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ABSTRACT

Optogenetic stimulation has become the method of choice for investigating neural

computation in populations of neurons. Optogenetic experiments often aim to elicit a

network response by stimulating specific groups of neurons. However, this is complicated by

the fact that optogenetic stimulation is nonlinear, more light does not always equal to more

spikes, and neurons that are not directly but indirectly stimulated could have a major impact

on how networks respond to optogenetic stimulation. To clarify how optogenetic excitation

of some neurons alters the network dynamics, we studied the temporal and spatial response

of individual neurons and recurrent neural networks. In individual neurons, we find that

neurons show a monotonic, saturating rate response to increasing light intensity and a

nonmonotonic rate response to increasing pulse frequency. At the network level, we find that

Gaussian light beams elicit spatial firing rate responses that are substantially broader than the

stimulus profile. In summary, our analysis and our network simulation code allow us to

predict the outcome of an optogenetic experiment and to assess whether the observed effects

can be attributed to direct or indirect stimulation of neurons.

AUTHOR SUMMARY

Optogenetic circuit manipulation has become a popular tool to manipulate the activity of

neurons. During optogenetic stimulation, the firing rate of a neuron can rise because of direct

light excitation or indirect activation via other neurons. To disentangle these influences and

predict the effects of optogenetic excitation, we set up a spiking network model with

controlled connectivity and studied its response to light stimulation. We find that the

optogenetically evoked activity in a network can spread far beyond the light-stimulated area.

We further found a nonmonotonic rate response of single neurons to increasing light

intensities and frequencies. Our results help to interpret optogenetic experiments in vivo, and

we provide computer code that can be customized to simulate 2D connectivity scenarios

and explore their consequences.

INTRODUCTION

Over the last several years, the field of optogenetics has led to the development of extremely

useful experimental tools that can be employed to stimulate single cells or entire neuronal

populations. Essentially, optogenetics enables precisely targeted stimulation of specific cell
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Nonlinear characteristics of optogenetically excited neural networks

types by genetic modification and exposure to light. Optogenetic techniques have alreadyGaussian light beam:
A light beam whose transversal
intensity profile follows a Gaussian
function.

Optogenetics:
Umbrella term for techniques that
make use of genetic modifications to
introduce light sensitivity into
neurons.

facilitated many explorations, and likely many more will follow (Deisseroth, 2015).

An experimentally well-studied class of optogenetic tools are channelrhodopsins (Berndt

et al., 2011; Lin, 2011; Schneider, Grimm, & Hegemann, 2015). Being a light-gated ion chan-

nel that leads to excitation of its host cell, wild-type channelrhodopsin-2 (ChR2) was the first

Ion channel dynamics:
Ion channels undergo transitions
between different states, depending
on factors like time, membrane
voltage or light stimulation.

Channelrhodopsin-2:
A molecule complex that naturally
occurs in unicellular algae. It can be
genetically inserted into neurons and
depolarize host neurons upon
stimulation with blue light.

microbial rhodopsin successfully employed as an optogenetic tool (Boyden, Zhang, Bamberg,

Nagel, & Deisseroth, 2005; Nagel et al., 2003). Nowadays, a multitude of engineered variants

of ChR2 exist. The work we present here is based on a model of the ChR2/H134R variant,

which is popular for its enhanced photocurrents as well as for having a good peak/steady-state

ratio and increased light sensitivity (Lin, 2011; Tchumatchenko, Newman, Fong, & Potter,

2013; Williams et al., 2013; Yawo, Asano, Sakai, & Ishizuka, 2013). The ChR2/H134R vari-

ant, however, is only an example of an optogenetic channel that can be used with our model.

Parameter modifications and customization of the simulational tools which we provide will

facilitate analogous network studies for other optogenetic variants.

Making quantitative activity predictions for neuronal networks in vivo is complicated by

the interaction of the different timescales of rhodopsins, neurons, and synapses, as well by the

voltage dependence of conductances. Determining the stimulus-response relationship in a net-

work by simultaneously measuring the activities of thousands of neurons is experimentally

challenging, and only recently pioneering experiments (Chettih & Harvey, 2019; Daie, Svoboda,

& Druckmann, 2019; Russell et al., 2019) started tackling this question. Here, we present the-

oretical results that aid in the prediction of experimental outcomes as experiments push in the

direction of understanding how populations of neurons respond to specific stimuli (Humphries,

2017). Hence, a reliable prediction of the network effects evoked by optogenetic excitation of a

defined cell population would be an extremely helpful tool. Theoretical studies on the network

response to pulsed current stimulation are not sufficient to describe optogenetic stimulation

because the resonance properties of the rhodopsins have a complex effect on the properties

of single neurons and whole networks. By including a detailed channel model in a network

setting, however, optogenetically evoked network responses can be predicted more accurately.

Proposing such a model, we aim to bridge the gap between channel dynamics and spiking, in

addition to providing predictions for network and single-neuron dynamics following optoge-

netic stimulation.

We constructed our computational model by using a network of Leaky Integrate-and-Fire

neurons, which are biologically realistic and have been used in a number of studies address-

ing the response of cortical populations (Fourcaud-Trocmé, Hansel, van Vreeswijk, & Brunel,

2003; Gerstner & Naud, 2009; Tchumatchenko, Malyshev, Wolf, & Volgushev, 2011).We aug-

mented the Leaky Integrate-and-Fire neuron model by including in its input a population of

ChR2 channels, simulated with a three-state Markov model previously investigated by othersMarkov model:
A Markov model assumes that the
transition between two states depend
only on the very last state and not on
the whole history of states.

(Nikolic et al., 2009; Tchumatchenko et al., 2013;Williams et al., 2013). Given its few parame-

ters and short runtime, the three-state model is a prime candidate for large network simulations.

In addition, the model’s good response match to continuously varying stimuli (Tchumatchenko

et al., 2013) made us choose the three-state model over a competing four-state model (Nikolic

et al., 2009; Williams et al., 2013).

In the channel model we consider, each individual ChR2 channel can only be in one of

the three states at a time. For the thousands of channels that are typically found in the mem-

brane of ChR2-transfected neurons, a stochastic description via three continuous probability

variables is sufficient. The expression level of ChR2 (i.e., the number of channels in a neuron)
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is difficult to determine in experiments, so that only rough estimations of its magnitude can

be made. Here, we study two expression levels: a low expression level (60,000 channels per

neuron) and a high expression level (300,000 channels per neuron). We chose these values

because we found through simulations that 60,000 channels per neuron by themselves, with-

out external or recurrent input, are not sufficient to trigger spikes, while the stimulation of a

neuron with 300,000 channels reliably correlates with spiking. We estimated these numbers

from conductance values in experiments, using them as representative values for relatively low

and high expression of ChR2 (Nagel et al., 2003; Zhang, Wang, Boyden, & Deisseroth, 2006).

The lower expression level yielded a small, but measurable, correlation between light pulses

and spikes, and can therefore be considered a subthreshold modulation in in vivo networks.

The higher level evoked spikes that were nearly phase-locked to the light pulses.

To evoke network responses, we chose a periodic stimulation with a frequency of 50 Hz,

which is commonly used in experiments (Lin, Lin, Steinbach, & Tsien, 2009; Zhang et al.,

2006), and we investigated the response across a broad range of light intensities. To monitor

the impact of the connection probability on the network response, we also varied the connec-

tion probability across a broad range of values. Furthermore, we aimed to obtain a detailed

characterization of the single neuron response by considering a large number of frequencies

and light intensities.

If the network response were linear, we could expect a constant spatial profile at all stim-

ulation amplitudes. We found, however, that the spatial distribution of activities in realistic,

nonlinear neural networks is much broader than the spatial light stimulation, and that the widthNonlinear function:
A mathematical function that cannot
be expressed by only using the
operations of scalar multiplication
and addition.

Light stimulation:
Optogenetically modified cells can
be excited or inhibited by
illuminating them with light of a
certain wavelength.

of this activity distribution depends on the light intensity, as well as on the number of chan-

nels expressed in neurons. Thus, our main finding is that a narrow stimulation profile evokes

a broad response profile. We further explored the nonlinear dependence of the peak and the

baseline activity as well as the mean activity in the network as a function of the light intensity.

Interestingly, for single neurons under pulsed light stimulation we discovered that the mag-

nitude of the firing rate response minimum increases with higher stimulation frequency, while

the absolute height of the evoked response pulses decreases. Moreover, we found the dura-

tion of the firing rate response pulses to exhibit a nonmonotonic relation to the stimulation

frequency. With respect to the light intensity, we found a monotonic saturation of the firing

rate response.

Our results show that the stimulus-response relationship of networks and single neurons

exhibiting ChR2 is highly nonlinear but can, nevertheless, be described in a tractable manner.

We provide a characterization of this nonlinear behavior, along with our customizable simula-

tion tools, which can be used to predict the ChR2-mediated response of networks and of single

neurons to pulsatile stimulation protocols. Our model and our results contribute a quantitative

perspective and offer tractable in silico predictions that can be used to design experiments.

METHODS

Software Implementation

For fitting, we used gnuplot (version 5.0.3) and GNU Scientific Library (version 2.4).

We also used gnuplot to create plots. We implemented all of our simulations in C++ (ISO

2011 standard) and compiled them with g++ in version 7.5.0. The source code and ready-to-

run binary versions of our simulation tools can be retrieved from https://github.com/jlubo/nn-

lightchannels-sim or from https://jlubo.net/nn-lightchannels-sim.
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Nonlinear characteristics of optogenetically excited neural networks

Channel and Neuron Model

Our model assumes a channel to be in one of the following three states:

1. closed (with probability C): no current is flowing, activation by effective photon flux

ǫφ(t) is possible;

2. open (with probability O): current is flowing, desensitization will occur stochastically at

rate Γd;

3. desensitized (with probability D): no current is flowing, no activation is possible, recov-

ery will occur stochastically at rate Γr.

A sketch of these dynamics is shown in Figure 1. The dynamics can be described mathe-

matically by a reduced two-dimensional system, using the condition that the probabilities C,

O, and D add up to one:

dO(t)

dt
= ǫ p(t)φ(t)− [ǫ p(t)φ(t) + Γd(V)] · O(t)− ǫ p(t)φ(t) · D(t), (1)

dD(t)

dt
= Γd(V) · O(t)− Γr · D(t). (2)

A list of the most important parameters used in our simulations is given in Table 1.

The photon flux φ(t) is related to the light intensity E(t) that is used for stimulation:

φ(t) =
σret · λmax

h · c · wloss
· E(t). (3)

Hence, the light intensity reaching the ChR2 receptor is a product between the experimentally

applied light intensity, the scattering loss factor wloss, and the ChR2 absorption cross-section

σret. The two latter factors determine the fraction of the light intensity that can be absorbed by

the ChR2 molecules. The constants h = 6.62606957 · 10−34 Js and c = 299 792 458 m/s are the

Planck constant and the speed of light in vacuum, respectively.

Figure 1. Model of light-sensitive channels. (A) The dynamics of the three-state model for ChR2.
The light blue arrow indicates a light-dependent transition. (B) Trace of the open, state probability
in response to 5, mW/mm2 light stimulation for 500 ms (shown by gray bar). Sustained illumination
evokes an initial peak followed by a steady state caused by desensitization. Switching off the light
stimulation leads to definite channel closing and a monoexponential decay of the open, state prob-
ability back to the baseline. The small fluctuations in the steady state, as magnified in the inset, are
caused by the voltage dependence of desensitization.
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Table 1. The most important parameters used in our simulations

Symbol Value Description

∆t 0.1 ms, 0.01 ms Duration of one time step for network and single-neuron simulations, respectively

tmax 20 s Total duration of the simulations

tpulse 4 ms Duration of one light pulse

λmax 470 nm Wavelength of light, absorption maximum of ChR2/H134R (Williams et al., 2013)

τChR2 1.3 ms Activation time constant for channels (Nikolic et al., 2009)

σret 12 · 10−20 m2 ChR2 retinal absorption cross-section (Williams et al., 2013)

gChR2 100 fS Single channel conductance (Lin, 2011)

wloss 1.3 Loss factor accounting for the environment of a channel (Nikolic et al., 2009)

Γd,0 126.74 1/s Desensitization rate at a potential of −70 mV (Tchumatchenko et al., 2013)

Γr 8.38 1/s Recovery rate (Tchumatchenko et al., 2013)

ǫ 0.5 Quantum efficiency for channel opening (Nikolic et al., 2009)

τm 10 ms Membrane time constant

τref 3 ms Duration of the refractory period

gm 0.1 µS Absolute membrane conductance, excluding ChR2 conductances

Vrev −65 mV Reversal (equilibrium) potential

Vreset −70 mV Reset potential

Vth −55 mV Threshold potential to be crossed for spiking

NChR2 60 000, 300 000 Number of ChR2 channels within one neuron

σwn 0.01 nA Standard deviation for Gaussian noise in external fluctuations

I0 0.914576 nA Mean of the external fluctuations (given value is for a single neuron)

σlight 8 grid units Standard deviation of the spatial Gaussian distribution of light

NE 3 600 = 60 × 60 Number of neurons in the excitatory population, aligned in a square

NI 900 Number of neurons in the inhibitory population

pc 0.005–0.015 Connectivity (probability of connection between two neurons) (Braitenberg & Schüz,

1998; Le Duigou et al., 2014)

τsyn 5 ms Synaptic time constant, also for external fluctuations

Note. Unless stated otherwise, the values were used as stated in this table.

Effectively, only a fraction ǫ of the quanta absorbed by the light receptor of a channel con-

tributes to channel opening. By an activation function p(t), the model can account for non-

instantaneous adaptation to light, which is of special importance when short light pulses are

used (Nikolic et al., 2009):

p(t) = 1 − exp

(

−
t − tlight

τChR2

)

. (4)

Furthermore, it can account for voltage-dependent deactivation (Mattis et al., 2011) through a

voltage dependence of the desensitization rate Γd (Tchumatchenko et al., 2013). The voltage

dependence of the desensitization rate is given by:

Γd(V) = Γd,0

(

1 − 0.0056 mV−1 (V + 70 mV)
)

. (5)

Light-induced channel opening gives rise to a depolarizing photocurrent (Nikolic et al., 2009):

IChR2(t, V) = −(V − EChR2) · NChR2 · gChR2 · O(t). (6)

Network Neuroscience 5
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The photocurrent is proportional to the expression level NChR2, which is the total number

of channels in the neuron. The product of NChR2 with the probability of a channel to be in

the open state, O(t), represents the number of channels in that state. In addition, the pho-

tocurrent recursively depends on the membrane potential V and on the conductance gChR2
of a single channel. Via the photocurrent, the stimulus imposes its temporal structure on the

membrane current of the neuron and consequently on its activity trace. The current enters the

Leaky integrate-and-fire neuron, which has a membrane potential described by the following

equation:

Cm
dV(t)

dt
= −gm(V(t)− Vrev) + Isyn(t) + IChR2(t, V). (7)

The membrane potential further depends on the membrane capacitance Cm, the membrane

conductance gm, the reversal potential Vrev, and the current Isyn(t) entering through synapses.

Parameter values are given in Table 1.

To account for synaptic inputs, a current Isyn(t) enters the Leaky integrate-and-fire equation.

This current can comprise different contributions. We modeled external contributions from

outside the simulated network as an Ornstein–Uhlenbeck process in the following way:Ornstein–Uhlenbeck process:
A stochastic process that has
an exponentially decaying
autocorrelation function and
can therefore be used to model
cortical noise.

τsyn
dIext(t)

dt
= I0 − Iext(t) + σwn · Γ(t). (8)

The Ornstein–Uhlenbeck statistics (colored noise) are suitable for this purpose because its

power spectrum has been shown to be consistent with experimental recordings of cortical

neurons (Destexhe, Rudolph, & Paré, 2003). The Ornstein–Uhlenbeck process contains the

synaptic time constant τsyn, a mean current I0, and Gaussian white noise Γ(t) with standard

deviation σwn and mean 0.

The external input causes spiking dynamics to occur even in the absence of light stimulation.

We adjusted the mean current I0 for all simulations, such that unstimulated neurons were firing

at a mean rate of 5 Hz. For single neurons that are not simulated in a network, the synaptic

input equals the external input: Isyn(t) = Iext(t).

In order to characterize the long-term activity dynamics of a single neuron, we examined

three measures of the neuronal activity in the steady state. These are the response minimum,

which is the lowest value the steady-state firing rate takes under persistent stimulation, the

response maximum, which is the total height of the firing rate response pulses evoked by

stimulus pulses, and the duration of those pulses, measured by the full width at half maximum.

We averaged the pulses across the whole steady state and over 900 trials. To draw a comparison

between the impact of the neuron dynamics and the channel dynamics, we determined the

same three measures from the pulses in the steady-state open-state probability of a channel.

Examples of the pulses in the steady-state open-state probability and the steady-state activity

are shown in Figure 2C,D.

The onset phase of the light stimulation causes a strong but very brief spiking response

lasting approximately 100 ms (see Figure 2A and B). This onset response vanishes quickly

and its features are different from the steady-state response that follows. Therefore, to measure

the experimentally more representative long-term spiking response, we considered the spikes

which followed the onset phase and imposed a wait time in our simulations of approximately

100 ms (see Figure 2).

We used stimulation protocols consisting of temporally rectangular light pulses, delivered

with different frequencies and light intensities. The duration of the pulses was kept constant at

Network Neuroscience 6
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Figure 2. Characteristics of the response dynamics of ChR2 channels and neurons after the steady state has been reached. (A) Open-state
probability of ChR2 channels and (B) activity of the related neuron, following stimulation with a frequency of 20 Hz and a light intensity
of 5 mW/mm2 (averaged over 900 trials). A steady state is reached quickly after the onset dynamics. (C) Course of a periodic pulse in the
steady-state open-state probability of the channels, extracted from the temporal course of a simulation as shown in A. Response pulse duration
(full width at half maximum), maximum, and minimum value of the steady-state open-state probability can be determined from this diagram,
as indicated by the arrows and the green bar. (D) Course of a periodic pulse in the steady-state activity of a single neuron, averaged over all
pulses within 20 s from the temporal course of a simulation as shown in B. Pulse duration, maximum, and minimum of the steady-state activity
can be determined from this diagram.

4 ms, which is a value that has been used in experiments when employing moderately short

light pulses (Boyden et al., 2005; Gunaydin et al., 2010).We used a slidingwindow/boxcar ker-

nel approach to compute the neuronal activity from spike trains (Dayan & Abbott, 2001). This

method is particularly useful because it prevents the resulting activity from being dependent

on the placement of the time window, as would be the case with peristimulus time histogram

spike densities.

Network Model

Our network was represented by a square grid of excitatory neurons, and a population of in-

hibitory neurons. All neurons were coupled via random recurrent connections (Figure 3A). The

probability of a connection pc (i.e., the connectivity) was the same for all types of connections

(E→E, E→I, I→E, I→I) and was varied across simulations.

Network Neuroscience 7
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Figure 3. Characteristics of the computational setting. (A) Schematic of the network architecture. The excitatory population (‘E’) is stimulated
by light. It is bidirectionally coupled to the inhibitory population (‘I’). Both populations are recurrently coupled and receive external colored
noise input, whose power spectrum matches that of neuronal populations (Destexhe et al., 2003). (B) Three-dimensional plot of the Gaussian
distribution of light intensity that is used to stimulate the excitatory population of the network (standard deviation of 12 grid units). The number
of grid units corresponds to the number of neurons along the axes. In this example, the intensity amplitude is 5 mW/mm2. (C) Two-dimensional
schematic showing the computation of the population activity 〈ν〉, the spatial width σFR, the height νmax, and the baseline νbase of the activity
distribution. The N bar-shaped areas have heights proportional to the mean activity of the respective neuron i. The Gaussian curve is fitted to
these mean activities. In our simulations, we employed this concept in three dimensions with N × N neurons.

As mentioned previously, the neurons receive input accounting for projections from out-

side the network, modeled by an Ornstein–Uhlenbeck process (Equation 8). In our network

simulations, the synaptic current Isyn(t) further contains contributions from synapses within

the network: Isyn(t) = Iext(t) + ∑i Iint,i(t).

We modeled the synaptic contributions by exponential postsynaptic potentials:

Iint,i(t) =
N

∑
j=1

wij

Nj

∑
nj=1

Jij

τsyn
exp

(

−
t − tnj

τsyn

)

Θ(t − tnj
). (9)

In this equation, N is the number of synapses projecting to neuron i, wij ∈ 0, 1 is a binary

variable specifying the existence of the connection j → i, Nj is the number of spikes that

Network Neuroscience 8
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Table 2. The four different coupling strengths used within the network

Jij / pC From excitatory population (i ≡ E) From inhibitory population (i ≡ I)

To excitatory population (j ≡ E) 0.110 −0.340

To inhibitory population (j ≡ I) 0.190 −0.540

have occurred in neuron j, Jij is the synaptic coupling strength between neuron j and neuron i

(determined depending on the type of the neurons, as shown in Table 2), and τsyn is the synaptic

time constant. The coupling strength Jij is divided by τsyn to ensure that for the integration over

the whole postsynaptic current, the charge deposited in the postsynaptic neuron is equal to

Jij (Gerstner & Kistler, 2002). The Heaviside theta function Θ(.) accounts for the time of spike

occurrence; before the time tnj
at which the nj-th spike of neuron j occurs, the term is zero.

For stimulation, we again used temporally rectangular light pulses. The intensity of the

pulses was spatially modulated through a Gaussian distribution with its maximum in the center

of the grid and a standard deviation σlight, measured in units of the grid index. The distribution

is given by (see also Figure 3B):

E(r) = Ê · exp

(

−
r2

2 · σ2
light

)

, (10)

where r = sgn(x − xc) ·
√

(x − xc)2 + (y − yc)2 describes the distance of a neuron to the cen-

ter of the Gaussian light stimulus at (xc|yc); the signum function sgn(x − xc) is employed for

visualization purposes (cf. plots in Results section).We varied the amplitude (i.e., the maximum

light intensity) Ê of the Gaussian distribution across simulations. The stimulation frequency was

maintained at 50 Hz, which is a value commonly used in experiments for excitatory optoge-

netic stimulation (Lin et al., 2009; Zhang et al., 2006).

Complementary to the light stimulation, we used a Gaussian fit function to obtain the width,

height, and baseline of the spatial activity distribution:

ν(r) = (νmax − νbase) · exp

(

−
r2

2 · σ2
FR

)

+ νbase, (11)

where σFR, νmax and νbase are fit parameters. We estimated a tolerance of 0.2 Hz for the ac-

tivity data. The computation of the width and the height of the activity distribution and of the

population activity is visualized in a two-dimensional sketch in Figure 3C. An example of a

Population activity:
The population activity or population
rate is the average firing rate of the
neurons in a population. light stimulus used for the calculations is displayed in Figure 3B.

RESULTS

Response Characteristics of a Single Neuron

First, we investigated how a single neuron containing a given number of ChR2 channels re-

sponds to the application of pulsed light stimuli. We used the Leaky integrate-and-fire model

to describe the neuron. We selected this neuron model because it reproduces various proper-

ties of neocortical pyramidal cells (Gerstner & Naud, 2009; Tchumatchenko et al., 2011) and

because of its outstanding numerical speed in network simulations. For the ChR2 channels,

we used a probabilistic three-state Markov model, based on previous studies (Nikolic et al.,

2009; Tchumatchenko et al., 2013).

Network Neuroscience 9
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Figure 4. Relationship between light stimulation (light pulses of intensity 2 mW/mm2 at 10 Hz, indicated by light blue arrows) and the
membrane potential (red traces) of a single neuron. The threshold potential is indicated by the blue line. The plot starts from 2,000 ms to be
sure to show pure steady-state dynamics. (A) For 60,000 channels per neuron, the depolarization caused by light is not sufficient to evoke
spiking. Nonetheless, random spikes occur due to external input. (B) For 300,000 channels per neuron, the depolarization caused by light is
sufficient to evoke spiking, which leads to synchronization of light stimulation and firing.

As a first test for ourmodel, we evaluated the impact of the expression level on the membrane

potential dynamics. The results showed that at a low expression level of 60,000 channels, the

number of channels was not sufficient to depolarize the neuron strongly enough to make it fire

in synchrony with the frequency of light stimulation. At a higher expression level of 300,000

channels, synchronized firing occurred. Membrane potential traces for these two cases are

shown in Figure 4.

Under sustained stimulation with a certain frequency and intensity, the dynamics of the

open-state probability as well as the firing rate dynamics reached a steady state. In this steady

state, we characterized the activity response by measuring the minimum firing rate, the pulse

duration, and the maximum of the firing rate pulses in response to light pulses (cf. Figure 1B,

Methods). As we varied the frequency and intensity of the light pulses, we recorded the re-

sponse characteristics for a broad range of stimulus protocols.

We found that the activity response of a single neuron under optogenetic excitation exhibited

characteristics that might be considered surprising or counterintuitive. In a pulsed stimulation

protocol, the minimum of the evoked spiking activity νs,min increased with higher stimula-

tion frequency (Figure 5A), while the maximum of the evoked activity pulses νs,max decreased

(Figure 5B). Furthermore, it is remarkable that the duration of the firing rate pulses tν
FWHM

exhibited a nonmonotonic relation in response to varying stimulation frequency (Figure 5C).

In Figure 5 we show results for neurons with 300,000 channels while we found qualitatively

similar behavior also for 60,000 channels per neuron.

One could expect that the activity response increases its minimumwith increasing stimula-

tion frequency, since a higher frequency should lead to more depolarization because it raises

the level of continuous activity (Figure 5A). This is also what we found. Considering the de-

pendence on the light intensity, there is a slight decrease in the activity response minimum

for lower light intensity. The response minimum of the open-state probability showed similar

behavior (Figure 6A).

Network Neuroscience 10
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Figure 5. The nonlinear dependence of the steady-state firing rate response of a neuron holding 300,000 ChR2 channels on stimulus frequency
and light intensity. The data points were obtained by averaging over 900 neurons and over the response cycles within 20 s after stimulus onset
(e.g., 400 cycles at 20-Hz stimulation), following the method visualized in Figure 2D. (A) The activity response minimum increases with
increasing frequency. Light intensity does not have a major impact on the response minimum. (B) Remarkably, as the frequency increases, the
activity response maximum decreases. The response maximum grows monotonically with the light intensity until it saturates. (C) The response
pulse duration increases with frequency at low frequencies, reaches a maximum and then decreases with frequency at high frequencies.
Thus, the relation to frequency is nonmonotonic. Regarding increasing light intensity, there is a trend that the pulse duration decreases until
saturation.

The detailed behavior of the response maxima, however, is more intriguing. Our simulations

show that as the stimulation frequency increases, the absolute height of the response pulses

(i.e., the response maximum) decreases as it approaches the response minimum (Figure 5B).

For very high stimulation frequencies, the response maximum and minimum have to be equal

because above a certain frequency, which depends on the light pulse duration (250 Hz for

4 ms), pulsed stimulation would become in fact constant and the response pulses would van-

ish as well. Studying the dependence on the light intensity, we found a monotonic increase

of the response maximum, leading into saturation. The response maximum of the open-state

probability showed similar behavior (Figure 6B).

Figure 6. The nonlinear dependence of the steady-state open-state dynamics of the ChR2 channel on stimulus frequency and light intensity.
The method for obtaining the open-state statistics is visualized in Figure 2C. (A) The response minimum of the open-state probability increases
with increasing frequency. Light intensity causes a slight increase at higher frequencies, but generally only exhibits a minor effect on the
response minimum. (B) The response maximum decreases as the frequency increases. It scales monotonically with light intensity until it
saturates. (C) The response pulse duration decreases with frequency, and increases with light intensity until saturation.
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Studying the activity pulse duration (Figure 5C), we first found that it was longer than the

duration of the stimulus pulses, which had a constant duration of 4 ms. In addition, we made

a surprising discovery. The relationship of the activity pulse duration to the frequency was not

monotonic, unlike the monotonic increase of the response minimum and decrease of the re-

sponse maximum with increasing frequency. Instead, the pulse duration exhibited a maximum

whose width and height depend on the stimulation frequency and light intensity. The compar-

ison with the pulse duration of the open-state probability (Figure 6C), which does not exhibit

such a maximum, suggests that the occurrence of the maximum is due to the restricted firing

capability of neurons.

We find that for increasing light intensities, the firing rate response and the open-state prob-

ability tend to approach a constant value. Hence, it seems that the occupancy of the open state

saturates (Figure 6). This can be explained by the limited number of channels that are in the

closed state, from which they transition to the open state. In the regime of high light intensities,

the probability of the desensitized state is much larger than that of the closed state because of

the high opening and desensitization rates on the one hand and the slow recovery from the

desensitized to the closed state on the other hand. We can understand this effect by evaluating

the time-averaged opening rate:

〈Γo〉 :=
1

T

T
∫

0

ǫp(t)φ(t)dt = ǫφ̂ · f
(

tpulse + τChR2 ·
(

e−tpulse/τChR2 − 1
))

, (12)

where φ̂ is the photon flux during the stimulus pulses of duration tpulse, computed from the light

intensity as per equation 3. The duration of the stimulus periods is given by T = 1/ f . Table 3

shows opening rates for different light intensities and stimulus frequencies, which competewith

the desensitization rate Γd ≈ 126.74 1/s and the recovery rate Γr = 8.38 1/s. To summarize, we

find that at higher light intensities, the open state probability of the channels saturates, which

is due to the low recovery rate of channels as compared to the opening and desensitization

rates.

The comparison of the steady-state dynamics of the neuronal firing rate (Figure 5) and theNeuronal firing rate:
The neuronal firing rate is the rate of
spikes per time fired by a neuron and
can be computed from spike trains,
for example, by using a sliding time
window.

open-state probability of a ChR2 channel (Figure 6) shows that the behavior of the response
minimum and maximum of the activity seems to be determined predominantly by the channel

dynamics. Since the pulses in the firing rate as well as in the open-state probability are longer

than the stimulus pulses, some filtering has to occur already at the channel level. Nevertheless,

the pulse duration of the firing rate shows nonmonotonic behavior in relation to the stimulus

frequency, while the pulse duration of the open-state probability has a monotonic relationship

to the stimulus frequency. Hence, the pulses of the firing rate reflect nonlinear neuronal pro-

cessing. In fact, the pulse duration of the firing rate is smoothed out by the processes that occur

in Leaky integrate-and-fire neurons (cf. Equations 6 and 7).

Spatial Extent of the Activity Response of a Network

At the network level, we investigated the spatial distribution of activity following excitation

through a spatially Gaussian-distributed light stimulus. As for the investigation of a single

Table 3. Time-averaged opening rate 〈Γo〉 (cf. Equation 12) for different light intensities and
stimulus frequencies

Ê / mW/mm2 4.0 6.0 8.0

f / Hz 5 30 60 5 30 60 5 30 60

〈Γo〉 / 1/s 6.03 36.17 72.33 9.04 54.25 108.5 12.06 72.33 144.66

Note. Note that 〈Γo〉 ∝ Ê, f .
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Figure 7. Network response if neurons express on average 60,000 ChR2 channels per neuron. The firing rate distribution is broader than the
light distribution but narrower than the response at a higher expression level (Figure 8). (A) The width σFR of the spatial distribution of activities
(cf. Figure 3C) is much larger than the width of the light stimulation. This suggests that neuronal activity spreads widely following narrow light
stimulation. The connection probability pc has almost no impact on the response width σFR. The width rises as the light intensity E increases.
(B) Height νmax and baseline νbase of the spatial distribution of activities, and population activity 〈ν〉, depicted across different light intensities;
pc = 0.5%. (C) Height and baseline of the spatial activity distribution and the population activity are shown across different light intensities;
pc = 1.0%. (D) Gaussian fit to the spatial distribution of activities resulting from pc = 1.0% and Ê = 5.0 mW/mm2. The data points denote
the time-averaged activity of neurons and their distance to the center of the stimulation (in units of the grid index). The width, height, and
baseline of the distribution are estimated by the standard deviation, amplitude, and vertical shift of the Gaussian fit, respectively. The light
distribution that evoked the activity distribution is shown to enable comparing the widths. This indicates that a narrow stimulus distribution
evokes a broad response distribution (here more than 1.5 times as broad). (E, F) Distributions of time-averaged activities for maximum light
intensity Ê = 5.0 mW/mm2 and connectivity pc = 0.5% and pc = 1.0%, respectively. The data in A, B, and C were averaged over 10 trials.
In some cases, the standard deviation is very small, such that the error bars are covered by the lines. The spatial stimulation width was kept
constant across figures.

neuron, we used pulsed light stimuli at different light intensities, but now maintained their

frequency at 50 Hz. Additionally, we spatially modulated the intensity with a Gaussian dis-

tribution. The center of the Gaussian spatial distribution conformed with the center of the

square grid of excitatory neurons. We observed the resulting activity levels of the excitatory

neurons following this stimulation paradigm. By averaging over the time-averaged activities

of all individual neurons, we obtained the population activity 〈ν〉. To further analyze the net-

work response, we sought a measure for the spatial distribution of evoked activity. To this end,

we fitted different functions to the evoked activity and compared the R2 values of these func-

tional fits. We found that the Gaussian had the highest R2 values (sample values for pc = 1%,

Network Neuroscience 13



Nonlinear characteristics of optogenetically excited neural networks

Ê = 5 mW/mm2, and 60,000 channels: Gaussian 0.373, Lorentzian 0.363, Logistic distribu-

tion 0.368). Thus, we used a Gaussian fit function to describe the spatial distribution of the

evoked activity (see Equation 11). We used the standard deviation σFR of this fit function to

measure the width, the amplitude νmax to measure the maximum, and the vertical shift νbase
to measure the baseline of the activity distribution. Light distributions, resulting activity dis-

tributions and Gaussian fit functions to the activity distributions are shown in Figures 7D and

Figure 8D. These figures provide a glimpse on our main finding that the spatial width of the

evoked activity distribution is considerably larger than the width of the light stimulus.

Figure 8. Network response if neurons express on average 300,000 ChR2 channels per neuron. The firing rate distribution is broader than
the light distribution and broader than the activity profile we obtained at a lower expression level (Figure 7). (A) The width σFR of the spatial
distribution of activities (cf. Figure 3C) is much larger than the width of the light stimulation. This suggests that neuronal activity spreads widely
following narrow light stimulation. The response width σFR is almost independent of the connection probability pc. The width rises as the light
intensity E increases. (B) Height νmax and baseline νbase of the spatial distribution of activities, and population activity 〈ν〉 depicted across
different light intensities; pc = 0.5%. (C) Height and baseline of the spatial activity distribution and the population activity are shown across
different light intensities; pc = 1.0%. (D) Gaussian fit to the spatial distribution of activities resulting from pc = 1.0% and Ê = 5.0 mW/mm2.
The data points denote the time-averaged activity of neurons and their distance to the center of the stimulation (in units of the grid index).
The width, height, and baseline of the distribution are estimated by the standard deviation, amplitude, and vertical shift of the Gaussian fit,
respectively. The light distribution that evoked the activity distribution is shown to enable comparing the widths. This indicates that a narrow
stimulus distribution evokes a broad response distribution (here almost 2 times as broad). (E and F) Distributions of time-averaged activities for
maximum light intensity Ê = 5.0 mW/mm2 and connectivity pc = 0.5% and pc = 1.0%, respectively. The data in A, B, and C were averaged
over ten trials. In some cases, the standard deviation is very small, such that the error bars are covered by the lines. The spatial stimulation
width was kept constant across figures.
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We found that the population activity 〈ν〉 exhibited the same monotonically increasing be-

havior as a function of the maximum light intensity for both expression levels (Figures 7B,C
Monotonically increasing function:
A function of a parameter that
increases or stays constant, but never
decreases, as the parameter
increases.

and 8B,C). Increasing the connection probability pc affected the magnitude but not the shape

of the activity profile. We obtained a similar response for the height of the spatial activity

distribution (νmax). The baseline in the activity distributions (νbase) declined as the peak light

intensity increased, which could be explained by increased inhibition in the network evoked

by the increased excitatory population activity. The width of the spatial activity distribution

(σFR) increased monotonically with growing light intensity (Figures 7A and 8A). Varying the

connection probability had a weak effect on the peak amplitude of the response, but not the

shape of the response function. In the considered parameter space, the response width was

between 1.5 and 2.5 times the width of the light stimulus (σlight = 8 grid units). To summarize,

our results revealed that for a large set of parameters, light stimulation evokes substantially

broader firing activity responses.

DISCUSSION

Optogenetic manipulation of neural network activity has become a widely used method to

modulate neuronal activity in vivo (Masseck, 2018). One of the most commonly employed

optogenetic tools is still channelrhodopsin-2 (ChR2), a blue-light-gated cation-selective ion

channel from a species of green algae (Chlamydomonas reinhardtii) which conducts H+, Na+,

K+, and Ca2+ (Nagel et al., 2003). Historically, ChR2 was the first optogenetic channel used

in neurons, and it has become the basis for other ChR variants (Masseck, 2018). Anticipating

the effectiveness of an optogenetic stimulation and interpreting its outcome in vivo is often

difficult because of the influences of channel activation, the single-neuron excitability, and the

recurrent network dynamics. These effects interact with one another and can lead to a complex

set of outcomes. Analyzing the stimulus-response relationship of neurons is of outstanding

importance to theoreticians who aim to model and understand network dynamics following

optogenetic stimulation, as well as for experimentalists who wish to alter neuronal activity

in brain tissue in a desired way. Here, we present a spiking model and its analysis at the

network level in order to help predict the outcome of excitatory optogenetic manipulation.

Our computational model considers recurrent networks of excitatory and inhibitory neurons,

in which excitatory neurons express light-sensitive ChR2/H134R channels.

To accurately represent the physiological properties of light-stimulated pyramidal neurons,

we chose the Leaky integrate-and-fire (LIF) model. This choice is due to the observation that

LIF neurons can capture the broad range of frequencies that are reliably encoded by cortical

pyramidal neurons (0–200 Hz frequency range; Tchumatchenko et al., 2011), while other more

detailed, conductance-based models, including the Hodgkin–Huxley models, fail to represent

the dynamical response of cortical neurons (Fourcaud-Trocmé et al., 2003). Furthermore, the

integrate-and-fire type models have been shown to accurately reproduce the experimentally

recorded spike pattern (Gerstner & Naud, 2009) and thereby offer various computational ad-

vantages compared to more detailed conductance-based models. To model synapses, we used

a monoexponential model, introducing postsynaptic currents with finite decay time. Because

this model facilitates discretization in numerical computations, it is much faster than slightly

more detailed alpha-function-based models. The LIF model parameters which we used cor-

respond to the irregular asynchronous regime of cortical neurons: synaptic strength and time

constant are chosen so that they account for the amplitude and width of postsynaptic poten-

tials of AMPA, NMDA, and GABA synaptic currents (Gerstner & Kistler, 2002; London, Roth,

Beeren, Häusser, & Latham, 2010; Roth & van Rossum, 2009). Moreover, the physiological
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parameters such as membrane time constant and targeted coefficient of variation range (0.5–1)

were chosen to match experimental reports for the cortex (Stevens & Zador, 1998). The LIF

model has, as well as in vivo neurons, two important parameter regimes that shape the spiking

response of neurons: the noise-driven and the mean-driven regime (Petersen & Berg, 2016).

In our study, neurons operate in the noise-driven regime that is typical for cortical neurons

in vivo. Therefore, as long as the parameters stay within this biologically plausible regime,

our prior work (Herfurth & Tchumatchenko, 2019; Tchumatchenko & Wolf, 2011) and the

work of others (Brunel, Chance, Fourcaud, & Abbott, 2001; Gerstner & Kistler, 2002) suggests

that one can expect similar results because the shape of the frequency response function is

largely preserved across a broad range of membrane time constants, firing rates, and noise

levels. To facilitate the exploration of other spiking models or parameter regimes in combi-

nation with optogenetic stimulation, we release our program code, so that our readers can

consider the effects of any other custom neuron model on the recurrent network activity and,

if necessary, adapt the parameters to any particular value of interest (on instructions see the

file CUSTOM_MODELS.txt from the code linked in the Methods section). To model optoge-

netic light stimulation, we used the three-state model of ChR2 because it is computationally ef-

ficient, it describes the monoexponential photocurrent decay of ChR2/H134R (Williams et al.,

2013), and it has been shown to reliably reproduce experimentally measured responses to

continuously varying stimuli (Tchumatchenko et al., 2013). However, our program code can

also be used to implement alternative ChR2 dynamics. Extensions of our model could include

a fourth state that can account for biexponential decay of the photocurrent, which is exhibited

by some ChR2 variants (Nikolic et al., 2009; Williams et al., 2013), light-assisted recovery,

which has been observed for some ChR2 variants (Nagel et al., 2003; Nikolic et al., 2009), or

a nonlinear voltage dependence factor to the photocurrent, which could account for specific

inward rectification effects (Gradmann, Berndt, Schneider, & Hegemann, 2011; Grossman,

Nikolic, Toumazou, & Degenaar, 2011; Lin et al., 2009).

We considered the network activity in response to an optogenetic excitation by spatially

Gaussian-distributed light stimulation and studied its spatial profile. We found that the spatial

extent, that is, the width, of the network activation can be 1.5 to 2.5 times as large as that

of the light source. This indicates that in experiments targeting a particular spatial activation

profile the light beam width should be chosen smaller than the intended area of activation,

and that unintended co-activation of neighboring regions should be monitored. How small

the light beam width will need to be depends on the light intensity and channelrhodopsin

expression levels. Interestingly, we found that the response profile and its width depended on

the expression levels, while the synaptic connectivity in the stimulated region modulated only

the peak height but not the width of the response.

Here, we presented results for a number of basic measures of the activity distribution such as

width, height, and baseline, while readers interested in more complex measures such as peak-

to-width ratios (νmax/σFR) can use use the program code we provide to explore additional

quantities of interest.

To clarify the temporal dynamics of the network response we examined the firing rate dy-

namics at the single-neuron level. We found that under pulsatile light stimulation, which is

commonly used in experiments, the neuronal activity response minimum increases with the

stimulation frequency, while the activity response maximum decreases. Our results revealed

the existence of local maxima in the stimulus-response relationship, which means that spe-

cific stimulus parameters can evoke particularly strong and particularly narrow responses. In

particular for the pulse duration of the firing rate response we found that at low stimulation
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frequencies, the depolarization of neurons is not strong enough to produce sustained activa-

tion. This is due to the low-pass-filtering effect of neurons, which are not capable of imme-

diate response to fast, single pulses. Furthermore, we found that the response dynamics saturate

with higher light intensities, which is caused by the slow recovery of the channels from

desensitization.

Although the number of theoretical studies on optogenetic effects is increasing, no study has

yet presented a systematic investigation of the nonlinear effects that are subject to our work.

Recently, interesting studies were published which use field-programmable gate array (FPGA)

processors to simulate networks of small size with a very detailed neuron model (Luo et al.,

2017) or provide a framework which enables simulating optogenetic impact on neurons and

networks (Evans, Jarvis, Schultz, & Nikolic, 2016). So far, however, no explicit and quantitative

predictions were derived for the optogenetically triggered spatial response of neuronal activity

in large networks. Similarly, the effects occurring in the firing rate response of single neurons to

light pulses of different frequencies have not been quantified. Providing a model and analysis

tools, as well as reporting quantitative predictions that can help in the design and interpretation

of optogenetic experiments in recurrent networks and single neurons, was the goal of our study.

Since our software package is written in standard C++, it enables very fast computation and

will in most cases outperform other tools that are based on higher-level languages such as

Python, while offering maximal customizability.

What experimentally relevant effects did we find? To achieve controlled optogenetic stim-

ulation in experiments in vivo, it is helpful to be able to reverse engineer the optogenetic

excitation profile from the desired neural activation profile. In our study, we identified three

important aspects that are relevant for this procedure. First, the size of the area where the stim-

ulus evokes direct or indirect excitation can be substantially larger than the area covered by

light (up to 2.5 times; cf. Figures 7 and 8). For experiments, it is therefore beneficial to start

with a small area of excitation and broaden it only when there is evidence that not all intended

neurons are reached. Starting with a large light stimulation area bears the risk of unintended

co-activation of neighboring areas, since the effective footprint of light on the firing rates of

neurons will be much broader than the light profile itself. In addition to the broadening of

the spiking activity profile relative to light that we have characterized, further broadening of

the area of response is to be expected by light scattering in brain tissue. While this investiga-

tion was beyond the scope of this study, it should also be kept in mind when setting up light

stimulation protocols. Second, our results indicate that the duration of the firing rate pulses in

response to light pulses can be substantially longer than the duration of each light pulse that

evokes it. Our analysis has shown that evoking very brief firing rate responses is not possible

with the ChR2 variant that we considered in our study (ChR2/H134R). Experiments which rely

on millisecond or submillisecond precision of few carefully introduced extra spikes need to

either drastically lower the light level such that the integrated firing rate response to light stim-

ulation carries only a few spikes, or choose another optogenetic variant that may allow for a

higher precision (Lin, 2011; Masseck, 2018). Third, our results show that the amplitude of the

steady-state firing rate response is not only proportional to the light intensity, it is also highly

sensitive to the frequency of the light stimulation. Such behavior has also been observed in

experiments (Ni et al., 2017). If the experimental aim is to elicit strong excitation pulses in

neurons, then it is best to use low stimulation frequencies. Otherwise, if the goal is to elicit

maximal numbers of spikes that do not need to occur in pulses, then it is best to use intermedi-

ate stimulation frequencies of around 30 Hz, which provide an optimal balance between high

response minimum and high response maximum. It is important to know that the response

pulses of the spiking response in this stimulation range are long, an observation which needs
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to be considered when measuring the resonance properties of specific neural populations or

investigating the synchronization properties in particular frequency ranges (e.g., Cardin et al.,

2009). In summary, our study enables a quantitative prediction of neural network activity that

can help guide and interpret the outcome of optogenetic experiments.
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