) [31,32]. In particular, CAFs, through a coordinated
action with thyroid cancer cells, have been shown to enhance ECM stiffness through an
aberrant and excessive deposition of Col-1 fibrils (Figure 2). In turn, thyroid cancer cells,
through LOX expression, cross link fibroblast-derived collagen fibrils to generate mature
and cross-linked collagen fibers. These collagen fibers delimit specific and privileged routes
through which thyroid cancer cells can spread out from the primary tumor mass and reach
local and distant secondary tumor sites [31]. LOX, as well as Col-1, have been identified as
markers for human thyroid cancer aggressiveness [65] and predict poor overall survival in
thyroid cancer patients [31]. Therefore, thyroid CAFs and their ability to remodel the ECM
and generate a tumor-supportive niche can represent novel and promising therapeutic
targets to hinder thyroid cancer progression. In vitro experiments of co-cultures revealed
that the interaction between fibroblasts and thyroid cancer cells increases the secretion
of pro-MMP-2 and pro-MMP-9 in the supernatants. Furthermore, a significantly higher
prevalence of the active form of MMP-2 was observed in the supernatant obtained from
fibroblast-thyroid cancer cell co-cultures compared with the levels of MMP-2 detected in
the supernatant from fibroblast-non tumor thyroid cell co-cultures [55]. High expression
levels of MMP-2 and MMP-9 are associated with an increased risk of developing lymph
node metastasis in PTC patients [66]. Furthermore, PTC patients with high preoperative
serum levels of MMP-2 are characterized by a larger tumor size, presence of lymph node
metastasis, extrathyroidal invasion and an advanced TNM stage [67]. Long noncoding
RNAs (lncRNAs) are increasingly investigated for their capability to affect the behaviors of
both cancer and non-cancerous stromal cells. Regarding thyroid cancers, lncRNAs were
shown to modulate cancer progression by influencing cancer cell growth, proliferation,
invasion, metastases and differentiation. Of note, in PTCs, the lncRNA MEG3 was shown
to be highly expressed in thyroid cancers, with lymph node metastases compared with
tumors without lymph node metastases. Furthermore, a high MEG3 expression was highly
associated with an increased CAF infiltration and MMP-2 expression in PTCs. Interestingly,
the authors hypothesized that the expression of MEG3 in CAFs may enhance their capa-
bility to remodel the ECM through MMP-2 expression and thus favor the propensity for
lymph node metastases. However, the correlation between MEG3 expression and MMP-2
production in CAFs requires necessary further investigation and validation in thyroid
cancers [68].

It has been widely demonstrated that extracellular vesicles (EVs) released by both
tumor cells and non-cancerous cells are important regulators of a great number of biological
and cellular functions, including tumor–stroma interplay and tumor growth and progres-
sion [45,69,70]. Interestingly, by using an in vitro model of the thyroid TME, obtained
through co-culture experiments, Donadio’s group demonstrated that EVs obtained from
co-cultures of thyroid cancer cells and fibroblasts promote the secretion of pro-MMP-2
and the expression of the active form MMP-2 in normal fibroblasts. Furthermore, EVs



Cancers 2022, 14, 4172 10 of 14

from fibroblast–thyroid tumor cell co-cultures have also been characterized by an increased
expression of the transmembrane glycoprotein CD147 [55], which is involved in the se-
cretion and activation of MMPs [71]. CD147 was also shown to be highly expressed in
thyroid tumor tissues, but not in normal tissues or nodular goiter. Moreover, in thyroid
cancers, a positive correlation was found between the expression of CD147 and thyroid
cancer progression, extrathyroidal invasion and lymph node metastasis [72–74]. Therefore,
the study of Donadio and colleagues demonstrated, for the first time in the context of the
thyroid tumor, that specialized EVs support thyroid cancer progression by mediating the
crosstalk between tumor cells and stromal cells and by increasing the proteolytic activity of
fibroblasts, which consequently enhance their protumor function [55].

Interestingly, a recent study demonstrated that thyroid CAFs facilitate tumor pro-
gression not only by affecting thyroid tumor cell behaviors but also by exerting immune-
modulating functions (Figure 2). In thyroid tumors from PTC patients, CAFs were associ-
ated with an increase in monocytes and activated dentritic cells (DCs) and a decrease in
M0 macrophages. Furthermore, it has been demonstrated that thyroid CAFs increase the
expression of various immune checkpoints, such as CTLA4, PDL1/2 and IDO 1, and thus
contribute to the immune escape of thyroid cancer cells and consequently to thyroid tumor
growth (Figure 2) [30]. Additionally, a high CAF score in thyroid cancer patients was shown
to be positively correlated with an increased expression of immune checkpoint markers,
such as CD274, PDCD1LG2, CD86, CD80 and CTLA4, and an increased expression of mark-
ers of activated tumor-associated macrophages, including EMR1, CSF1R, CD163 and ITGM
in DDTCs and PTCs. These results provide more important evidence of the involvement of
thyroid CAFs in modulating immune cell functions (Figure 2) [33]. However, the current
understanding of CAF-immune modulating functions in thyroid cancer is still primitive.
Consequently, further studies are required to identify molecular signaling pathways reg-
ulating the CAF-immune modulating role in order to design potential novel anti-tumor
therapeutic approaches able to abolish the pro-tumor immunity in thyroid cancer.

5. Therapeutic Perspectives

CAFs have been recognized for their pro-tumor action and genetic stability that make
this stromal cell type an appealing target for novel therapeutic strategies targeting the TME
and hindering tumor progression [41]. To the best of our knowledge, unfortunately, no
therapies specifically targeting thyroid CAFs are currently approved or on clinical trial for
thyroid cancer patients. However, accumulating evidence has demonstrated that the use
of anti-fibrotic drugs [75] or molecules targeting CAF-derived pro-tumor factors, includ-
ing TGF-β receptor-I/ALK5 inhibitors or TGF-β-neutralizing antibodies [76], inhibitors
of IL-6 [77], recombinant fusion protein directed against FAP (such as RO6874281) [78]
or nanovaccines targeting FAP [79], exerts a strong anti-tumor activity in several solid
tumors [41]. CAF deactivation is another potent therapeutic approach able to enhance
the current anti-tumor treatments. In particular, the induction of PEDF expression [80],
the inhibition of the Notch signalling pathway [81] and the ablation of β-catenin [82] in
CAFs were shown to suppress fibroblast activation, CAF differentiation and the CAF’s
ability to promote cancer growth and progression. Furthermore, the presence of similarities
between CAFs across different solid cancers suggests that discoveries made in one specific
tumor type may have a wider effect on the whole field of oncology [83]. Hence, thyroid
CAFs should also be considered as excellent and promising therapeutic targets in thyroid
cancer. All of these observations strongly highlight the necessity to identify and develop
novel therapies targeting thyroid CAFs to improve current anti-tumor treatments and thus
enhance the outcome of thyroid cancer patients.

6. Conclusions

The heterogeneous fibroblast populations of TME is an emerging area of oncological
research. In particular, it is known that CAFs can sustain thyroid cancer growth and
progression by producing soluble factors and ECM proteins deeply influencing thyroid
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cancer cell behavior and aggressiveness. Moreover, CAFs also facilitate tumor progression
through immune-modulating functions.

The CAF differentiation process and the interaction of these fibroblast populations
with cancer cells could be possible targets for therapeutic strategies.

It is noteworthy that studies focusing on the possible reversibility of the CAF pheno-
type toward an inactivated and less pro-tumorigenic phenotype, restraining the growth and
dissemination of thyroid cancer, could allow for a dramatic improvement in therapeutic
strategies [46].

Finally, normal fibroblasts before their differentiation into CAFs can hinder cancer
growth [45]. Hence, studies committed to the stabilization of the anti-tumor phenotype
of normal fibroblasts could represent another innovative approach to inhibiting thyroid
cancer development and progression [10].
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