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Although our knowledge of human diseases has increased
dramatically, the molecular basis, phenotypic traits, and thera-
peutic targets of most diseases still remain unclear. An
increasing number of studies have observed that similar dis-
eases often are caused by similar molecules, can be diagnosed
by similar markers or phenotypes, or can be cured by similar
drugs. Thus, the identification of diseases similar to known
ones has attracted considerable attention worldwide. To this
end, the associations between diseases at the molecular,
phenotypic, and taxonomic levels were used to measure
the pairwise similarity in diseases. The corresponding
performance assessment strategies for these methods involving
the terms “category-based,” “simulated-patient-based,” and
“benchmark-data-based” were thus further emphasized.
Then, frequently used methods were evaluated using a bench-
mark-data-based strategy. To facilitate the assessment of dis-
ease similarity scores, researchers have designed dozens of tools
that implement these methods for calculating disease similar-
ity. Currently, disease similarity has been advantageous in pre-
dicting noncoding RNA (ncRNA) function and therapeutic
drugs for diseases. In this article, we review disease similarity
methods, evaluation strategies, tools, and their applications
in the biomedical community. We further evaluate the perfor-
mance of these methods and discuss the current limitations and
future trends for calculating disease similarity.
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INTRODUCTION
Human disease is one of the permanent aspects of the human con-
dition, similar to birth, aging, and death, from a philosophical point
of view. The search for novel understanding of disease never stops.
Although, currently, there has been great success with the develop-
ment of biotechnology, the molecular basis of and therapeutic
agents for most diseases remain unclear. Current studies have
observed that similar diseases are often caused by similar mole-
cules,1–3 can be diagnosed by similar markers or phenotypes,4–6

and are also cured by similar drugs.7–11 Based on this, novel func-
tional molecules for a disease could, in theory, be revealed using
prior knowledge of similar diseases.12–18 Thus, research on identi-
fying the similarity between diseases has attracted increasing
attention.
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A pair of diseases with a high similarity score can be defined as being
similar diseases. To measure disease similarity, prior knowledge of
diseases plays a crucial role. The symptoms and signs accompanying
diseases, also called phenotypes, are the intuitive characteristics of a
disease.19,20 As early as 2004, Freudenberg and Propping21 used
phenotypes sourced from the Online Mendelian Inheritance in
Man (OMIM) website22 to calculate the similarity of OMIM diseases.
With an ever-increasing number of phenotypes being observed by the
biomedical community, abundant algorithms have been developed
for measuring disease similarity at a phenotypic level.

Many studies have shown that the alterations of molecules can lead to
the occurrence of diseases. Thus, the exploration of a commonmolec-
ular basis is another way tomeasure disease similarity.With the devel-
opment of next-generation sequencing technologies, a vast number of
protein-coding genes (PCGs) and noncoding RNA (ncRNA) genes
associatedwith diseases have been identified. For example, hemophilia
A is an X-linked recessive bleeding disorder caused by a deficiency in
the activity of coagulation factor VIII (F8), which can be affected by
variations in the F8 genes.23,24 MicroRNA (miRNA)-155 is an endog-
enous ncRNA that regulates several mRNAs to cause B cell lym-
phomas.25,26 Based on the molecular basis of diseases, a large number
of methods27–33 have been designed for calculating disease similarity,
using this as a metric.

Recently, disease taxonomy has begun to play an important role in
measuring disease similarity. One of the typical taxonomic classifiers
for diseases is Disease Ontology (DO).34 In this, each disease term
represents a disease with different names, and two terms can be linked
on the basis of a set of inclusive relationships. For example,
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Figure 1. Sub-graph of the DO Hierarchy for Alzheimer’s Disease

Arrows represent an “IS_A” relationship for DO. For example, “Alzheimer’s disease”

is linked to “Dementia” by an “IS_A” relationship. All of the terms that can be linked

by “IS_A” relationships in the graph from “Alzheimer’s disease” are the ancestors of

“Alzheimer’s disease.” All of the terms that can link to “Disease” by “IS_A”

relationships are the descendants of “Disease.”
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“Alzheimer’s disease” can be linked to “tauopathy.” All of the disease
terms and the set of inclusion relationships forms the disease
hierarchy and directed acyclic graph (DAG) of DO (Figure 1), where
a node represents a disease term, and an edge is a set of inclusive
relationships between the two terms. The common ancestors of two
disease terms based on the DAG have often been utilized to calculate
the similarity of two terms.35

Currently, dozens of methods have been designed for calculating
disease similarity based on prior disease knowledge at the pheno-
typic, molecular, and hierarchical levels. In this article, we review
the main topics of investigation in disease similarity, including the
proper selection of proper data, the design and implementation of
methods, the evaluation of a method’s performance, and even the
application of existing methods for predicting molecular factors of
diseases.
DATA SOURCES
Three types of data sources, including disease vocabularies, disease
annotations, and gene functional annotations, are widely utilized
for calculating disease similarity (Table 1). Here, we list and introduce
these main data sources.
Disease Vocabularies

Disease vocabularies document disease terms for distinguishing be-
tween different diseases. Each disease term in a vocabulary contains
a unique identifier, preferred disease name, synonyms, abbreviations,
and the definition of a disease. Parts of these vocabularies even pro-
vide a hierarchy of disease terms based on a set of inclusive
relationships.

OMIM

The OMIM22,36 is a comprehensive, authoritative compendium of
genetic diseases, which is freely available and updated daily. It was
initiated in the early 1960s by Dr. Victor A. McKusick and has
been developed for online usage by the NCBI since 1985.

MeSH

The Medical Subject Headings (MeSH)37,38 provides hierarchically
organized terminology for indexing and cataloging biomedical infor-
mation for PubMed. MeSH divides all biomedical terms into 16 cat-
egories, in which C and F03 contain disease names, containing more
than 4,600 disease terms. In addition to the terms in these categories,
MeSH also contains supplementary term records, which document
thousands of disease terms.

MEDIC

The “merged disease vocabulary” (MEDIC)39 was established by the
Comparative Toxicogenomics Database (CTD)40 biocurators and is
composed of more than 10,000 unique diseases. To take advantage
of the familiarity and immediate genetic data offered byOMIM terms,
as well as the navigation utility and PubMed indexing feature of
MeSH terms, MEDIC integrates OMIM terms with MeSH terms
and hierarchical relationships.

UMLS

The Unified Medical Language System (UMLS)41 is a repository of
biomedical vocabularies developed by the U.S. National Library of
Medicine (NLM). The UMLS integrates over 2 million names for
some 900,000 concepts from more than 60 families of biomedical
vocabularies, as well as 12 million relations between these concepts.
Vocabularies integrated in the UMLS Metathesaurus include
MeSH, OMIM, Gene Ontology (GO),42 and so forth.

DO

The Disease Ontology (DO) database34 was developed to create a sin-
gle structure for the classification of diseases that unifies the represen-
tation of disease between varied vocabularies into a relational
ontology. DO terms can be linked in a hierarchy by a type of semantic
association called an “IS_A” relationship43 (Figure 1). The initial
builds of DO in 2003 and 2004 used the International Classification
of Diseases (ICD-9)44 as the foundational vocabulary. Recent revi-
sions have improved this with the reorganization of DO based on
UMLS disease terms in conjunction with term mappings to System-
atized Nomenclature of Medicine--Clinical Terms (SNOMED
CT)45,46 and ICD-9. The current version of DO is organized into eight
main classes to represent cellular proliferation, mental health,
anatomical entity, infectious, and agent, etc.

Disease Annotations

The molecular basis and phenotypic characterization of a disease are
twomain aspects of prior knowledge often used for measuring disease
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Table 1. Summary of Data Sources

Category and Name Creation Date Initiator PMID

Disease Vocabulary

OMIM 1960s McKusick36 17357067

MeSH 1960s Winifred Sewell38 14119288

UMLS 1980s Olivier Bodenreider41 14681409

SNOMED CT 2001 Wang et al.46 11825284

DO 2003 Schriml et al.34 22080554

MEDIC 2012 Davis et al.39 22434833

Disease Annotations

GeneRIF 2007 17990498

CTD 2003 27651457

GAD 2004 Becker et al.48 15118671

miR2Disease 2008 Jiang et al.54 18927107

HPO 2008 Robinson et al.5 18950739

SpliceDisease 2011 22139928

lncRNADisease 2012 23175614

HMDD v2.0 2013 24194601

SIDD 2013 Cheng et al.62 24146757

OAHG 2016 Cheng et al.61 27703231

Gene Functional Annotations

GOA 2003 Camon et al.63 12654719

HumanNet 2011 Lee et al.66 21536720
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similarity. Resources collecting these sources of prior knowledge are
called disease annotations.

Disease Annotations of PCGs

Disease-related PCGs are mainly documented in the OMIM, Gene
Reference into Function (GeneRIF),47 Genetic Association Database
(GAD),48 SpliceDisease,49 and CTD databases. OMIM was intended
for use primarily by physicians and other professionals concerned
with genetic disorders. GeneRIF provides functional annotations of
genes from the NCBI and allows scientists to add a short functional
summary of NCBI genes that is limited to 425 characters. The
GAD emphasizes genetic association data from complex diseases
and disorders. SpliceDisease provides detailed descriptions of the re-
lationships between gene variations, splicing defects, and diseases.
The CTD documents the interactions between chemicals and gene
products, as well as their relationships to diseases. The relationships
between genes and diseases in the CTD often comes in the form of
information about RNA splicing, SNPs, and so on.

Disease Annotations of miRNAs

miRNAs are a class of endogenous single-stranded small ncRNAs that
play a crucial role in various human diseases by negatively regulating
the expression of PCGs.50–53 Two manually curated data sources of
disease-miRNA relationships include miR2Disease54 and the Human
miRNA Disease Database (HMDD) v2.0.55 Both of these two re-
sources document miRNA deregulation in various human diseases.
592 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
Disease Annotations of lncRNAs

Long ncRNAs (lncRNAs) are mRNA-like transcripts that are longer
than 200 nt and have little or no protein-coding capacity.56,57 Accord-
ing to the theory of competing endogenous RNA (ceRNA),58 they can
affect the expression of PCGs through competitively binding with
miRNAs. Thus, it becomes important to understand the role of
lncRNAs in diseases.59 The LncRNADisease database has a manually
accumulated set of relationships between lncRNAs and diseases.60

Disease Annotations of Phenotypes

Phenotypes are documented in the Clinical Synopsis section of the
textual descriptions of each OMIM disease. Robinson et al.5 extracted
all of the phenotypes from this text and constructed a human pheno-
type ontology (HPO) to annotate human diseases.

Integrated Resources of Disease Annotations

In previous efforts, we developed two integrated resources for disease
annotations. integrated resource for annotating human genes with
multi-level ontologies (OAHG)61 focused on the disease annotations
of PCGs, miRNAs, and lncRNAs; and a semantically integrated data-
base towards a global view of human disease (SIDD)62 documented
disease-related molecular, phenotypic, and environmental features.
The data sources integrated by OAHG involved OMIM, HMDD,
and LncRNADisease. SIDD integrated up to 18 different data sources,
including OMIM, GAD, CTD, LncRNADisease, and HPO.

Gene Functional Annotations

Similar molecular foundations of diseases may be influenced not only
by common genes but also by different genes with common functions.
Recently, associations between genes from gene functional annotation
resources have been introduced for calculating disease similarity. Here,
we list resources for the identification of gene functional annotations.

GOA

Disease-related PCGs can possess similar molecular functions (MFs),
andmay be involved in similar biological processes (BPs). This type of
functional association of genes often exposes the similarity of
different diseases. The GO annotation (GOA)63 of PCGs provides
assignments of MF and BP terms of GO to gene products, in a project
run by the European Bioinformatics Institute (EBI).

HumanNet

In addition to the GOA of PCGs, functional relationships between
disease-related genes can also be reflected by protein-protein interac-
tions,64 mRNA co-expression,65 and so forth. By integrating all of this
data, HumanNet provides a more comprehensive relative score of
pairwise PCG relationship.66

DISEASE SIMILARITY MEASURES
The similarity between diseases can be reflected by their common
phenotypic characteristic, molecular basis, and hierarchy structures.
Therefore, we have classified the disease similarity methods into
phenotype-based, molecule-based, hierarchy-based, and hybrid
methods (Table 2).
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Table 2. Summary of Disease Similarity Methods

Author(s) Molecule Based Phenotype Based Hierarchy Based Vocabulary PMID (or Reference Number) Year

Freudenberg and Propping21 O OMIM 12385992 2002

van Driel et al.67 O OMIM 16493445 2006

Köhler et al.68 O OMIM 19800049 2009

Zhang et al.69 O OMIM 20659468 2010

Zhou et al.72 O MeSH 24967666 2014

Chen et al.73 O UMLS 25277758 2015

Hoehndorf et al.119 O DO 26051359 2015

Deng et al.120 O OMIM 25664462 2015

Mabotuwana et al.92 O SNOMED CT 23850839 2013

Mathur et al.99 O DO 21347137 2010

Suthram et al.78 O UMLS 20140234 2010

Gottlieb et al.8 O UMLS 21654673 2011

Hamaneh and Yu82 O OMIM/MeSH 25360770 2014

Kim et al.83 O PharmGKB 26212477 2015

Wang et al.35 O DO/MeSH 17344234 2007

Resnik27 O O DO 27 1995

Lin126 O O DO 28 1998

Schlicker et al.98 O O 16776819 2006

Mathur et al. O O DO 22166490 2012

Cheng et al.91 O O DO 24932637 2014
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Phenotype-Based Methods

Figure 2 shows the schematicprocess of phenotype-basedmethods. First,
qualitative associations between phenotypes and diseases are extracted
from phenotype data sources. Then, each pair of qualitative associations
is quantified as a disease-phenotype score or phenotype-phenotype
score. Finally, these scores are utilized for calculating disease similarity.

Freudenberg’s Method

OMIM diseases were originally attributed manually by Freudenberg
and Propping21 according to their phenotypic appearance, using
the indices “periodicity,” “etiology,” “tissue,” “age of onset,” and
“mode of inheritance.” The index “periodicity” is a Boolean variable,
indicating an episodic occurrence of a disease in contrast to a linear
progression. The index “etiology” is based on clinical signs and
laboratory or pathological findings related to a disease. The index
“tissue” is compiled as the anatomic location of phenotype. The index
“inheritance” indicates whether a disease is inherited in an auto-
somal-dominant, autosomal-recessive, X chromosome, mitochon-
drial, or complex manner. The index “age of onset” refers to the
age of a patient when symptoms are generally first noticed. Then,
the similarity of diseases d1 and d2 is defined as the following:

simðd1; d2Þ =
X5

i= 1

wi,simðd1:indexi; d2:indexiÞ; (Equation 1)

where wi represents the contribution of a single index to the total
similarity score, and sim(d1.indexi, d2.indexi) indicates the similarity
between the ith indexes of d1 and d2.
van Driel’s Method

van Driel et al.67 calculated the similarity between over 5,000 diseases
based on phenotypic features of OMIM records. For each OMIM dis-
ease, its phenotypic descriptions were extracted from “TX” and “CS”
fields. Then, the OMIM diseases and phenotypic descriptions were
mapped to the anatomy (category A) and the disease (category C)
sections of MeSH to establish disease-term associations. Each
disease-term association was then defined as a vector with three fea-
tures as follows:

f1ðt1; d1Þ = countedðt1; d1Þ+ descendantðt1Þ
descendentðt1;d1Þ; (Equation 2)

f2ðt1; d1Þ = log2
N
n1
; (Equation 3)

and

f3ðt1; d1Þ = 0:5+
countedðt1; d1Þ

maxni= 1ðcountedðti; d1ÞÞ
; (Equation 4)

where t1 and d1 represent a phenotype term and a disease, respec-
tively. In Equations 2 and 4, counted(t1,d1) means the occurrence
number of t1 in the OMIM records of d1. In Equation 3, N is the total
number of records analyzed, and n1 is the number of records that
contain the term t1. In Equation 4, descendant(t1) is the number of
descendant terms in the hierarchy of MeSH, and descendant(t1,d1)
is the number of descendant terms in the OMIM records of d1. The
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similarity between diseases d1 and d2 is then defined as Equation 5
below:

simðd1; d2Þ =
Pm
i= 1

ðt1;i,t2;iÞffiffiffiffiffiffiffiffiffiffiffiffiPm
i= 1

t21;i

r
,

ffiffiffiffiffiffiffiffiffiffiffiffiPm
i= 1

t22;i

r ; (Equation 5)

where t1,i and t2,i mean the ith term vector of d1 and d2, respectively;
and m is the total number of phenotypic terms.
Freudenberg’s Method

Phenotypic terms of the “CS” field of OMIM records were also manu-
ally extracted to construct an HPO by Freudenberg.68 Then, the sim-
ilarity of pairwise phenotypic terms was calculated based on Resnik’s
method27 as follows:

sim
�
p1; p2

�
= max

a˛ancestorðp1 ;p2Þ
log

N
nðaÞ; (Equation 6)

where a is the ancestor of phenotypes p1 and p2, N is the total number
of genes associated with the phenotypes, and n(a) is the number of
594 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
genes associated with a. Then, the similarity of
pairwise diseases d1 and d2 is defined as follows:

simðd1 � > d2Þ =
Pn
i= 1

max
1< = j < =m

sim
�
pi; pj

�

n
;

(Equation 7)

and

simðd1; d2Þ= simðd1 � > d2Þ+ simðd2 � > d1Þ
2

�
;

(Equation 8)

where n and m represent the number of
phenotypes associated with d1 and d2,
respectively.
Zhang’s Method

Zhang et al.69 extracted phenotypic terms from
the “TX” and “CS” fields of OMIM’s disease re-
cords using a MetaMap transfer tool.70 As a
result, each disease could be represented as a
set of phenotypes. Then the weights of pheno-
typic terms for diseases were calculated based
on a term frequency-inverse document fre-
quency (TF-IDF) weighting scheme.71 Subsequently, each disease
was represented as a weighted vector of these phenotypic terms.
Finally, the similarity of pairwise diseases was defined as the cosine
of their corresponding phenotypic vectors.

Zhou’s Method

Zhou et al.65,72 define a disease as a set of symptoms, which were
extracted from PubMed. Each disease was described as a weighted
vector of phenotypic terms. Here the weight was calculated by a
TF-IDF weighting scheme. The similarity of a pairwise disease was
then defined as the cosine of their vectors.

Chen’s Method

Chen et al.73 extracted the disease-phenotype relationships from the
UMLS file MRREL.RRF where disease-phenotype relationships
were documented based on OMIM, Ultrasound Structured Attribute
Reporting,74 and Minimal Standard Digestive Endoscopy Terminol-
ogy.75 This group then used the information content (IC) to weight
each phenotype concept as follows:

w1 = log2
N
n1
; (Equation 9)
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where N is the total number of diseases, and n1 is the number of
diseases associated with a phenotype p1. Then they modeled the
phenotype similarity of pairwise diseases by the cosine of their feature
vectors.

Molecule-Based Methods

The schematic process of molecule-based methods is analogous
to that of the previously stated phenotype-based methods. Here,
genes are the mainly disease-related molecules. Phenotypic-based
methods always utilized the semantics associations between pheno-
types. In comparison, genes can be associated in more ways, such
as in terms of protein-protein interactions (PPIs), co-expression,
and so forth.

Mathur’s Method

SwissProt76 documents proteins that have been manually annotated
with diseases, which were mapped to DO terms using MetaMap by
Mathur and Dinakarpandian.77 Then, the similarity of diseases d1
and d2 was calculated based on their corresponding genes as follows:

simðd1; d2Þ = jG1XG2 j =jG1WG2 j
ðjG1 j =NÞ,ðjG2 j =NÞ; (Equation 10)

where G1 and G2 are gene sets of diseases d1 and d2, respectively, j.j is
the number of terms in the specified set, and N is the total number of
genes.
Suthram’s Method

Suthram et al.78 compared diseases using an integrated analysis of dis-
ease-related mRNA expression data and the human protein interac-
tion network.78 First, they identified conserved functional modules
of genes using PathBLAST79 based on PPI data from the Human
Protein Reference Database (HPRD).80 Next, they normalized the
gene expression data in eachmicroarray sample using a Z-score trans-
formation and computed the activity level of each gene in a disease.
Then, the module response score for each module in a disease was as-
signed to be the mean of the gene activity score of its component
genes. Finally, they calculated the partial correlation coefficient
between diseases based on the corresponding module response score
and defined it as the disease similarity.

Gottlieb’s Method

Gottlieb et al.8 presented four algorithms for calculating disease
similarity using the genetic signatures of diseases from gene
expression experiments,8 which involved signature-based, signa-
ture sequence-based, signature PPI-based, and signature GO-based
methods. The signature-based method utilized a Jaccard index be-
tween every pair of disease signatures to calculate disease similar-
ity as follows:

simgeneðd1; d2Þ = jG1 XG2 j =jG1 WG2 j ; (Equation 11)

where G1 and G2 are the signatures of diseases d1 and d2, respectively,
and j.j is the number of terms in the specified set.
The signature PPI-based method calculated the distances between each
pair of disease signatures basedon their correspondingproteinsusing an
all-pairs shortest paths algorithm on the human PPI network. Distances
were transformed into similarity values using the following formula:

simPPIðd1; d2Þ = Ae�Dðp1;p2Þ; (Equation 12)

where P1 and P2 are the corresponding proteins of diseases d1 and d2,
respectively, and D(P1, P2) is the shortest path between these proteins
in the PPI network. A is a parameter chosen to be 0.9� e by Perlman
et al.81

The signature sequence-based method calculated the Smith-
Waterman sequence alignment score between disease signatures
and then divided the score by the geometric mean of the scores
from aligning each sequence against itself. In addition, the signature
GO-based method calculated the similarity between each pair of
disease signatures based on their corresponding GO terms.

Hamaneh’s Method

Hamaneh and Yu82 devised a network-basedmeasure to calculate dis-
ease similarity. First, they assigned weights to all proteins by using in-
formation flow from a disease to the human PPI network and back. As
a result, each disease was represented as a weighted vector whose
dimension is the number of proteins in the network. Then, the sim-
ilarity of two diseases was defined as the cosine of the angle between
their corresponding vectors.

Kim’s Method

Kim et al.83 extracted disease-gene pairs and disease-drug pairs from
the literature and used the frequencies of co-occurrence relationships
as features to calculate disease similarity.83 In this work, disease
names, gene symbols, and drug names were from the Pharmacoge-
nomics Knowledgebase (PharmGKB).84 This assumes that G1 and
G2 are genes that occurred in the same sentence as diseases d1 and
d2, respectively. D1 and D2 are drugs that occurred in the same
sentence as diseases d1 and d2, respectively. The similarity of d1 and
d2, therefore, can be defined as the following:

simðd1; d2Þ = MIGðd1; d2Þ+MIDðd1; d2Þ
2

; (Equation 13)

MIGðd1; d2Þ = jG1XG2 j
jN j ,log

jG1XG2 j
N

jG1 j
N ,jG2 j

N

; (Equation 14)

and

MIDðd1; d2Þ = jD1XD2 j
jM j ,log

jD1XD2 j
M

jD1 j
M ,jD2 j

M

; (Equation 15)

where N andM are the total number of genes and drugs, respectively.
Hierarchy-Based Methods

Hierarchy-based approaches are based only on the hierarchical struc-
ture of disease-related ontologies. In the previously mentioned
Molecular Therapy: Nucleic Acids Vol. 18 December 2019 595
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studies, multiple methods have been presented for calculating the
similarity of ontology terms using shared path and distance based
on hierarchical structures85–89. However, currently only Wang’s
method is widely utilized for calculating disease similarity.

Wang’s Method

Assuming thatD1 is the set including d1 and all of its ancestor terms in
an ontology-based “IS_A” relationship, the hierarchical contribution
of the terms d to d1 is represented as follows:

Sd1ðtÞ =
�
1 d = d1
Sd1ðtÞ=maxfw,Sd1ðd0Þjd’˛d1gdsd1

; (Equation 16)

where w is a hierarchical contribution factor for hierarchical associa-
tion. According to Wang et al.35,90 and Cheng et al.,91 w is defined as
0.5 for an “IS_A” relationship of DO.34 Then, the value of the summa-
tion of all of the hierarchical contributions ofD1 to d1 is SV(d1), which
is defined as follows:

SVðd1Þ =
X
d˛D1

Sd1ðdÞ: (Equation 17)

Assuming thatD2 is the set including d2 and all of its ancestor terms, the
similarity between d1 and d2 is defined by Wang’s method as follows:

SimWangðd1; d2Þ =

P
d˛D1XD2

ðSd1ðdÞ+ Sd2ðdÞÞ
SVðd1Þ+ SVðd2Þ (Equation 18)

Mabotuwana et al.’s Method

Mabotuwana et al.92 defined similarity of pairwise terms as inversely
proportional to the distance between terms, as follows:

Simðd1; d2Þ = 1
d
; (Equation 19)

where d is the number of nodes in the shortest path between two
diseases based on the DAG of ontology.
Hybrid Methods

Molecular and hierarchical associations between diseases have been
combined as hybrid methods for calculating disease similarity. These
methods often utilize disease-related genes to define the IC of
diseases93–95 as follows:

ICðdÞ = log2
nd
N
; (Equation 20)

where N denotes the total number of genes, and nd represents the
number of genes of d. Here, disease-related genes are often based
on OMIM,36 CTD,40 SIDD,62 OAHG,61 and so on.
Resnik’s Method

Early in 1995, Resnik27 presented a method for calculating the simi-
larity between ontology terms. In 2002, this method was introduced
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for calculating the similarity between GO terms.96 In 2011, Li
et al.97 utilized this method for calculating the similarity between
DO terms. According to Resnik’s method, the similarity of pairwise
diseases d1 and d2

27 equals the IC of the most informative common
ancestor (MICA) of these two diseases as follows:

simResnikðd1; d2Þ = ICðtMICAÞ: (Equation 21)

Lin’s Method

Concerned that the similarity between ontology terms should also be
decided by the IC of the two terms, Lin28 improved Resnik’s method
in 1998. According to Lin’s method28, the similarity of pairwise dis-
eases d1 and d2 can be reflected by both the MICA of the disease
pair and the IC of each disease as follows:

simðd1; d2Þ = 2$ICðdMICAÞ
ICðd1Þ+ ICðd2Þ: (Equation 22)

Schlicker’s Method

Schlicker et al.98 improved Resnik’s method from the same perspec-
tive as Lin, and they defined disease similarity as follows:

simðd1; d2Þ = max
d˛ancestorsðd1 ;d2Þ

	
2$ICðdÞ

ICðd1Þ+ ICðd2Þ $
�
1� nd

N

��
:

(Equation 23)

In this equation, ancestors(d1, d2) represents the common ancestor of
diseases d1 and d2.

Mathur’s Method

In 2012, Mathur et al.99 designed a newmethod named PSB for calcu-
lating the similarity between DO terms. According to this method, the
significance of related BPs terms from GO42 should be computed for
each disease using a hypergeometric test.99 Assuming that d1 and d2
can be associated with m and n BP terms, respectively, the similarity
of d1 and d2 is defined as follows:

simðd1; d2Þ

=
1
2

0
BB@
Pm
i= 1

max
1%j%n

�
Sim

�
p1i; p2j

��

m
+

Pn
j= 1

max
1%i%m

�
Sim

�
p2j; p1i

��

n

1
CCA;

(Equation 24)

where Simðp1i; p2jÞ represents the similarity between two BPs p1i and
p2j as follows:

Sim
�
p1; p2

�
=
1
2
$
�
ICGO

�
p1
�
+ ICGO

�
p2
��
$

n
�
p1Xp2

�
n
�
p1Wp2

� $ ICGO

�
p1
�

MaxðICGoÞ $
ICDO

�
p1
�

MaxðICDOÞ $

ICGO

�
p2
�

MaxðICGOÞ $
ICDO

�
p2
�

MaxðICDOÞ:
(Equation 25)
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Here, ICGO and ICDO represent the IC based on GO and DO, respec-
tively. n(p1Xp2) and n(p1Wp2) denote the number of common
genes of p1 and p2 and the number of total genes of p1 and p2,
respectively.

Cheng’s Method

In addition to related BP, genes can be associated by PPI, co-
expression, and so forth. Therefore, Cheng et al.91 presented
the SemFunSim method to improve Mathur’s method by incorpo-
rating the gene functional network from HumanNet,66 which re-
flects the comprehensive gene associations from PPI, co-expres-
sion, BP, and so on. This assumes that G1 and G2 represent
related gene sets of d1 and d2, respectively. Then, the similarity
between t1 and t2 by Cheng et al.’s91 method is described by
the following:
SimSemFunSimðt1; t2Þ =

Pm
i= 1

max
1%j%n

�
Sim

�
g1i; g2j

��
+
Pn
j= 1

max
1%i%m

�
Sim

�
g2j; g1i

��

m+ n
$

m
jGMICA j $

n
jGMICA j ; (Equation 26)
where jGMICAj represents the number of genes of MICA for t1
and t2 and m and n denote the number of genes in G1 and G2,
respectively. Sim(g1i, g2j) is the functional similarity score between
genes g1i and g2j from HumanNet.66

PERFORMANCE EVALUATION
The performance of a disease similarity method can be affected by
the quality of the prior knowledge it is based on. Most of the
methods that utilize a manually curated dataset is high reliability.
Some of the methods mentioned here use data from the literature
extracted using text-mining tools. Data obtained in an unsuper-
vised way should always be evaluated. In Mathur’s method,77 dis-
ease-related genes were mined from literature using MetaMap.70

The recall and precision were calculated based on a benchmark da-
taset from Monttaz et al.,100 which contained 200 records that were
manually annotated by experts. The identified similarity pairs of
diseases should always be then evaluated to measure the perfor-
mance of the method used. Three types of classical evaluation stra-
tegies are introduced here (Figure 3).

Simulated-Patient-Based Strategy

In consideration of the difficulty in obtaining phenotypic informa-
tion about a large number of patients, Sebastian et al.68 presented a
simulated-patient-based method to evaluate their phenotype-based
disease similarity method. We used 44 complex dysmorphology
syndromes for which adequate frequency phenotypes were avail-
able, and then 100 virtual patients for each disease were generated
on the basis of the frequency of phenotypes among persons diag-
nosed with a certain disease. For example, to generate patients with
phenotypes A and B, in which A occurs in 40% and B occurs in
60% of patients, a random number generator was utilized to
generate two random numbers uniformly distributed between
0 and 100. Subsequently, the similarity of the simulated patient
to each of the OMIM diseases was calculated and then ranked.
The average rank of all of the patients was returned to assess
the performance of the original method.

Term-Category-Based Strategy

Sun et al.101 utilized information on disease-relatedmolecules to design
a disease similarity measurement method. Their results were evaluated
using the disease classification terminologies found in the ICD-9. Their
assumption was that two similar diseases should be subjected to the
same categories in the ICD-9. Therefore, the correlation between the
similarity of diseases and their classifications can reflect the perfor-
mance of this method. Since similarity scores are not normally distrib-
uted, they used a nonparametric test—the Mann-Whitney U test102—
to assess the statistical significance of the disease similarity.

Benchmark Data-Based Strategy

In the previous study, Cheng et al.91 constructed a benchmark set
containing 70 pairs of similar diseases, which were manually inte-
grated from two datasets. One dataset was adapted from Suthram
et al.78 from the literature. The other dataset was curated by medical
residents.103

Here, we have evaluated the performance of Wang’s, Resnik’s, and
Lin’s methods, PSB, and the SemFunSim using benchmark data.
First, disease pairs of our benchmark dataset were deemed as
positive groups, and 10-fold more disease pairs were randomly
generated as a negative group. Next, the similarity of disease
pairs of these two groups was calculated based on the aforemen-
tioned listed methods. Then, the area under receiver operating
characteristic (ROC) curves (AUCs) was obtained. This process
was iterated 100 times using different negative groups each time,
and the average AUC reflects the respective performance of these
methods.

Figure 4A shows the AUC of one of 100 iterations using disease-
related genes from GeneRIF, while Figure 4B shows the average
AUC of 100 iterations using disease-related genes from GeneRIF.
The average AUC for Resnik’s, Lin’s, and Wang’s methods,
PSB, and the SemFunSim were 0.6484, 0.6791, 0.6978, 0.7759,
and 0.9008, respectively. Figures 4C and 4D show the results
using disease-related genes from SIDD. The calculated average
AUC for Resnik’s, Lin’s, and Wang’s methods, PSB, and the
Molecular Therapy: Nucleic Acids Vol. 18 December 2019 597
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SemFunSim were 0.6209, 0.6351, 0.6849, 0.8843, and 0.9849,
respectively.

The performance of these methods are subject to the prior knowledge
they used. Wang’s method only used the entire structure of the
ontology; therefore, its performance is limited by the comprehensive
of the ontology. Although Resnik’s and Lin’s methods incorporated
the structure of ontology and ontology annotation, they do not utilize
all the “IS_A” relationships of ontology. Thus, the performance of
these three methods is not very good. In comparison with Resnik’s
and Lin’s methods, PSB introduced GOA for associating disease-
related genes. Thus, its performance improved a lot. Since disease-
related genes could be associated in terms of PPIs, co-expression,
and so on, the performance of PSB is improved much more by the
SemFunSim method.
APPLICATIONS
Disease similarity can be determined at the molecular, phenotypic,
and hierarchical levels. Conversely, similar diseases reflect the corre-
lations of their inducing molecules, phenotypes, and classifications.
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Therefore, disease similarity has been widely
applied in the functional prediction of mole-
cules, clinical diagnosis, and the establishment
of disease associations.

The Functional Prediction of Molecules

This is based on the observation that genes
causing similar diseases tend to lie close to
one another in a network of PPI.104,105 Vanunu
et al.104 constructed a comprehensive network
using gene-disease association, disease similar-
ity, and PPI data to predict disease-related
PCGs using a random walk method.106

In comparison with PCGs, it is not easy to
determine the function of ncRNAs due to
limited knowledge with regard to their impact
on proteins fromwet lab experiments with these
ncRNAs. Fortunately, disease similarity has
been useful for this in previous investiga-
tions.90,107–110 Based on prior knowledge of
the associations between ncRNAs and diseases,
functional similarity of ncRNAs can be calcu-
lated based on the similarities of their related
diseases to construct a network in which an ncRNA is represented
as a node and the similarity of pairwise ncRNAs is represented as
edges.90 Just such a network was then utilized for predicting novel
ncRNA-disease associations by the random walk with restart
(RWR) method.106,108,109

Recently, disease similarity has been utilized for mining potential
therapeutic drugs for diseases. Based on the observation
that similar diseases can often be treated with similar drugs,
Cheng et al.91,111 prioritized potential drugs for a disease based
on their results with similar diseases. Gottlieb et al.8 combined
disease similarity and drug similarity to predict novel drug
indications.

Clinical Diagnosis

The diagnosis process can be a challenging undertaking, given the
large number of hereditary disorders and the range of partially over-
lapping clinical features associated with them. To resolve this prob-
lem, Robinson et al.5,68 established an HPO to calculate the disease
similarity and diagnose diseases according to clinical phenotype.
According to Equations 6, 7, and 8, disease similarity can be
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calculated based on their phenotype sets. For an individual patient,
the similarity between OMIM diseases and clinical features could
also be calculated based on this method. The similarity score in this
case then reflects the probability of a potential disease in the patient.
Construction of Qualitative Associations of Diseases

In 2006, Goh et al.112 utilized the common genetic origin of diseases to
construct a human disease network (HDN) from the molecular level
based on OMIM. This was an early study that established a qualitative
association between diseases from a quantitative perspective. A
portion of each disease stems not as the consequence of the single
genetic defects but, rather, the breakdown in molecular interaction
networks. Thus, their associations cannot be reflected by this
network. Therefore, the network was extended based on PPIs,
metabolic networks, and different pathways.113–115

Recently, Zhou et al.72 established an HDN at the phenotypic level,
where the link weight between two diseases quantified the disease
similarity. Here, the symptoms of diseases were extracted from liter-
ature in PubMed. Each disease was described as a vector of
phenotypes. Then, the similarity between diseases was defined as
the cosine similarity of their vectors.
TOOLS FOR CALCULATING DISEASE SIMILARITY
Inspired by the wide recent application of machine learning methods
in bioinformatics,116–118 various algorithms have been implemented
for calculating disease similarity using R and web-based
programs67,68,90,97,111,119–124 (Table 3). These tools play important
roles in disease diagnosis, the prediction of drugs, and so forth.
Here, we introduce four frequently used tools in detail.
Molecular Therap
MimMiner

van Driel et al.67 designed a phenotype-based
method and implemented it as a tool—namely,
MimMiner—for calculating the similarity of
OMIM diseases. This tool provides interfaces
to query the similar diseases related to an input
diseases and is widely used in bioinformatics
community. It should be noted that this tool
needs to be updated due to the rapid increase
in the size of the OMIM disease database.

Phenomizer

Phenomizer is an online tool that can be helpful
in the diagnosis processes and is based on dis-
ease similarity.68 Currently, thousands of genetic disorders character-
ized by specific combinations of phenotypic features are documented
in OMIM. The diagnosis process based on phenotypes is difficult
without computer-based tools. Phenomizer allows an automatic cor-
relation between phenotypic abnormalities and hereditary disorders
found in OMIM. The p values are generated to evaluate the statistical
significance of those correlation scores given by Phenomizer. This
tool is also useful for suggesting additional possible phenotypic alter-
ations for further evaluation in a patient of interest.

DOSim

DOSim is an R package used for computing the similarity between DO
terms97 based onWang’s method35 and nine hybrid methods involving
Resnik’s method, Lin’s method, and so forth.93–95,98,125–127. This tool
also implements utilities to calculate the similarity of genes based on
their inducing diseases and conduct DO enrichment analysis.

DisSim

DisSim111 is an online system for exploring similar diseases in DO. It
provides both the similarity of pairwise diseases and the significance
of their similarity score. In addition, the system integrates therapeutic
drugs for known diseases to predict potential drugs for other human
diseases based on the observation that similar diseases can be treated
with similar drugs.78

DISCUSSION
Most disease similarity methods depend on disease vocabularies and
their annotations. Phenotype-based methods extract disease annota-
tions of phenotypes from PubMed and OMIM. Disease names from
these data sources are from MeSH and OMIM. Hierarchy-based
y: Nucleic Acids Vol. 18 December 2019 599
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Table 3. Summary of Disease Similarity Tools

Author(s) Name Type Web Site Vocabulary PMID Year

van Driel et al.67 MimMiner webpage OMIM 16493445 2006

Robinson et al.5 Phenomizer webpage http://compbio.charite.de/phenomizer/ OMIM 19800049 2009

Wang et al.90 MISIM webpage MeSH 20439255 2010

Li et al.97 DOSim R package DO 21714896 2011

Hoehndorf et al.119 NA webpage http://aber-owl.net/aber-owl/diseasephenotypes/ OMIM 26051359 2015

Hamaneh and Yu123 DeCoaD webpage
https://www.ncbi.nlm.nih.gov/CBBresearch/
Yu/mn/DeCoaD/

DO 26047952 2015

Deng et al.120 HPOSim R package https://sourceforge.net/p/hposim/summary/ OMIM 25664462 2015

Yu et al.121 DOSE R package
http://www.bioconductor.org/packages/release/
bioc/html/DOSE.html

DO 25677125 2015

Cheng et al.111 DisSim webpage http://bio-annotation.cn/DisSim DO 27457921 2016

Cheng et al.122 DisSetSim webpage http://bio-annotation.cn/DisSetSim/ DO 29297411 2017

Cheng et al.124 DincRNA webpage
http://bio-annotation.cn:18080/DincRNAClient/
#/Home

DO 29365045 2018
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methods utilize the structure of ontology from MeSH and DO.
Current molecule-based methods mainly used the DO annotations
of genes. In summary, DO, MeSH, and OMIM contain the most
frequently used vocabularies for calculating disease similarity. How-
ever, not all disease terms are contained in any one of these vocabu-
laries. For comparison, OMIM documents more specific disease
terms, such as TYPE III SYNDACTYLY (OMIM: 186100). MeSH
and DO involve classification of diseases, such as cancer (DOID:
162). Figure 5 shows the number of disease terms distributed across
the different vocabularies. In total, 958 common disease terms are
documented in DO, MeSH, and OMIM, which covers 8.8%, 8.5%,
and 11.4% of DO, MeSH, and OMIM terms, respectively. Although
OMIM and MeSH terms have been integrated into MEDIC, MEDIC
lacks many DO terms and disease classifications. Therefore,
combining all of the disease terms of DO, MeSH, and OMIM is
critical for calculating disease similarity using the same vocabulary.
In addition, a unified disease annotation database based on this inte-
grated vocabulary is indispensable for improving the universality of
similarity determining algorithms. In our previous studies, we pro-
vided a global view of human diseases by annotating disease-related
molecule and phenotype features with DO.62,111 However, the
absence of disease terms in DO limits its application.

Disease-related ontologies only contain “IS_A” relationships, which
limits the performance of hierarchy-based methods. For example,
Wang’s method could be applied to multiple term associations of
ontology, such as “IS_A,” “PART_OF,” “LOCATE_IN,” and so on.
The performance evaluation results in Figure 4 shows that Wang
et al.’s method could be improved, which may be achieved with the
occurrence of more types of disease associations than the “IS_A”
relationship.

Data quality and the quantity of disease annotations of phenotypes
and molecules are crucial for the performance of molecule-based,
600 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
phenotype-based, and hybrid-based methods. OMIM documents
close but few disease-gene associations. Contrary to this, GeneRIF
and SIDD retain loose but abundant associations. All of these datasets
were combined together without distinction for calculating disease
similarity in most cases. These methods could be improved by
ranking all of the associations. For example, we can improve the dis-
ease annotations by adding the evidence for each disease-gene associ-
ation such as that found in the GOA database.128

In general, newer methods should consider more types of prior
knowledge, leading to better performance. Wang’s method,35 which
is a hierarchy-based method, was presented in 2007. The SemFunSim
method was presented in 2014, and it incorporates the hierarchical
structure of DO, disease annotations of genes, and gene associations.
The evaluation results in Figure 4 show that SemFunSim achieves a
higher AUC than Wang’s method. Although hybrid methods inte-
grate more types of prior knowledge of diseases, molecular and
phenotypic associations of diseases were ignored. Therefore, it is
possible that the performance of disease similarity methods could
be further improved by fusing more disease knowledge types.

Although comprehensive knowledge benefits the calculative precision
of disease similarity, these methods based on a single type of prior
knowledge can also very valuable for biological applications. Diseases
are often caused by the molecular mechanism and could be reflected
by diverse phenotypes. Disease phenotypes can be detected from clin-
ical diagnosis, while causal molecules are identified from wet labs.
Gaps in phenotypic and molecular levels exist for understanding dis-
eases. Here, disease similarity based on different types of knowledge
could bridge the gap.

The purpose of calculating disease similarity is to identify similar dis-
eases. However, it is not easy to determine similar diseases directly
from most of the presented methods and tools. One feasible strategy

http://compbio.charite.de/phenomizer/
http://aber-owl.net/aber-owl/diseasephenotypes/
https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/mn/DeCoaD/
https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/mn/DeCoaD/
https://sourceforge.net/p/hposim/summary/
http://www.bioconductor.org/packages/release/bioc/html/DOSE.html
http://www.bioconductor.org/packages/release/bioc/html/DOSE.html
http://bio-annotation.cn/DisSim
http://bio-annotation.cn/DisSetSim/
http://bio-annotation.cn:18080/DincRNAClient/#/Home
http://bio-annotation.cn:18080/DincRNAClient/#/Home
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for this purpose is provided here by DisSim,111 which provides the p
values for each similarity score. According to current methods, the
similarity of pairwise diseases can be obtained, which are then
normalized to Z scores. Then, the one-side p values are calculated
as a significance score for each similarity score. Another way to pro-
vide p values for similarity scores would be a permutation test.

Disease similarity plays important roles in mining the novel molecu-
lar features of diseases, clinical diagnosis, and so on. The exploration
of the function of ncRNAs is a long-term challenge, as these RNAs do
not produce proteins. Currently, disease similarity has been successful
in predicting the function of ncRNAs, especially in prioritizing
miRNA-disease14,129–133 and lncRNA-disease pairs.90,108 In the
future, these methods can be used for comprehending the function
of other types of ncRNAs, such as circular RNA (circRNAs).134 In a
previous study, disease similarity was utilized for diagnosis based
on phenotypes.68 This may also be helpful for molecular diagnosis.
Alterations in the presence of metabolites are easily determined in
the clinical, meaning metabolite-disease pairs can be prioritized based
on disease similarity methods. Therefore, it is theoretically possible to
predict potential diseases based on abnormalities in metabolite levels.
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